Skip to main content
Log in

Genome-wide association analysis of potassium uptake and translocation rates under low K stress in Tibetan wild barley

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

A low level of available potassium (K) in soils is a major factor restricting crop growth and production. In earlier studies we found that Tibetan wild barley has a wider variation in low K stress tolerance than cultivated barley. In this study, we performed a genome-wide association analysis of 179 Tibetan wild barley (Hordeum vulgare L.) accessions exposed to low K stress and investigated the associations of K uptake rate (KUR), K translocation rate (KTR) and other K metabolism traits with 11,013 diversity arrays technology markers. The results showed that there were significant differences in tissue K concentration and content, KUR and KTR among the wild barley accessions analyzed. Scores for all traits showed a normal distribution. Three significant quantitative trait loci (QTLs) for KUR and KTR were identified and located on 6H and 1H. These QTLs were found to be associated with the cation/H(+) antiporter and cyclic nucleotide gated channel. A number of unique candidate genes associated with K-related signals, including K channels, K transporters and ethylene-related genes, were also identified. The K channels and K transporters involved in K uptake and translocation, respectively, were closely associated with KUR in response to low K stress. The present study highlights the potential of Tibetan wild barley to provide elite candidate genes for the improvement of K use efficiency of barley.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Arrows The point indicated by the arrow represents the significant association signals

Fig. 6

Arrows The point indicated by the arrow represents the significant association signals

Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Amtmann A, Troufflard S, Armengaud P (2008) The effect of potassium nutrition on pest and disease resistance in plants. Physiol Plant 133:682–691

    CAS  PubMed  Google Scholar 

  • Balagué C, Lin B, Alcon C, Flottes G, Malmström S, Köhler C, Neuhaus G, Pelletier G, Gaymard F, Roby D (2003) HLM1, an essential signalling component in the hypersensitive response, is a member of the cyclic nucleotide-gated channel ion channel family. Plant Cell 15:365–379

    PubMed  PubMed Central  Google Scholar 

  • Britto DT, Kronzucker HJ (2008) Cellular mechanisms of potassium transport in plants. Physiol Plant 133:637–650

    CAS  PubMed  Google Scholar 

  • Cai SG, Wu DZ, Jabeen Z, Huang YQ, Huang YC, Zhnag GP (2013) Genome-wide association analysis of aluminum tolerance in cultivated and Tibetan wild barley. PLoS ONE 8(7):e69776. https://doi.org/10.1371/journal.pone.0069776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ceccarelli S, Grando S, Van Leur JAG (1995) Barley landraces of the fertile crescent offer new breeding options for stress environments. Diversity 11:112–113

    Google Scholar 

  • Cellier F, Conejero G, Ricaud L, Luu DT, Lepetit M, Gosti F, Casse F (2004) Characterization of AtCHX17, a member of the cation/H+ exchangers, CHX family, from Arabidopsis thaliana suggests a role in K+ homeostasis. Plant J 39:834–846

    CAS  PubMed  Google Scholar 

  • Chan CWM, Schorrak LM, Smith RK, Bent AF, Sussman MR (2003) A cyclic nucleotide-gated ion channel, CNGC2, is crucial for plant development and adaptation to calcium stress. Plant Physiol 132:728–731

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chanroj S, Lu Y, Padmanaban S, Nanatani K, Uozumi N, Rao R, Sze H (2011) Plant-specific cation/H+ exchanger 17 and its homologs are endomembrane K+ transporters with roles in protein sorting. J Biol Chem 286(39):33931–33941

    CAS  PubMed  PubMed Central  Google Scholar 

  • Christopher DA, Borsics T, Yuen CYL, Ullmer W, Andème- Ondzighi C, Andres MA, Kang B-H, Staehelin LA (2007) The cyclic nucleotide gated cation channel AtCNGC10 traffics from the ER via Golgi vesicles to the plasma membrane of Arabidopsis root and leaf cells. BMC Plant Biol 7:48

    PubMed  PubMed Central  Google Scholar 

  • Coskun D, Britto DT, Kronzucker HJ (2014) The physiology of channel-mediated K+ acquisition in roots of higher plants. Physiol Plant 151:305–312

