Skip to main content
Log in

The Ariel 0.6 - 7.8 μm stellar limb-darkening coefficients

  • Original Article
  • Published:
Experimental Astronomy Aims and scope Submit manuscript

Abstract

We provide here tables of stellar limb-darkening coefficients (LDCs) for the Ariel ESA M4 space mission. These tables include LDCs corresponding to different wavelength bins and white bands for the NIRSpec, AIRS-Ch0 and AIRS-Ch1 spectrographs, and those corresponding to the VISPhot, FGS1 and FGS2 photometers. The LDCs are calculated with the open-source software ExoTETHyS for three complete grids of stellar atmosphere models obtained with the ATLAS9 and PHOENIX codes. The three model grids are complementary, as the PHOENIX code adopts more modern input physics and spherical geometry, while the models calculated with ATLAS9 cover wider ranges of stellar parameters. The LDCs obtained from corresponding models in the ATLAS9 and PHOENIX grids are compared in the main text. All together the models cover the following ranges in effective temperature (1500KTeff ≤ 50000K), surface gravity (0.0 dex \(\le \log {g} \le 6.0\) dex), and metallicity (− 5.0 ≤ [M/H] ≤ 1.0).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Main GitHub repository https://github.com/ucl-exoplanets/ExoTETHyS

References

  1. Allard, F., Hauschildt, P.H.: Model atmospheres for m (Sub)Dwarf stars. i. The base model grid. Apj 445, 433 (1995). https://doi.org/10.1086/175708

    Article  ADS  Google Scholar 

  2. Allard, F., Hauschildt, P.H., Alexander, D.R., Tamanai, A., Schweitzer, A.: The limiting effects of dust in brown dwarf model atmospheres. Apj 556(1), 357–372 (2001). https://doi.org/10.1086/321547

    Article  ADS  Google Scholar 

  3. Castelli, F., Kurucz, R.L.: Is missing Fe I opacity in stellar atmospheres a significant problem? A&A 419, 725–733 (2004). https://doi.org/10.1051/0004-6361:20040079

    Article  ADS  Google Scholar 

  4. Claret, A.: A new non-linear limb-darkening law for LTE stellar atmosphere models. Calculations for -5.0 <= log[M/H] <= + 1, 2000 K <= Teff <= 50000 K at several surface gravities. A&A 363, 1081–1190 (2000)

    ADS  Google Scholar 

  5. Claret, A.: A new non-linear limb-darkening law for LTE stellar atmosphere models III. Sloan filters: Calculations for -5.0 ≤ log [M/H] ≤ + 1, 2000 K ≤Teff≤ 50 000 K at several surface gravities. A&A 428, 1001–1005 (2004). https://doi.org/10.1051/0004-6361:20041673

    Article  ADS  Google Scholar 

  6. Claret, A.: Testing the limb-darkening coefficients measured from eclipsing binaries. A&A 482 (1), 259–266 (2008). https://doi.org/10.1051/0004-6361:200809370

    Article  ADS  Google Scholar 

  7. Claret, A.: A new method to compute limb-darkening coefficients for stellar atmosphere models with spherical symmetry: The space missions TESS, Kepler, CoRoT, and MOST. A&A 618, A20 (2018). https://doi.org/10.1051/0004-6361/201833060

    Article  ADS  Google Scholar 

  8. Claret, A., Bloemen, S.: Gravity and limb-darkening coefficients for the Kepler, CoRoT, Spitzer, uvby, UBVRIJHK, and Sloan photometric systems. A&A 529, A75 (2011). https://doi.org/10.1051/0004-6361/201116451

    Article  ADS  Google Scholar 

  9. Claret, A., Cukanovaite, E., Burdge, K., Tremblay, P.E., Parsons, S., Marsh, T.R.: Gravity and limb-darkening coefficients for compact stars: DA, DB, and DBA eclipsing white dwarfs. A&A 634, A93 (2020). https://doi.org/10.1051/0004-6361/201937326

    Article  ADS  Google Scholar 

  10. Claret, A., Diaz-Cordoves, J., Gimenez, A.: Linear and non-linear limb-darkening coefficients for the photometric bands R I J H K. A&As 114, 247 (1995)

