Skip to main content
Log in

Monitoring fast solar chromospheric activity: the MeteoSpace project

  • Original Article
  • Published:
Experimental Astronomy Aims and scope Submit manuscript

Abstract

We present in this reference paper an instrumental project dedicated to the monitoring of solar activity during solar cycle 25. It concerns the survey of fast evolving chromospheric events implied in Space Weather, such as flares, coronal mass ejections, filament instabilities and Moreton waves. Coronal waves are produced by large flares around the solar maximum and propagate with chromospheric counterparts; they are rare, faint, difficult to observe, and for that reason, challenging. They require systematic observations with automatic, fast and multi-channel optical instruments. MeteoSpace is a high cadence telescope assembly specially designed for that purpose. The large amount of data will be freely available to the solar community. We describe in details the optical design, the qualification tests and capabilities of the telescopes, and show how waves can be detected. MeteoSpace will be installed at Calern observatory (Côte d’Azur, 1270 m) and will be in full operation in 2023.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data availability statement

The authors declare that the datasets analysed during the current study are publicly available from the corresponding author upon request.

References

  1. Admiranto, A.G., Priyatikanto, R., Yus’an, U., Puspitaningrum, E.: Moreton waves and EIT waves related to the flare events of June 3, 2012 and July 6, 2012. In: The 5th International Conference on Mathematics and Natural Sciences, American Institute of Physics Conference Series, vol. 1677. p. 050014 (2015). https://doi.org/10.1063/1.4930675,

  2. Asai, A., Ishii, T.T., Isobe, H., Kitai, R., Ichimoto, K., UeNo, S., Nagata, S., Morita, S., Nishida, K., Shiota, D., Oi, A., Akioka, M., Shibata, K.: First simultaneous observation of an Hα Moreton Wave, EUV Wave, and Filament/Prominence oscillations. Astrophys. J. Lett. 745(2), L18 (2012). https://doi.org/10.1088/2041-8205/745/2/L18

    Article  ADS  Google Scholar 

  3. Balasubramaniam, K.S., Pevtsov, A.A., Neidig, D.F.: Are moreton waves coronal phenomena? Astrophys. J. 658(2), 1372–1379 (2007). https://doi.org/10.1086/512001

    Article  ADS  Google Scholar 

  4. Cabezas, D.P., Asai, A., Ichimoto, K., Sakaue, T., UeNo, S., Ishitsuka, J.K., Shibata, K.: Dynamic processes of the moreton wave on 2014 March 29. Astrophys. J. 883(1), 32 (2019). https://doi.org/10.3847/1538-4357/ab3a35

    Article  ADS  Google Scholar 

  5. Chen, P.F.: Coronal mass ejections: Models and their observational basis. Living Reviews in Solar Physics 8(1), 1 (2011). https://doi.org/10.12942/lrsp-2011-1

    Article  ADS  Google Scholar 

  6. Gosain, S., Roth, M., Hill, F., Pevtsov, A., Martinez Pillet, V., Thompson, M.J.: Design of a next generation synoptic solar observing network: solar physics research integrated network group (SPRING). In: Evans, C.J., Simard, L., Takami, H. (eds.) Ground-based and Airborne Instrumentation for Astronomy VII, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 10702. p. 107024H (2018) https://doi.org/10.1117/12.2306555

  7. Grenat, H., Laborde, G.: Héliographe Monochromatique de Lyot. Annales d’Astrophysique 17, 541 (1954)

    ADS  Google Scholar 

  8. Harvey, J.W., Bolding, J., Clark, R., Hauth, D., Hill, F., Kroll, R., Luis, G., Mills, N., Purdy, T., Henney, C., Holland, D., Winter, J.: Full-disk solar H-alpha images from GONG. In: AAS/Solar Physics Division Abstracts #42, AAS/Solar Physics Division Meeting, vol. 42. p. 17.45 (2011)

  9. Hill, F., Hammel, H., Martinez-Pillet, V., de Wijn, A., Gosain, S., Burkepile, J., Henney, C.J., McAteer, J., Bain, H.M., Manchester, W., Lin, H., Roth, M., Ichimoto, K., Suematsu, Y.: ngGONG: The Next Generation GONG - A New Solar Synoptic Observational Network. In: Bulletin of the American Astronomical Society, vol. 51. p. 74 (2019)

  10. Krause, G., Cécere, M., Francile, C., Costa, A., Elaskar, S., Schneiter, M.: Two step mechanism for Moreton wave excitations in a blast-wave scenario: the 2006 December 06 case study. Mon. Not. Roy. Astron. Soc. 453(3), 2799–2807 (2015). https://doi.org/10.1093/mnras/stv1827

    Article  ADS  Google Scholar 

  11. Krause, G., Cécere, M., Zurbriggen, E., Costa, A., Francile, C., Elaskar, S.: Are CMEs capable of producing Moreton waves? A case study: the 2006 December 6 event. Mon. Not. Roy. Astron. Soc. 474(1), 770–778 (2018). https://doi.org/10.1093/mnras/stx2817

    Article  ADS  Google Scholar 

  12. Lyot, B.: Le Filtre monochromatique polarisant et ses applications en physique solaire. Annales d’Astrophysique 7, 31 (1944)

    ADS  Google Scholar 

  13. Malherbe, J.M., Dalmasse, K.: The New 2018 version of the meudon spectroheliograph. Solar Phys. 294(5), 52 (2019). https://doi.org/10.1007/s11207-019-1441-7