    CAS  PubMed  Google Scholar 

  • Dai F, Nevo E, Wu DZ, Comadran J, Zhou MX, Qiu L, Chen ZH, Beiles A, Chen GX, Zhang GP (2012) Tibet is one of the centers of domestication of cultivated barley. Proc Natl Acad Sci USA 109:16969–16973

    CAS  PubMed  PubMed Central  Google Scholar 

  • Deeken R, Ivashikina N, Czirjak T, Philippar K, Becker D, Ache P, Hedrich R (2003) Tumour development in Arabidopsis thaliana involves the Shaker-like K+ channels AKT1 and AKT2/3. Plant J 34:778–787

    CAS  PubMed  Google Scholar 

  • Food and Agriculture Organization of the United Nations (FAO) (2017) World fertilizer trends and outlook to 2020. FAO, Rome

    Google Scholar 

  • Fuchs I, Stolzle S, Ivashikina N, Hedrich R (2005) Rice K+ uptake channel OsAKT1 is sensitive to salt stress. Planta 221:212–221

    CAS  PubMed  Google Scholar 

  • Gajdanowicz P, Michard E, Sandmann M, Rocha M, Correa LGG et al (2011) Potassium (K+) gradients serve as a mobile energy source in plant vascular tissues. Proc Natl Acad Sci USA 108:864–869

    CAS  PubMed  Google Scholar 

  • Garcia-Oliveira AL, Tan L, Fu Y, Sun C (2009) Genetic identification of quantitative trait loci for contents of mineral nutrients in rice grain. J Integr Plant Biol 51:84–92

    CAS  PubMed  Google Scholar 

  • Gierth M, Mäser P, Schroeder JI (2005) The potassium transporter AtHAK5 functions in K+ deprivation-induced high-affinity K+ uptake and AKT1 K+ channel contribution to K+ uptake kinetics in Arabidopsis roots. Plant Physiol 137:1105–1114

    CAS  PubMed  PubMed Central  Google Scholar 

  • Glass ADM, Perley JE (1980) Varietal differences in potassium uptake by barley. Plant Physiol 65:160–164

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gobert A, Park G, Amtmann A, Sanders D, Maathuis FJM (2006) Arabidopsis thaliana cyclic nucleotide gated channel 3 forms a non-selective ion transporter involved in germination and cation transport. J Exp Bot 57:791–800

    CAS  PubMed  Google Scholar 

  • Grotewold E, Chappell J, Kellogg EA (2015) The shifting genomic landscape in plant genes. In: Grotewold E, Chappell J, Kellogg EA (eds) Plant genomes and genetics. Wiley, Chichester, pp 17–44

    Google Scholar 

  • Guo KM, Babourina O, Christopher DA, Borsics T, Rengel Z (2008) The cyclic nucleotide-gated channel, AtCNGC10, influences salt tolerance in Arabidopsis. Physiol Plant 134:499–507

    CAS  PubMed  Google Scholar 

  • Hartje S, Zimmermann S, Klonus D, Mueller-Roeber B (2000) Functional characterisation of LKT1, a K + uptake channel from tomato root hairs, and comparison with the closely related potato inwardly rectifying K + channel SKT1 after expression in Xenopus oocytes. Planta 210:723–731

    CAS  PubMed  Google Scholar 

  • Hogh-Jensen H, Pedersen MB (2003) Morphological plasticity by crop plants and their potassium use efficiency. J Plant Nutr 26:969–984

    CAS  Google Scholar 

  • Hong JP, Takeshi Y, Kondou Y, Schachtman DP, Matsui M, Shin R (2013) Identification and characterization of transcription factors regulating Arabidopsis HAK5. Plant Cell Physiol 54:1478–1490

    CAS  PubMed  Google Scholar 

  • Hubisz MJ, Falush D, Stephens M, Pritchard JK (2009) Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour 9:1322–1332