    ADS  Google Scholar 

  11. Claret, A., Dragomir, D., Matthews, J.M.: Theoretical gravity and limb-darkening coefficients for the MOST satellite photometric system. A&A 567, A3 (2014). https://doi.org/10.1051/0004-6361/201423515

    Article  ADS  Google Scholar 

  12. Claret, A., Hauschildt, P.H.: The limb-darkening for spherically symmetric NextGen model atmospheres: A-G main-sequence and sub-giant stars. A&A 412, 241–248 (2003). https://doi.org/10.1051/0004-6361:20031405

    Article  ADS  Google Scholar 

  13. Claret, A., Hauschildt, P.H., Witte, S.: New limb-darkening coefficients for PHOENIX/1D model atmospheres. I. Calculations for 1500 K ≤ Teff ≤ 4800 K Kepler, CoRot, Spitzer, uvby, UBVRIJHK, Sloan, and 2 MASS photometric systems. A&A 546, A14 (2012). https://doi.org/10.1051/0004-6361/201219849

    Article  ADS  Google Scholar 

  14. Claret, A., Hauschildt, P.H., Witte, S.: New limb-darkening coefficients for Phoenix/1d model atmospheres. II. Calculations for 5000 K ≤ Teff ≤ 10 000 K Kepler, CoRot, Spitzer, uvby, UBVRIJHK, Sloan, and 2MASS photometric systems. A&A 552, A16 (2013). https://doi.org/10.1051/0004-6361/201220942

    Article  ADS  Google Scholar 

  15. Czesla, S., Klocová, T., Khalafinejad, S., Wolter, U., Schmitt, J.H.M.M.: The center-to-limb variation across the Fraunhofer lines of HD 189733. Sampling the stellar spectrum using a transiting planet. A&A 582, A51 (2015). https://doi.org/10.1051/0004-6361/201526386

    Article  ADS  Google Scholar 

  16. Danielski, C., Brucalassi, A., Benatti, S., Campante, T., Delgado-Mena, E., Rainer, M., Sacco, G., Adibekyan, V., Biazzo, K., Bossini, D., Bruno, G., Casali, G., Kabath, P.E.A.: The homogeneous characterisation of Ariel host stars submitted (2020)

  17. Diaz-Cordoves, J., Claret, A., Gimenez, A.: Linear and non-linear limb-darkening coefficients for LTE model atmospheres. A&As 110, 329 (1995)

    ADS  Google Scholar 

  18. Edwards, B., Mugnai, L., Tinetti, G., Pascale, E., Sarkar, S.: An updated study of potential targets for ariel. AJ 157(6), 242 (2019). https://doi.org/10.3847/1538-3881/ab1cb9

    Article  ADS  Google Scholar 

  19. Espinoza, N., Jordán, A.: Limb darkening and exoplanets: testing stellar model atmospheres and identifying biases in transit parameters. MNRAS 450, 1879–1899 (2015). https://doi.org/10.1093/mnras/stv744

    Article  ADS  Google Scholar 

  20. Espinoza, N., Jordán, A.: Limb darkening and exoplanets - II. Choosing the best law for optimal retrieval of transit parameters. MNRAS 457(4), 3573–3581 (2016). https://doi.org/10.1093/mnras/stw224

    Article  ADS  Google Scholar 

  21. Hestroffer, D.: Centre to limb darkening of stars. New model and application to stellar interferometry. A&A 327, 199–206 (1997)

    ADS  Google Scholar 

  22. Heyrovský, D.: Computing Limb-darkening coefficients from stellar atmosphere models. Apj 656(1), 483–492 (2007). https://doi.org/10.1086/509566

    Article  ADS  Google Scholar 

  23. Howarth, I.D.: New limb-darkening coefficients and synthetic photometry for model-atmosphere grids at Galactic, LMC and SMC abundances. MNRAS 413 (3), 1515–1523 (2011). https://doi.org/10.1111/j.1365-2966.2011.18122.x

