Skip to main content
Log in

Spatial differentiation of background matching strategies along a Late Pleistocene range expansion route

  • Original Paper
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

Late Pleistocene climate changes have deeply impacted the range dynamics of temperate species. While the genetic legacy of these dynamics has been widely investigated, little is known about their phenotypic consequences. Anti-predatory strategies offer intriguing opportunities to study phenotypic evolution in response to dispersal dynamics since the ability to avoid predation can be pivotal for populations colonising new environments. Here we investigated the spatial differentiation of background colour matching strategies along a Late Pleistocene range expansion route of a temperate species, the Tyrrhenian tree frog Hyla sarda. Using common-garden experiments, we tested whether individuals from the source area (Sardinia) and individuals from the newly founded area (Corsica) differ in two components of the camouflage strategy: colour change abilities and background choice behaviour. We found a remarkable spatial structure in both colour change abilities and background choice behaviour, across the expansion range. Tree frogs from the source area displayed higher colour change abilities and a more pronounced preference for a greener background, with respect to tree frogs from the newly colonised area. Our results support the intriguing hypothesis that Late Pleistocene biogeographic history might be an overlooked major player in shaping current spatial patterns of phenotypic traits variation across animal populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and material

Data available in an open access repository upon acceptance or from the corresponding author on request.

Code availability

Not applicable.

References

  • Ager AA, Preisler HK, Arca B, Spano D, Salis M (2014) Wildfire risk estimation in the Mediterranean area. Environmetrics 25(6):384–396

    Article  Google Scholar 

  • Amézquita A, Lima AP, Jehle R, Castellanos L, Ramos O, Crawford AJ, Hoedl W (2009) Calls, colours, shape, and genes: a multi-trait approach to the study of geographic variation in the Amazonian frog Allobates femoralis. Biol J Linn Soc 98(4):826–838

    Article  Google Scholar 

  • Arenas LM, Stevens M (2017) Diversity in warning coloration is easily recognized by avian predators. J Evolution Biol 30(7):1288–1302

    Article  CAS  Google Scholar 

  • Avise JC (2009) Phylogeography: retrospect and prospect. J Biogeogr 36:3–15

    Article  Google Scholar 

  • Baling M, Stuart-Fox D, Brunton DH, Dale J (2020) Spatial and temporal variation in prey color patterns for background matching across a continuous heterogeneous environment. Ecol Evol 10(5):2310–2319

    Article  PubMed  PubMed Central  Google Scholar 

  • Barnett JB, Cì M, Scott-Samuel NE, Cuthill IC (2021) Colour pattern variation forms local background matching camouflage in a leaf-mimicking toad. J Evolution Biol 34(10):1531–1540

    Article  Google Scholar 

  • Bisconti R, Canestrelli D, Nascetti G (2011a) Genetic diversity and evolutionary history of the Tyrrhenian treefrog Hyla sarda (Anura: Hylidae): adding pieces to the puzzle of Corsica-Sardinia biota. Biol J Linn Soc 103(1):159–167

    Article  Google Scholar 

  • Bisconti R, Canestrelli D, Colangelo P, Nascetti G (2011b) Multiple lines of evidence for demographic and range expansion of a temperate species (Hyla sarda) during the last glaciation. Mol Ecol 20(24):5313–5327

    Article  PubMed  Google Scholar 

  • Bonte D, Van Dyck H, Bullock JM, Coulon A, Delgado M, Gibbs M, Travis JM (2012) Costs of dispersal. Biol Rev 87(2):290–312

    Article  PubMed  Google Scholar 

  • Brandley MC, Kuriyama T, Hasegawa M (2014) Snake and bird predation drive the repeated convergent evolution of correlated life history traits and phenotype in the Izu Island scincid lizard (Plestiodon latiscutatus). PLoS ONE 9(3):e92233

    Article  PubMed  PubMed Central  Google Scholar 

  • Brown JS, Kotler BP (2004) Hazardous duty pay and the foraging cost of predation. Ecol Lett 7(10):999–1014

