Skip to main content

Advertisement

Log in

Thick self-standing bent crystals as optical elements for a Laue lens for applications in astrophysics

  • Original Article
  • Published:
Experimental Astronomy Aims and scope Submit manuscript

Abstract

In this paper we report progresses in the realization of self-standing bent crystals, which are suitable as optical elements for Laue lenses, i.e. for optic to focus hard X-rays in the 100–1000 keV energy range. The curvature of the crystals is a key factor to enhance diffraction efficiency and energy bandpass for such an optic. In particular, two bent crystals featuring a thickness of 5 mm, made of Si and Ge respectively, were produced at the Sensor and Semiconductor Laboratory in Ferrara, Italy. The crystals were bent through the application of a carbon fibre composite. This proved to be a relatively low cost method for crystal bending, suitable for mass production. The manufactured samples were characterised via optical interferometry, and showed a fairly uniform curvature. Finally, the samples were tested exploiting hard X-ray diffraction at the ID11 facility of the European Synchrotron Radiation Facility (ESRF) in Grenoble, France. A careful analysis of the experimental data highlighted that the samples feature large energy bandpass, wide geometrical acceptance for incoming hard X-rays, and high diffraction efficiency. We therefore conclude that such self-standing crystals are good candidates as Laue lens components for astrophysics applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Smither, R.K.: New method for focusing x rays and gamma rays. Rev. Sci. Instrum. 53, 131–141 (1982). https://doi.org/10.1063/1.1136941

    Article  ADS  Google Scholar 

  2. Lindquist, T.R., Webber, W.R.: A focusing X-ray telescope for use in the study of extraterrestrial X-ray sources in the energy range 20–140 keV. Can. J. Phys. 46(10), S1103–S1106 (1968). https://doi.org/10.1139/p68-429

    Article  Google Scholar 

  3. Lund, N.: A study of focusing telescopes for soft gamma rays. Exp. Astron. 2, 259–273 (1992). https://doi.org/10.1007/BF00690085

    Article  ADS  Google Scholar 

  4. Boggs, S.: The advanced compton telescope mission. N. Astron. Rev. 50(7–8), 604–607 (2006). https://doi.org/10.1016/j.newar.2006.06.076

    Article  ADS  Google Scholar 

  5. Knödlseder, J., von Ballmoos, P., Frontera, F., Bazzano, A., Christensen, F., Hernanz, M., Wunderer, C.: GRI: focusing on the evolving violent Universe. Exp. Astron. 23, 121–138 (2009). https://doi.org/10.1007/s10686-008-9119-4

    Article  ADS  Google Scholar 

  6. von Ballmoos, P., Halloin, H., Evrad, J., Skinner, G., Abrosimov, N., Alvarez, J., Bastie, P., Hamelin, B., hernanz, M., Jean, P., Knödlseder, J., Smither, R.K.: Claire: first light for a gamma-ray lens. Exp. Astron. 20, 253–267 (2005). https://doi.org/10.1007/s10686-006-9071-0

    Article  ADS  Google Scholar 

  7. Barrière, N., Von Ballmoos, P., Halloin, H., Abrosimov, N., Alvarez, J., Andersen, K., Bastie, P., Boggs, S., Courtois, P., Courvoisier, T., Harris, M., Hernanz, M., Isern, J., Jean, P., Knödlseder, J., Skinner, G., Smither, B., Ubertini, P., Vedrenne, G., Weidenspointner, G., Wunderer, C.: MAX, a Laue diffraction lens for nuclear astrophysics. Exp. Astron. 20(1–3), 269–278 (2005). https://doi.org/10.1007/s10686-006-9058-x

    ADS  Google Scholar 

  8. Frontera, F., Pisa, A., Loffredo, G., Pellicciotta, D., Carassiti, V., Evangelisti, F., Andersen, K., Courtois, P., Amati, L., Caroli, E., Franceschini, T., Landini, G., Silvestri, S., Stephen, J.: HAXTEL: a Laue lens telescope development project for a deep exploration of the hard X-ray sky (> 60 keV). Exp. Astron. 20 (1-3), 241–251 (2005). https://doi.org/10.1007/s10686-006-9050-5