    Article  ADS  Google Scholar 

  24. Howarth, I.D.: On stellar limb darkening and exoplanetary transits. MNRAS 418 (2), 1165–1175 (2011). https://doi.org/10.1111/j.1365-2966.2011.19568.x

    Article  ADS  Google Scholar 

  25. Husser, T.O., Wende-von Berg, S., Dreizler, S., Homeier, D., Reiners, A., Barman, T., Hauschildt, P.H.: A new extensive library of PHOENIX stellar atmospheres and synthetic spectra. A&A 553, A6 (2013). https://doi.org/10.1051/0004-6361/201219058

    Article  ADS  Google Scholar 

  26. Kipping, D.M.: Efficient, uninformative sampling of limb darkening coefficients for two-parameter laws. MNRAS 435(3), 2152–2160 (2013). https://doi.org/10.1093/mnras/stt1435

    Article  ADS  Google Scholar 

  27. Knutson, H.A., Charbonneau, D., Noyes, R.W., Brown, T.M., Gilliland, R.L.: Using Stellar Limb-Darkening to Refine the Properties of HD 209458b. Apj 655(1), 564–575 (2007). https://doi.org/10.1086/510111

    Article  ADS  Google Scholar 

  28. Kopal, Z.: Detailed effects of limb darkening upon light and velocity curves of close binary systems. Harvard College Observ Circ 454, 1–12 (1950)

    ADS  Google Scholar 

  29. Kurucz, R.: ATLAS9 Stellar Atmosphere Programs And 2 km/s grid. ATLAS9 Stellar Atmosphere Programs and 2 km/s grid. Kurucz CD-ROM No. 13, p 13. Cambridge, England (1993)

    Google Scholar 

  30. Kurucz, R.L.: Model atmospheres for G, F, A, B, and O stars. Apjs 40, 1–340 (1979). https://doi.org/10.1086/190589

    Article  ADS  Google Scholar 

  31. Kurucz, R.L.: Model Stellar Atmospheres and Real Stellar Atmospheres. In: Adelman, S.J., Kupka, F., Weiss, W.W. (eds.) M.A.S.S., Model Atmospheres and Spectrum Synthesis, Astronomical Society of the Pacific Conference Series, vol. 108, p 2 (1996)

  32. Magic, Z., Chiavassa, A., Collet, R., Asplund, M.: The Stagger-grid: A grid of 3D stellar atmosphere models. IV. Limb darkening coefficients. A&A 573, A90 (2015). https://doi.org/10.1051/0004-6361/201423804

    Article  ADS  Google Scholar 

  33. Mandel, K., Agol, E.: Analytic light curves for planetary transit searches. Apjl 580(2), L171–L175 (2002). https://doi.org/10.1086/345520

    Article  ADS  Google Scholar 

  34. Maxted, P.F.L.: Comparison of the power-2 limb-darkening law from the STAGGER-grid to Kepler light curves of transiting exoplanets. A&A 616, A39 (2018). https://doi.org/10.1051/0004-6361/201832944

    Article  ADS  Google Scholar 

  35. Morello, G.: A SEA BASS on the Exoplanet HD 209458b. AJ 156(4), 175 (2018). https://doi.org/10.3847/1538-3881/aadda4

    Article  ADS  Google Scholar 

  36. Morello, G., Claret, A., Martin-Lagarde, M., Cossou, C., Tsiara, A., Lagage, P.O.: ExoTETHys: Tools for Exoplanetary Transits around host stars. J Open Source Softw 5(46), 1834 (2020). https://doi.org/10.21105/joss.01834

    Article  ADS  Google Scholar 

  37. Morello, G., Claret, A., Martin-Lagarde, M., Cossou, C., Tsiaras, A., Lagage, P.O.: The exoTETHys Package: Tools for Exoplanetary Transits around Host Stars. AJ 159(2), 75 (2020). https://doi.org/10.3847/1538-3881/ab63dc

    Article  ADS  Google Scholar 

  38. Morello, G., Tsiaras, A., Howarth, I.D., Homeier, D.: High-precision Stellar Limb-darkening in Exoplanetary Transits. AJ 154, 111 (2017). https://doi.org/10.3847/1538-3881/aa8405