    Article  Google Scholar 

  • Cameron MS, Donald JA (2019) Different vasodilator mechanisms in intermediate-and small-sized arteries from the hindlimb vasculature of the toad Rhinella marina. Am J Phy-Reg, Int Comp Phy 317(3):R379–R385

    CAS  Google Scholar 

  • Campbell P, Pasch B, Pino JL, Crino OL, Phillips M, Phelps SM (2010) Geographic variation in the songs of neotropical singing mice: testing the relative importance of drift and local adaptation. Evolution 64(7):1955–1972

    PubMed  Google Scholar 

  • Canestrelli D, Bisconti R, Carere C (2016a) Bolder takes all? The behavioral dimension of biogeography. Trends Ecol Evol 31(1):35–43

    Article  PubMed  Google Scholar 

  • Canestrelli D, Porretta D, Lowe WH, Bisconti R, Carere C, Nascetti G (2016b) The tangled evolutionary legacies of range expansion and hybridization. Trends Ecol Evol 31(9):677–688

    Article  PubMed  Google Scholar 

  • Canestrelli D, Bisconti R, Liparoto A, Angelier F, Ribout C, Carere C, Costantini D (2021) Biogeography of telomere dynamics in a vertebrate. Ecography 44:453–455

    Article  Google Scholar 

  • Chiocchio A, Arntzen JW, Martínez-Solano I, de Vries W, Bisconti R, Pezzarossa A, Canestrelli D (2021) Reconstructing hotspots of genetic diversity from glacial refugia and subsequent dispersal in Italian common toads (Bufo bufo). Sci Rep 11(1):1–14

    Google Scholar 

  • Choi N, Jang Y (2014) Background matching by means of dorsal color change in treefrog populations (Hyla japonica). J Exp Zool A Ecol Genet Physiol 321(2):108–118

    Article  PubMed  Google Scholar 

  • Clobert J, Baguette M, Benton TG, Bullock JM (2012) Dispersal ecology and evolution. Oxford University Press, Oxford

    Book  Google Scholar 

  • Cobben MMP, Verboom J, Opdam PFM, Hoekstra RF, Jochem R, Smulders MJM (2015) Spatial sorting and range shifts: consequences for evolutionary potential and genetic signature of a dispersal trait. J Theor Biol 373:92–99

    Article  CAS  PubMed  Google Scholar 

  • Cuthill IC (2019) Camouflage. J Zool 308(2):75–92

    Article  Google Scholar 

  • Darul R, Gavashelishvili A, Saveljev AP, Seryodkin IV, Linnell JD, Okarma H, Schmidt K (2022) Coat polymorphism in Eurasian Lynx: adaptation to environment or phylogeographic legacy? J Mammal Evol 29:51–62

    Article  Google Scholar 

  • Duarte RC, Flores AA, Stevens M (2017) Camouflage through colour change: mechanisms, adaptive value and ecological significance. Philos T Roy Soc B 372(1724):20160342

    Article  Google Scholar 

  • Eacock A, Rowland HM, Edmonds N, Saccheri IJ (2017) Colour change of twig-mimicking peppered moth larvae is a continuous reaction norm that increases camouflage against avian predators. PeerJ 5:e3999

    Article  PubMed  PubMed Central  Google Scholar 

  • Eacock A, Rowland HM, van’t Hof AE, Yung CJ, Edmonds N, Saccheri IJ (2019) Adaptive colour change and background choice behaviour in peppered moth caterpillars is mediated by extraocular photoreception. Commun Biol 2(1):1–8

    Article  Google Scholar 

  • Fairchild EA, Howell WH (2004) Factors affecting the post-release survival of cultured juvenile Pseudopleuronectes americanus. J Fish Biol 65:69–87

    Article  Google Scholar 

  • Fløjgaard C, Normand S, Skov F, Svenning JC (2009) Ice age distributions of European small mammals: insights from species distribution modelling. J Biogeogr 36(6):1152–1163

    Article  Google Scholar 

  • Green SD, Duarte RC, Kellett E, Alagaratnam N, Stevens M (2019) Colour change and behavioural choice facilitate chameleon prawn camouflage against different seaweed backgrounds. Commun Biol 2(1):1–10