    Article  ADS  Google Scholar 

  9. Zachariasen, W. H.: Theory of X-ray diffraction in crystals. Wiley, New York (1945)

    Google Scholar 

  10. Authier, A., Malgrange, C.: Diffraction physics. Acta Cryst. A54, 806–819 (1998)

    Article  Google Scholar 

  11. Virgilli, E., Frontera, F., Valsan, V., Liccardo, V., Carassiti, V., Squerzanti, S., Statera, M., Parise, M., Chiozzi, S., Evangelisti, F., Caroli, E., Stephen, J.B., Auricchio, N., Silvestri, S., Basili, A., Cassese, F., Recanatesi, L., Guidi, V., Bellucci, V., Camattari, R., Ferrari, C., Zappettini, A., Buffagni, E., Bonnini, E., Pecora, M., Mottini, S., Negri, B.: The LAUE project and its main results. Proc. SPIE 8861, 886107–886107-17 (2013). https://doi.org/10.1117/12.2023593

    Google Scholar 

  12. Liccardo, V., Virgilli, E., Frontera, F., Valsan, V., Buffagni, E., Ferrari, C., Bonnini, E., Zappettini, A., Guidi, V., Bellucci, V., Camattari, R.: Study and characterization of bent crystals for Laue lenses. Exp. Astron. 38, 401–416 (2014). https://doi.org/10.1007/s10686-014-9425-y

    Article  ADS  Google Scholar 

  13. Camattari, R., Guidi, V., Bellucci, V., Mazzolari, A.: The ‘quasi-mosaic’ effect in crystals and its applications in modern physics. J. Appl. Cryst. 48, 977–989 (2015). https://doi.org/10.1107/S1600576715009875

    Article  Google Scholar 

  14. Ackermann, M., Barrière, N., Collon, M.J., Günther, R., Vacanti, G., Beijersbergen, M.W., Haneveld, J.: Bending and bonding Si single crystals for high performance Laue lenses. Proc. SPIE 8861, 88610G-88610G-10 (2013). https://doi.org/10.1117/12.2024224

    Article  ADS  Google Scholar 

  15. Guidi, V., Bellucci, V., Camattari, R., Neri, I.: Curved crystals for high-resolution focusing of X and gamma rays through a Laue lens. Nucl. Instrum. Meth. B 309, 249–253 (2013). https://doi.org/10.1016/j.nimb.2013.01.070

    Article  ADS  Google Scholar 

  16. Guidi, V., Bellucci, V., Camattari, R., Neri, I.: Proposal for a Laue lens with quasi-mosaic crystalline tiles. J. Appl. Cryst. 44, 1255–1258 (2011). https://doi.org/10.1107/S0021889811035709

    Article  Google Scholar 

  17. Barrière, N.M., Natalucci, L., Abrosimov, N., von Ballmoos, P., Bastie, P., Courtois, P., Jentschel, M., Knödlseder, J., Rousselle, J., Ubertini III, P.: Soft gamma-ray optics: new Laue lens design and performance estimates. Proc. SPIE 7437 (2009)

  18. Camattari, R.: Laue lens for astrophysics: extensive comparison between mosaic, curved, and quasimosaic crystals. Astron. Astrophys. 587, A21-1–A21-10 (2016). https://doi.org/10.1051/0004-6361/201526745

    Article  ADS  Google Scholar 

  19. Smither, R.K., Saleem, K.A., Roa, D.E., Beno, M.A., Ballmoos, P.V., Skinner, G.K.: High diffraction efficiency, broadband, diffraction crystals for use in crystal diffraction lenses. Exp. Astron. 20, 201–210 (2005)

    Article  ADS  Google Scholar 

  20. Keitel, S., Malgrange, C., Niemöller, T., Schneider, J.R.: Diffraction of 100 to 200 keV X-rays from an Si1−xGex gradient crystal: comparison with results from dynamical theory. Acta Crystallogr. A A55, 855–863 (1999)

    Article  Google Scholar 

  21. Ferrari, C., Buffagni, E., Bonnini, E., Korytar, D.: High diffraction efficiency in crystals curved by surface damage. J. Appl. Cryst. 46, 1576–1581 (2013). https://doi.org/10.1107/S0021889813022954

    Article  Google Scholar 

  22. Camattari, R., Guidi, V., Lanzoni, L., Neri, I.: Experimental analysis and modeling of self-standing curved crystals for focusing of X-rays. Meccanica 48, 1875–1882 (2013). https://doi.org/10.1007/s11012-013-9734-7