    PubMed  PubMed Central  Google Scholar 

  • Jung JY, Shin R, Schachtman DP (2009) Ethylene mediates response and tolerance to potassium deprivation in Arabidopsis. Plant Cell 21:607–621

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kellermeier F, Chardon F, Amtmann A (2013) Natural variation of Arabidopsis root architecture reveals complementing adaptive strategies to potassium starvation. Plant Physiol 161:1421–1432

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kochian LV, Lucas WJ (1988) Potassium transport in roots. Adv Bot Res 15:136–151

    Google Scholar 

  • Kong FM, Guo Y, Liang X, Wu CH, Wang YY, Zhao Y, Li SS (2013) Potassium (K) effects and QTL mapping for K efficiency traits at seedling and adult stages in wheat. Plant Soil 373:877–892

    CAS  Google Scholar 

  • Korte A, Farlow A (2013) The advantages and limitations of trait analysis with GWAS: a review. Plant Methods 9:29

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lacombe B, Pilot G, Michard E, Gaymard F, Sentenac H, Thibaud JB (2000) A shaker-like K+ channel with weak rectification is expressed in both source and sink phloem tissues of Arabidopsis. Plant Cell 12:837–851

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leng Q, Mercier RW, Hua B-G, Fromm H, Berkowitz GA (2002) Electrophysiological analysis of cloned cyclic nucleotide-gated ion channels. Plant Physiol 128:400–410

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li XL, Borsics T, Harrington HM, Christopher DA (2005) Arabidopsis AtCNGC10 rescues potassium channel mutants of E. coli, yeast and Arabidopsis and is regulated by calcium/calmodulin and cyclic GMP in E. coli. Funct Plant Biol 7:643–653

    Google Scholar 

  • Lin HX, Zhu MZ, Yano M, Gao JP, Liang ZW, Su WA, Hu XH, Ren ZH, Chao DY (2004) QTLs for Na+ and K+ uptake of the shoots and roots controlling rice salt tolerance. Theor Appl Genet 108:253–260

    CAS  PubMed  Google Scholar 

  • Liu K, Li L, Luan S (2006) Intracellular K+ sensing of SKOR, a Shaker-type K+ channel from Arabidopsis. Plant J 46:260–268

    CAS  PubMed  Google Scholar 

  • Lu YX, Chanroj S, Zulkifli L, Johnson MA, Uozumi N, Cheung A, Sze H (2011) Pollen tubes lacking a pair of K+ transporters fail to target ovules in Arabidopsis. Plant Cell 23:81–93

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marten I, Hoth S, Deeken R, Ache P, Ketchum KA, Hoshi T, Hedrich R (1999) AKT3, a phloem-localized K+ channel, is blocked by protons. Proc Natl Acad Sci USA 96:7581–7586

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nieves-Cordones M, Miller AJ, Aleman F, Martinez V, Rubio F (2008) A putative role for the plasma membrane potential in the control of the expression of the gene encoding the tomato high-affinity potassium transporter HAK5. Plant Mol Biol 68:521–532

    CAS  PubMed  Google Scholar 

  • Padmanaban S, Chnroj S, Kwak JM, Li X, Ward J et al (2007) Participation of endomembrane cation/H+ exchanger AtCHX20 in osmoregulation of guard cells. Plant Physiol 44:82–93

    Google Scholar 

  • Palmgren MG (2001) Plant plasma membrane H+-ATPases: powerhouses for nutrient uptake. Annu Rev Plant Physiol Plant Mol Biol 52:817–845

    CAS  PubMed  Google Scholar 

  • Pandit A, Rai V, Bal S, Sinha S, Kumar V, Chauhan M, Gautam RK, Singh R, Sharma PC, Singh AK, Gaikwad K, Sharma TR, Mohapatra T, Singh NK (2010) Combining QTL mapping and transcriptome profiling of bulked RILs for identification of functional polymorphism for salt tolerance genes in rice (Oryza sativa L.). Mol Genet Genomics 284:121–136

    CAS  PubMed  Google Scholar 

  • Patishtan J, Hartley TN, Fonseca de Carvalho R, Maathuis FJM (2018) Genome-wide association studies to identify rice salt-tolerance markers. Plant Cell Environ 41(5):970–982