    Article  Google Scholar 

  • Gruber J, Brown G, Whiting MJ, Shine R (2017) Geographic divergence in dispersal-related behaviour in cane toads from range-front versus range-core populations in Australia. Behav Ecol Sociobiol 71(2):38

    Article  Google Scholar 

  • Hart NS (2002) Vision in the peafowl (Aves: Pavo cristatus). J Exp Biol 205(24):3925–3935

    Article  PubMed  Google Scholar 

  • Hewitt GM (1996) Some genetic consequences of ice ages, and their role in divergence and speciation. Biol J Linn Soc 58(3):247–276

    Article  Google Scholar 

  • Hewitt GM (2000) The genetic legacy of the Quaternary ice ages. Nature 405(6789):907–913

    Article  CAS  PubMed  Google Scholar 

  • Hewitt GM (2004) Genetic consequences of climatic oscillations in the Quaternary. Philos T Roy Soc B 359(1442):183–195

    Article  CAS  Google Scholar 

  • Hewitt GM (2011a) Mediterranean peninsulas: the evolution of hotspots. Biodiversity hotspots. Springer, Berlin, pp 123–147

    Chapter  Google Scholar 

  • Hewitt GM (2011b) Quaternary phylogeography: the roots of hybrid zones. Genetica 139(5):617–638

    Article  PubMed  Google Scholar 

  • Hill GE, MCgraw KJ (2006) Bird coloration. Vol. I: Mechanisms and measurements. Harvard University Press, Cambridge

  • Hofreiter M, Stewart J (2009) Ecological change, range fluctuations and population dynamics during the Pleistocene. Curr Biol 19(14):R584–R594

    Article  CAS  PubMed  Google Scholar 

  • Hudson CM, Brown GP, Shine R (2017) Evolutionary shifts in anti-predator responses of invasive cane toads (Rhinella marina). Behav Ecol Sociobiol 71(9):1–9

    Article  Google Scholar 

  • Hudson CM, Vidal-García M, Murray TG, Shine R (2020) The accelerating anuran: evolution of locomotor performance in cane toads (Rhinella marina, Bufonidae) at an invasion front. P Roy Soc B-Biol Sci 287(1938):20201964

    Google Scholar 

  • Hutchison DW, Templeton AR (1999) Correlation of pairwise genetic and geographic distance measures: inferring the relative influences of gene flow and drift on the distribution of genetic variability. Evolution 53(6):1898–1914

    Article  PubMed  Google Scholar 

  • Jeschke JM (2006) Density-dependent effects of prey defenses and predator offenses. J Theor Biol 242(4):900–907

    Article  PubMed  Google Scholar 

  • Johnson JB, Belk M (2020) Predators as agents of selection and diversification. Diversity 12(11):415

    Article  Google Scholar 

  • Johnston IA, Temple GK (2002) Thermal plasticity of skeletal muscle phenotype in ectothermic vertebrates and its significance for locomotory behaviour. J Exp Biol 205(15):2305–2322

    Article  PubMed  Google Scholar 

  • Kang C, Kim YE, Jang Y (2016) Colour and pattern change against visually heterogeneous backgrounds in the tree frog Hyla japonica. Sci rep 6(1):1–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kats LB, van Dragt RG (1986) Background color-matching in the spring peeper, Hyla crucifer. Copeia 10:109–115

    Article  Google Scholar 

  • King RB, Hauff S, Phillips JB (1994) Physiological color change in the green treefrog: responses to background brightness and temperature. Copeia 1994:422–432

    Article  Google Scholar 

  • Kjernsmo K, Merilaita S (2012) Background choice as an anti-predator strategy: the roles of background matching and visual complexity in the habitat choice of the least killifish. P Roy Soc B-Biol Sci 279(1745):4192–4198

    Google Scholar 

  • Kosmala GK, Brown GP, Shine R (2020) Thin-skinned invaders: geographic variation in the structure of the skin among populations of cane toads (Rhinella marina). Biol J Linn Soc 131(3):611–621