    Article  ADS  Google Scholar 

  14. Malherbe, J.M., Roudier, T., Moity, J., Mein, P., Arnaud, J., Muller, R.: Spectro polarimetry with liquid crystals. Mem. Societa Astronomica Italiana. 78, 203 (2007)

    ADS  Google Scholar 

  15. Malherbe, J.M., Corbard, T., Dalmasse, K., Meteospace Team: Meteospace: a new instrument for solar survey at the Calern observatory. Solar Phys. 294(12), 177 (2019). https://doi.org/10.1007/s11207-019-1569-5

    Article  ADS  Google Scholar 

  16. Michard, R.: Nouvel Héliographe à l’Observatoire de Meudon. L’Astronomie 79, 131 (1965)

    ADS  Google Scholar 

  17. Moreton, G.E.: Hα observations of flare-initiated disturbances with velocities ~1000 km/sec. Astron. J. 65, 494 (1960). https://doi.org/10.1086/108346

    Article  ADS  Google Scholar 

  18. Narukage, N., Eto, S., Kadota, M., Kitai, R., Kurokawa, H., Shibata, K.: Moreton waves observed at Hida Observatory. In: Stepanov, A.V., Benevolenskaya, E.E., Kosovichev, A.G. (eds.) Multi-Wavelength Investigations of Solar Activity, vol. 223. pp. 367–370 (2004) https://doi.org/10.1017/S1743921304006143

  19. Oloketuyi, J., Liu, Y., Zhao, M.: The periodic and temporal behaviors of solar x-ray flares in solar cycles 23 and 24. Astrophys. J. 874(1), 20 (2019). https://doi.org/10.3847/1538-4357/ab064c

    Article  ADS  Google Scholar 

  20. Pulkkinen, T.: Space weather: terrestrial perspective. Living Reviews in Solar Physics 4(1), 1 (2007). https://doi.org/10.12942/lrsp-2007-1

    Article  ADS  Google Scholar 

  21. Reale, F.: Coronal loops: observations and modeling of confined plasma. Living Reviews in Solar Physics 7(1), 5 (2010). https://doi.org/10.12942/lrsp-2010-5

    Article  ADS  Google Scholar 

  22. Roudier, T., Malherbe, J.M., Moity, J., Rondi, S., Mein, P., Coutard, C.: Sub arcsec evolution of solar magnetic fields. Astron. Astrophys. 455(3), 1091–1098 (2006). https://doi.org/10.1051/0004-6361:20064963

    Article  ADS  Google Scholar 

  23. Schwenn, R.: Space weather: the solar perspective. Living Reviews in Solar Physics 3(1), 2 (2006). https://doi.org/10.12942/lrsp-2006-2

    Article  ADS  Google Scholar 

  24. Steinegger, M., Hanslmeier, A., Otruba, W., Freislich, H., Denker, C., Goode, P.R., Marquette, W.M., Varied, J., Wang, H., Luo, G., Chen, D., Zhang, Q.: An overview of the new global high-resolution h-alpha network. HVAR Observatory Bulletin 24(1), 179 (2000)

    ADS  Google Scholar 

  25. Stenflo, J.: Solar magnetic fields: polarized radiation diagnostics, vol. 189. (1994) https://doi.org/10.1007/978-94-015-8246-9

  26. Temmer, M.: Space weather: the solar perspective. Living Reviews in Solar Physics 18(1), 4 (2021). https://doi.org/10.1007/s41116-021-00030-3

    Article  ADS  Google Scholar 

  27. Ueno, S., Shibata, K., Ichimoto, K., Kitai, R., Nagata, S., Kimura, G., Nakatani, Y.: Continuous H-alpha imaging network project (CHAIN) with ground-based solar telescopes for space weather research. African Skies 14, 17 (2010)

    ADS  Google Scholar 

  28. Warmuth, A.: Large-scale globally propagating coronal waves. Living Reviews in Solar Physics 12(1), 3 (2015). https://doi.org/10.1007/lrsp-2015-3

    Article  ADS  Google Scholar 

  29. Zhang, H.: Moreton wave and its source of disturbances in the X12/3B WLF of AR6659 in 1991 June 4. Astron. Astrophys. 372, 676–685 (2001). https://doi.org/10.1051/0004-6361:20010379

    Article  ADS  Google Scholar 

  30. Zhang, Y., Kitai, R., Narukage, N., Matsumoto, T., Ueno, S., Shibata, K., Wang, J.: Propagation of moreton waves. Pub. Astron. Soc. Japan 63, 685 (2011). https://doi.org/10.1093/pasj/63.3.685

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank the anonymous referee for useful suggestions and comments. We are indebted to Y. Bresson, C. Renaud (OCA), J.-M. Rees, C. Blanchard (OP) and the technical teams of OP and OCA for their assistance. We are also grateful for financial support to Paris and Nice observatories, the Direction Générale de l’Armement, the IDEX Plas@Par, the Programme National Soleil Terre (PNST/INSU/CNRS), the DIM ACAV (Ile de France Region) and the IDEX UCA/JEDI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Marie Malherbe.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malherbe, JM., Corbard, T., Barbary, G. et al. Monitoring fast solar chromospheric activity: the MeteoSpace project. Exp Astron 53, 1127–1148 (2022). https://doi.org/10.1007/s10686-022-09848-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10686-022-09848-7

Keywords

Navigation