    CAS  PubMed  Google Scholar 

  • Pettersson S, Jensén P (1983) Variation among species and varieties in uptake and utilization of potassium. Plant Soil 72:231–237

    CAS  Google Scholar 

  • Philippar K, Fuchs I, Lüthen H, Hoth S, Bauer CS, Haga K, Thiel G, Ljung K, Sandberg G, Böttger M, Becker D, Hedrich R (1999) Auxin-induced K+ channel expression represents an essential step in coleoptile growth and gravitropism. Proc Natl Acad Sci USA 96:12186–12191

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prinzenberg AE, Barbier H, Salt DE, Stich B, Reymond M (2010) Relationships between growth, growth response to nutrient supply, and ion content using a recombinant inbred line population in Arabidopsis. Plant Physiol 154:1361–1371

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pyo YJ, Gierth M, Schroeder JI, Cho MH (2010) High-affinity K+ transport in Arabidopsis: AtHAK5 and AKT1 are vital for seedling establishment and postgermination growth under low-potassium conditions. Plant Physiol 153:863–875

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu L, Ali S, Cai SG, Dai F, Jin XL, Wu FB, Zhang GP (2011) Evaluation of salinity tolerance and analysis of allelic function of HvHKT1 and HvHKT2 in Tibetan wild barley. Theor Appl Genet 122:695–703

    CAS  PubMed  Google Scholar 

  • Rengel Z, Damon PM (2008) Crops and genotypes differ in efficiency of potassium uptake and use. Physiol Plant 133:624–636

    CAS  PubMed  Google Scholar 

  • Römheld V, Kirkby EA (2010) Research on potassium in agriculture: needs and prospects. Plant Soil 335:155–180

    Google Scholar 

  • Russell J, Booth A, Fuller J, Harrower B, Hedley P, Machray G, Powell W (2004) A comparison of sequence-based polymorphism and haplotype content in transcribed and anonymous regions of the barley genome. Genome 47:389–398

    CAS  PubMed  Google Scholar 

  • Shin R (2014) Strategies for improving potassium use efficiency in plants. Mol Cells 37:575–584

    PubMed  PubMed Central  Google Scholar 

  • Shin R, Schachtman DP (2004) Hydrogen peroxide mediates plant root cell response to nutrient deprivation. Proc Natl Acad Sci USA 101:8827–8832

    CAS  PubMed  PubMed Central  Google Scholar 

  • Si L, Chen J, Huang X, Gong H et al (2016) OsSPL13 controls grain size in cultivated rice. Nat Genet 48:447–456

    CAS  PubMed  Google Scholar 

  • Song CP, Guo Y, Qiu Q, Lambert G, Galbraith DW, Jagendorf A, Zhu JK (2004) A probable Na+(K+)/H+ exchanger on the chloroplast envelope functions in pH homeostasis and chloroplast development in Arabidopsis thaliana. Proc Natl Acad Sci USA 101:10211–10216

    CAS  PubMed  PubMed Central  Google Scholar 

  • Spalding EP, Hirsch RE, Lewis DR, Qi Z, Sussman MR (1999) Potassium uptake supporting plant growth in the absence of AKT1 channel activity. J Gen Physiol 113:909–918

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tom NH, Alice ST, Frans JMM (2019) A role for the OsHKT 2; 1 sodium transporter in potassium use efficiency in rice. J Exp Bot. https://doi.org/10.1093/jxb/erz113

    Article  Google Scholar 

  • Venema K, Belver A, Marin-Manzano MC, Rodriguez- Rosales MP, Donaire JP (2003) A novel intracellular K+/H+ antiporter related to Na+/H+ antiporters is important for K+ ion homeostasis in plants. J Biol Chem 278:22453–22459

    CAS  PubMed  Google Scholar 

  • Wang Y, Wu WH (2013) Potassium Transport and Signaling in Higher Plants. Annu Rev Plant Biol 64:451–476