    Article  Google Scholar 

  • Liparoto A, Canestrelli D, Bisconti R, Carere C, Costantini D (2020) Biogeographic history moulds population differentiation in ageing of oxidative status in an amphibian. J Exp Biol 223(21):jeb235002

    Article  PubMed  Google Scholar 

  • Lodge DM (1993) Biological invasions: lessons for ecology. Trends Ecol Evol 8(4):133–137

    Article  CAS  PubMed  Google Scholar 

  • Lucati F, Poignet M, Miró A, Trochet A, Aubret F, Barthe L, Ventura M (2020) Multiple glacial refugia and contemporary dispersal shape the genetic structure of an endemic amphibian from the Pyrenees. Mol Ecol 29(15):2904–2921

    Article  CAS  PubMed  Google Scholar 

  • Marshall KL, Philpot KE, Damas-Moreira I, Stevens M (2015) Intraspecific colour variation among lizards in distinct island environments enhances local camouflage. PLoS ONE 10(9):e0135241

    Article  PubMed  PubMed Central  Google Scholar 

  • Marshall KL, Philpot KE, Stevens M (2016) Microhabitat choice in island lizards enhances camouflage against avian predators. Sci Rep 6(1):1–10

    Article  Google Scholar 

  • McNamara JM, Houston AI (1987) Starvation and predation as factors limiting population size. Ecology 68(5):1515–1519

    Article  Google Scholar 

  • Merilaita S, Scott-Samuel NE, Cuthill IC (2017) How camouflage works. Philos T R Soc B: Biol Sci 372(1724):20160341

    Article  Google Scholar 

  • Merilaita S, Stevens M (2011). Crypsis through background matching. Anim Camoufl: Mech Funct 17–33

  • Miller TE, Angert AL, Brown CD, Lee-Yaw JA, Lewis M, Lutscher F, Williams JL (2020) Eco-evolutionary dynamics of range expansion. Ecology 101(10):e03139

    Article  PubMed  Google Scholar 

  • Moreno–Rueda G (2020) The evolution of crypsis when pigmentation is physiologically costly. Anim Biodiv Conserv 89–96

  • Nilsson Sköld H, Aspengren S, Wallin M (2013) Rapid color change in fish and amphibians–function, regulation, and emerging applications. Pigm Cell Melanoma R 26(1):29–38

    Article  Google Scholar 

  • Pinheiro J, Bates D, Debroy S, Sarkar D, R Core Team (2021) Nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1–153, https://CRAN.R-project.org/package=nlme

  • Polo-Cavia N, Gomez-Mestre I (2017) Pigmentation plasticity enhances crypsis in larval newts: associated metabolic cost and background choice behaviour. Sci Rep 7(1):1–10

    Article  Google Scholar 

  • Réale D, Reader SM, Sol D, Mcdougall PT, Dingemanse NJ (2007) Integrating animal temperament within ecology and evolution. Biol Rev 82(2):291–318

    Article  PubMed  Google Scholar 

  • Ronce O, Clobert J (2012) Dispersal syndromes. Dispersal ecology and evolution (vol 155, pp 199–138). Oxford University Press

  • Rudh A, Qvarnström A (2013) Adaptive colouration in amphibians. In: Seminars in Cell & Developmental Biology (Vol. 24, No. 6–7, pp. 553–561). Academic Press

  • Ruxton GD, Allen WL, Sherratt TN, Speed MP (2019) Avoiding attack: the evolutionary ecology of crypsis, aposematism, and mimicry. Oxford University Press

    Google Scholar 

  • Sakai AK, Allendorf FW, Holt JS, Lodge DM, Molofsky J, With KA, Weller SG (2001) The population biology of invasive species. Annu Rev Ecol Syst 32(1):305–332

    Article  Google Scholar 

  • Schmitt T (2007) Molecular biogeography of Europe: Pleistocene cycles and postglacial trends. Fron Zool 4(1):1–13

    Google Scholar 

  • Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to imagej: 25 years of image analysis. Nat Meth 9:671–675

    Article  CAS  Google Scholar 

  • Schoener TW, Spiller DA (1995) Effect of predators and area on invasion: an experiment with island spiders. Science 267(5205):1811–1813