    Article  ADS  Google Scholar 

  39. Neilson, H.R., Lester, J.B.: Spherically-symmetric model stellar atmospheres and limb darkening. I. Limb-darkening laws, gravity-darkening coefficients and angular diameter corrections for red giant stars. A&A 554, A98 (2013). https://doi.org/10.1051/0004-6361/201321502

    Article  ADS  Google Scholar 

  40. Neilson, H.R., Lester, J.B.: Spherically symmetric model stellar atmospheres and limb darkening. II. Limb-darkening laws, gravity-darkening coefficients and angular diameter corrections for FGK dwarf stars. A&A 556, A86 (2013). https://doi.org/10.1051/0004-6361/201321888

    Article  ADS  Google Scholar 

  41. Parviainen, H., Aigrain, S.: LDTK: Limb Darkening toolkit. MNRAS 453(4), 3821–3826 (2015). https://doi.org/10.1093/mnras/stv1857

    Article  ADS  Google Scholar 

  42. Reeve, D.C., Howarth, I.D.: Limb-darkening coefficients from line-blanketed non-LTE hot-star model atmospheres. MNRAS 456(2), 1294–1298 (2016). https://doi.org/10.1093/mnras/stv2631

    Article  ADS  Google Scholar 

  43. Sarkar, S., Pascale, E., Papageorgiou, A., Johnson, L.J., Waldmann, I.: ExoSim: the Exoplanet Observation Simulator. arXiv:2002.03739(2020)

  44. Schwarzschild, K.: Nachrichten von der Gesellschaft der Wissenschaften zu Gottingen. Mathematisch-Physikalische Klasse 43 (1906)

  45. Sing, D.K.: Stellar limb-darkening coefficients for CoRot and Kepler. A&A 510, A21 (2010). https://doi.org/10.1051/0004-6361/200913675