    Article  Google Scholar 

  23. Barrière, N., Guidi, V., Bellucci, V., Camattari, R., Buslaps, T., Rousselle, J., Roudil, G., Arnaud, F. X., Bastie, P., Natalucci, L.: High diffraction efficiency at hard X-ray energy in a silicon crystal bent by indentation. J. Appl. Cryst. 43, 1519–1521 (2010). https://doi.org/10.1107/S0021889810038343

    Article  Google Scholar 

  24. Bellucci, V., Camattari, R., Guidi, V., Neri, I., Barrière, N.: Self-standing bent silicon crystals for very high efficiency Laue lens. Exp. Astron. 31, 45–58 (2011). https://doi.org/10.1007/s10686-011-9226-5

    Article  ADS  Google Scholar 

  25. Bellucci, V., Camattari, R., Mazzolari, A., Paternò, G., Guidi, V., Scian, C., Mattei, G., Lanzoni, L.: Ion implantation for manufacturing bent and periodically bent crystals. Appl. Phys. Lett. 107, 064102 (2015). https://doi.org/10.1063/1.4928553

    Article  ADS  Google Scholar 

  26. Camattari, R., Paternò, G., Romagnoni, M., Bellucci, V., Mazzolari, A., Guidi, V.: Homogeneous self-standing curved monocrystals, obtained through sandblasting, to be used as manipulators of hard X-ray and charged particle beams. J. Appl. Cryst. 50, 145–151 (2017). https://doi.org/10.1107/S1600576716018768

    Article  Google Scholar 

  27. Camattari, R., Dolcini, E., Bellucci, V., Mazzolari, A., Guidi, V.: High diffraction efficiency with hard X-rays through a thick silicon crystal bent by carbon fiber deposition. J. Appl. Cryst. 47, 1762–1764 (2014). https://doi.org/10.1107/S1600576714018834

    Article  Google Scholar 

  28. Malgrange, C.: X-ray propagation in distorted crystals: from dynamical to kinematical theory. Cryst. Res. Tech. 37, 654–662 (2002)

    Article  MathSciNet  Google Scholar 

  29. Authier, A.: Dynamical Theory of X-ray Diffraction. Oxford University Press, Oxford (2001)

    MATH  Google Scholar 

  30. Camattari, R., Guidi, V.: Genetic algorithm to design Laue lenses with optimal performance for focusing hard X- and γ-rays. Astron. Astrophys. 570, A17-1–A17-6 (2014). https://doi.org/10.1051/0004-6361/201424463

    Article  ADS  Google Scholar 

  31. Janssen, G.C.A.M., Abdalla, M.M., van Keulen, F., Pujada, B., van Venrooy, B.: Celebrating the 100th anniversary of the Stoney equation for film stress: developments from polycrystalline steel strips to single crystal silicon wafers. Thin Solid Films 517(6), 1858–1867 (2009). https://doi.org/10.1016/j.tsf.2008.07.014

    Article  ADS  Google Scholar 

  32. Mazzolari, A., Camattari, R., Bellucci, V., Paternò, G., Scian, C., Mattei, G., Guidi, V.: Manufacturing of advanced bent crystals for Laue Optics for Gamma ObservationS (LOGOS). Nucl. Instrum. Meth. B 355, 297–300 (2015). https://doi.org/10.1016/j.nimb.2015.03.048

    Article  ADS  Google Scholar 

  33. Camattari, R.: Laue lens for radiotherapy applications through a focused hard X-ray beam: a feasibility study on requirements and tolerances. Phys. Med. Biol. 62(18), 7249–7266 (2017). https://doi.org/10.1088/1361-6560/aa81fa

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge partial financial support from ERC Ideas Consolidator Grant No.615089 CRYSBEAM. We also acknowledge the LAUPER project of INFN. Finally, we acknowledge Gerald Klug and Jens Griesmann from Disco Europe (Munich, Germany) for their support in crystal manufacturing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riccardo Camattari.

Additional information

We acknowledge the partial financial support from ERC Ideas Consolidator Grant No.615089 CRYSBEAM.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Camattari, R., Romagnoni, M., Mazzolari, A. et al. Thick self-standing bent crystals as optical elements for a Laue lens for applications in astrophysics. Exp Astron 46, 309–321 (2018). https://doi.org/10.1007/s10686-018-9603-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10686-018-9603-4

Keywords

Navigation