    Article  CAS  PubMed  Google Scholar 

  • Sköld HN, Aspengren S, Wallin M (2013) Rapid color change in fish and amphibians–function, regulation, and emerging applications. Pigment Cell Melanoma Res 26:29–38

    Article  Google Scholar 

  • Smithers SP, Rooney R, Wilson A, Stevens M (2018) Rock pool fish use a combination of colour change and substrate choice to improve camouflage. Anim Behav 144:53–65

    Article  Google Scholar 

  • Spadavecchia G, Chiocchio A, Bisconti R, Canestrelli D (2021) Paso doble: a two-step Late Pleistocene range expansion in the Tyrrhenian tree frog Hyla sarda. Gene 780:145489

    Article  CAS  PubMed  Google Scholar 

  • Spratt RM, Lisiecki LE (2016) A Late Pleistocene sea level stack. Clim past 12(4):1079–1092

    Article  Google Scholar 

  • Staniszewski M (1995) Amphibians in captivity. TFH

  • Stegen JC, Gienger CM, Sun L (2004) The control of color change in the Pacific tree frog. Hyla Regilla Can J Zool 82(6):889–896

    Article  Google Scholar 

  • Steinhausen MF, Sandblom E, Eliason EJ, Verhille C, Farrell AP (2008) The effect of acute temperature increases on the cardiorespiratory performance of resting and swimming sockeye salmon (Oncorhynchus nerka). J Exp Biol 211(24):3915–3926

    Article  CAS  PubMed  Google Scholar 

  • Stevens M (2016) Color change, phenotypic plasticity, and camouflage. Front Ecol Evol 4:51

    Article  Google Scholar 

  • Stevens M, Ruxton GD (2019) The key role of behaviour in animal camouflage. Biol Rev 94(1):116–134

    Article  PubMed  Google Scholar 

  • Stevens M, Párraga CA, Cuthill IC, Partridge JC, Troscianko TS (2007) Using digital photography to study animal coloration. Biol J Linn Soc 90(2):211–237

    Article  Google Scholar 

  • Stevens VM, Trochet A, Van Dyck H, Clobert J, Baguette M (2012) How is dispersal integrated in life histories: a quantitative analysis using butterflies. Ecol Lett 15(1):74–86

    Article  PubMed  Google Scholar 

  • Stevens VM, Trochet A, Blanchet S, Moulherat S, Clobert J, Baguette M (2013) Dispersal syndromes and the use of life-histories to predict dispersal. Evol Appl 6(4):630–642

    Article  PubMed  PubMed Central  Google Scholar 

  • Stevens M, Troscianko J, Wilson-Aggarwal JK, Spottiswoode CN (2017) Improvement of individual camouflage through background choice in ground-nesting birds. Nat Ecol Evol 1(9):1325–1333

    Article  PubMed  PubMed Central  Google Scholar 

  • Stevens M, Ruxton GD (2012) Linking the evolution and form of warning coloration in nature. In: Proc. Royal Soc. B P Roy Soc B-Biol Sci. 279(1728) 417–426

  • Stuart-Fox D, Moussalli A (2011) Camouflage in colour-changing animals. Anim Camoufl: Mech Funct 237–254

  • Szűcs M, Vahsen ML, Melbourne BA, Hoover C, Weiss-Lehman C, Hufbauer RA (2017) Rapid adaptive evolution in novel environments acts as an architect of population range expansion. P Natl Acad Sci-Biol 114(51):13501–13506

    Article  Google Scholar 

  • Taberlet P, Fumagalli L, Wust-Saucy AG, Cosson JF (1998) Comparative phylogeography and postglacial colonization routes in Europe. Mol Ecol 7(4):453–464

    Article  CAS  PubMed  Google Scholar 

  • Taboada C, Brunetti AE, Lyra ML, Fitak RR, Faigon Soverna A, Ron SR, Bari SE (2020) Multiple origins of green coloration in frogs mediated by a novel biliverdin-binding serpin. P Natl Acad Sci-Biol 117(31):18574–18581