    Article  ADS  Google Scholar 

  46. Tinetti, G., Drossart, P., Eccleston, P., Hartogh, P., Heske, A., Leconte, J., Micela, G., Ollivier, M., Pilbratt, G., Puig, L., Turrini, D., Vandenbussche, B., Wolkenberg, P., Beaulieu, J.P., Buchave, L.A., Ferus, M., Griffin, M., Guedel, M., Justtanont, K., Lagage, P.O., Machado, P., Malaguti, G., Min, M., Nørgaard-nielsen, H.U., Rataj, M., Ray, T., Ribas, I., Swain, M., Szabo, R., Werner, S., Barstow, J., Burleigh, M., du Cho, J., Foresto, V.C., Coustenis, A., Decin, L., Encrenaz, T., Galand, M., Gillon, M., Helled, R., Morales, J.C., Muñoz, A.G., Moneti, A., Pagano, I., Pascale, E., Piccioni, G., Pinfield, D., Sarkar, S., Selsis, F., Tennyson, J., Triaud, A., Venot, O., Waldmann, I., Waltham, D., Wright, G., Amiaux, J., Auguères, J.L., Berthé, M., Bezawada, N., Bishop, G., Bowles, N., Coffey, D., Colomé, J., Crook, M., Crouzet, P.E., Da Peppo, V., Sanz, I.E., Focardi, M., Frericks, M., Hunt, T., Kohley, R., Middleton, K., Morgante, G., Ottensamer, R., Pace, E., Pearson, C., Stamper, R., Symonds, K., Rengel, M., Renotte, E., Ade, P., Affer, L., Alard, C., Allard, N., Altieri, F., André, Y., Arena, C., Argyriou, I., Aylward, A., Baccani, C., Bakos, G., Banaszkiewicz, M., Barlow, M., Batista, V., Bellucci, G., Benatti, S., Bernardi, P., Bézard, B., Blecka, M., Bolmont, E., Bonfond, B., Bonito, R., Bonomo, A.S., Brucato, J.R., Brun, A.S., Bryson, I., Bujwan, W., Casewell, S., Charnay, B., Pestellini, C.C., Chen, G., Ciaravella, A., Claudi, R., Clédassou, R., Damasso, M., Damiano, M., Danielski, C., Deroo, P., Di Giorgio, A.M., Dominik, C., Doublier, V., Doyle, S., Doyon, R., Drummond, B., Duong, B., Eales, S., Edwards, B., Farina, M., Flaccomio, E., Fletcher, L., Forget, F., Fossey, S., Fränz, M., Fujii, Y., García-Piquer, Á., Gear, W., Geoffray, H., Gérard, J.C., Gesa, L., Gomez, H., Graczyk, R., Griffith, C., Grodent, D., Guarcello, M.G., Gustin, J., Hamano, K., Hargrave, P., Hello, Y., Heng, K., Herrero, E., Hornstrup, A., Hubert, B., Ida, S., Ikoma, M., Iro, N., Irwin, P., Jarchow, C., Jaubert, J., Jones, H., Julien, Q., Kameda, S., Kerschbaum, F., Kervella, P., Koskinen, T., Krijger, M., Krupp, N., Lafarga, M., Landini, F., Lellouch, E., Leto, G., Luntzer, A., Rank-Lüftinger, T., Maggio, A., Maldonado, J., Maillard, J.P., Mall, U., Marquette, J.B., Mathis, S., Maxted, P., Matsuo, T., Medvedev, A., Miguel, Y., Minier, V., Morello, G., Mura, A., Narita, N., Nascimbeni, V., Nguyen Tong, N., Noce, V., Oliva, F., Palle, E., Palmer, P., Pancrazzi, M., Papageorgiou, A., Parmentier, V., Perger, M., Petralia, A., Pezzuto, S., Pierrehumbert, R., Pillitteri, I., Piotto, G., Pisano, G., Prisinzano, L., Radioti, A., Réess, J.M., Rezac, L., Rocchetto, M., Rosich, A., Sanna, N., Santerne, A., Savini, G., Scandariato, G., Sicardy, B., Sierra, C., Sindoni, G., Skup, K., Snellen, I., Sobiecki, M., Soret, L., Sozzetti, A., Stiepen, A., Strugarek, A., Taylor, J., Taylor, W., Terenzi, L., Tessenyi, M., Tsiaras, A., Tucker, C., Valencia, D., Vasisht, G., Vazan, A., Vilardell, F., Vinatier, S., Viti, S., Waters, R., Wawer, P., Wawrzaszek, A., Whitworth, A., Yung, Y.L., Yurchenko, S.N., Osorio, M.R.Z., Zellem, R., Zingales, T., Zwart, F.: A chemical survey of exoplanets with ARIEL. Exp. Astron. 46(1), 135–209 (2018). https://doi.org/10.1007/s10686-018-9598-x

    Article  ADS  Google Scholar 

  47. Wade, R.A., Rucinski, S.M.: Linear and quadratic limb-darkening coefficients for a large grid of LTE model atmospheres. A&As 60, 471–484 (1985)

    ADS  Google Scholar 

  48. Witte, S., Helling, C., Hauschildt, P.H.: Dust in brown dwarfs and extra-solar planets. II. Cloud formation for cosmologically evolving abundances. A&A 506(3), 1367–1380 (2009). https://doi.org/10.1051/0004-6361/200811501

    Article  ADS  Google Scholar 

  49. Wittkowski, M., Aufdenberg, J.P., Kervella, P.: Tests of stellar model atmospheres by optical interferometry. VLTI/VINCI limb-darkening measurements of the M4 giant ψ Phe. A&A 413, 711–723 (2004). https://doi.org/10.1051/0004-6361:20034149

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank A. Claret and E. Pascale for useful discussions. G.M. was supported by the LabEx P2IO, the French ANR contract 05-BLANNT09-573739. S.S. was supported by United Kingdom Space Agency (UKSA) grant: ST/S002456/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Morello.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morello, G., Danielski, C. & Sarkar, S. The Ariel 0.6 - 7.8 μm stellar limb-darkening coefficients. Exp Astron 53, 533–545 (2022). https://doi.org/10.1007/s10686-021-09740-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10686-021-09740-w

Keywords

Navigation