    Article  CAS  Google Scholar 

  • Thiede J (1978) A glacial Mediterranean. Nature 276(5689):680–683

    Article  Google Scholar 

  • Tollrian R, Duggen S, Weiss LC, Laforsch C, Kopp M (2015) Density-dependent adjustment of inducible defenses. Sci Rep 5(1):1–9

    Article  Google Scholar 

  • Troscianko J, Stevens M (2015) Image calibration and analysis toolbox–a free software suite for objectively measuring reflectance, colour and pattern. Methods Ecol Evol 6(11):1320–1331

    Article  PubMed  PubMed Central  Google Scholar 

  • Tyrie EK, Hanlon RT, Siemann LA, Uyarra MC (2015) Coral reef flounders, Bothus lunatus, choose substrates on which they can achieve camouflage with their limited body pattern repertoire. Biol J Linn Soc 114(3):629–638

    Article  Google Scholar 

  • Uyeda JC, Arnold SJ, Hohenlohe PA, Mead S (2009) Drift promotes speciation by sexual selection. Evolut Inter J Org Evol 63(3):583–594

    Article  Google Scholar 

  • Weiss S, Ferrand N (2007) Phylogeography of southern European refugia 341–357. Springer, Dordrecht

    Book  Google Scholar 

  • Wente WH, Phillips JB (2005) Microhabitat selection by the Pacific treefrog. Hyla Regilla Anim Behav 70(2):279–287

    Article  Google Scholar 

  • Wilson RS, James RS, Johnston IA (2000) Thermal acclimation of locomotor performance in tadpoles and adults of the aquatic frog Xenopus laevis. J Comp Physiol B 170(2):117–124

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto N, Sota T (2020) Evolutionary fine-tuning of background-matching camouflage among geographical populations in the sandy beach tiger beetle. P Roy Soc B-Biol Sci 287(1941):20202315

    Google Scholar 

  • Zamudio KR, Bell RC, Mason NA (2016) Phenotypes in phylogeography: species’ traits, environmental variation, and vertebrate diversification. P Natl Acad Sci-Biol 113(29):8041–8048

    Article  CAS  Google Scholar 

  • Zhan J, Linde CC, Jürgens T, Merz U, Steinebrunner F, Mcdonald BA (2005) Variation for neutral markers is correlated with variation for quantitative traits in the plant pathogenic fungus Mycosphaerella graminicola. Mol Ecol 14(9):2683–2693

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Alessandro Carlini, Giacomo Grignani, Lorenzo Latini, Armando Macali, for assistance with sampling and the experimental procedures. This work was supported by Italian Ministry of Education, University and Research (PRIN project 2017KLZ3MA).

Funding

This study was funded by Italian Ministry of Education, University and Research (PRIN project 2017KLZ3MA).

Author information

Authors and Affiliations

Authors

Contributions

D.Can. conceived the study. GS, AL, RB collected the data. GS, AC, D.Can., D.Cos. and RB, performed formal analysis and interpreted the results. GS wrote the original draft of the manuscript, with contributes from AC, RB and D.Can. All authors reviewed and approved the final manuscript.

Corresponding author

Correspondence to Andrea Chiocchio.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Consent for publication

All authors approved the final manuscript.

Ethical approval

Sampling procedures were performed under the approval of the Institute for Environmental Protection and Research ‘ISPRA’ (protocol # 5944), Ministry of Environment ‘MATTM’ (protocol #8275), Regione Sardegna (#12144) and Corsica (#2A20180206002 and #2B20180206001). Permission to temporarily house amphibians was granted by Local Health and Veterinary Centre, with license code 050VT427. All handling procedures outlined in the present study were approved by the Ethical Committee of the University of Tuscia for the use of live animals (D.R. n. 677/16 and D.R.644/17). All animals were released in the original sampling locations at the end of the experimentation.

Consent to participate

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 14 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spadavecchia, G., Chiocchio, A., Costantini, D. et al. Spatial differentiation of background matching strategies along a Late Pleistocene range expansion route. Evol Ecol 37, 291–303 (2023). https://doi.org/10.1007/s10682-022-10216-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-022-10216-2

Keywords

Navigation