    CAS  PubMed  Google Scholar 

  • Wu P, Ni JJ, Luo AC (1998) QTLs underlying rice tolerance to low-potassium stress in rice seedlings. Crop Sci 38:1458–1462

    CAS  Google Scholar 

  • Wu DZ, Sato K, Ma JF (2015) Genome-wide association mapping of cadmium accumulation in different organs of barley. New Phytol 208:817–829

    CAS  PubMed  Google Scholar 

  • Ye ZL, Zeng JB, Li X, Zeng FR, Zhang GP (2017) Physiological characterizations of three barley genotypes in response to low potassium stress. Acta Physiol Plant 39:232

    Google Scholar 

  • Yokoi S, Quintero FJ, Cubero B, Ruiz MT, Bressan RA, Hasegawa PM, Pardo JM (2002) Differential expression and function of Arabidopsis thaliana NHX Na+/H+ antiporters in the salt stress response. Plant J 30:529–539

    CAS  PubMed  Google Scholar 

  • Yu J, Pressoir G, Briggs WH, Vroh Bi I, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen DM, Holland JB, Kresovich S, Buckler ES (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208

    CAS  PubMed  Google Scholar 

  • Zhang G, Chen J, Eshetu AT (1999) Genotypic variation for potassium uptake and utilization efficiency in wheat. Nutr Cycl Agroecosyst 54:41–48

    Google Scholar 

  • Zhao J, Cheng NH, Motes CM, Blancaflor EB, Moore M et al (2008) AtCHX13 is a plasma membrane K+ transporter. Plant Physiol 148:796–807

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao J, Sun HY, Dai HX, Zhang GP, Wu FB (2010) Difference in response to drought stress among Tibet wild barley genotypes. Euphytica 172:395–403

    CAS  Google Scholar 

  • Zhao Y, Li X, Zhang S, Wang J, Yang X, Tian J, Hai Y, Yang X (2014) Mapping QTLs for potassium-deficiency tolerance at the seedling stage in wheat (Triticum aestivum L.). Euphytica 198:185–198

    CAS  Google Scholar 

Download references

Acknowledgements

We thank Prof. Dongfa Sun (Huazhong Agricultural University, China) for providing the Tibetan wild barley accessions.

Funding

This study was supported by National Natural Science Foundation of China (31620103912 by Guoping Zhang, 31771685 by Jianbin Zeng), China Agriculture Research System (CARS-05 by Guoping Zhang) and Jiangsu Collaborative Innovation Center for Modern Crop Production (JCIC-MCP by Guoping Zhang). These funding bodies provided the financial support in carrying out the experiments, sample and data analysis, and MS writing.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by ZY, JZ, LY, LL and GZ. The first draft of the manuscript was written by ZY, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Guoping Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1: Table S1

All phenotypic traits data of each wild barley accessions (XLSX 96 kb)

Supplementary material 2: Table S2

The definitions and abbreviations of phenotypic traits (XLSX 13 kb)

Supplementary material 3: Table S3

The Q matrix of 179 barley accessions (XLSX 15 kb)

Supplementary material 4: Table S4

The kinship matrix of 179 barley accessions (XLSX 383 kb)

Supplementary material 5: Table S5–S8

Table S5–S8 (DOCX 22 kb)

Supplementary material 6: Table S9

SNPs and candidate gene from GWAS in KUR and KTR (XLSX 15 kb)

Supplementary material 7: Table S10

Outline of 32 SNPs relative information (XLSX 22 kb)

Supplementary material 8: Table S11

Summary of three genes from KUR and KTR (XLSX 12 kb)

Supplementary material 9: Table S12

Transcripts of three genes of Hordeum vulgare L. (XLSX 13 kb)

Supplementary material 10: Table S13

Amino acid sequences of three gene of Hordeum vulgare L. (XLSX 14 kb)

Supplementary material 11: Table S14

Summary of AP2-like ethylene-responsive transcription factors participated in ethylene biosynthesis (DOCX 16 kb)

Supplementary material 12: Figure S1–S5

Figure S1–S5 (PPTX 328 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, Z., Zeng, J., Ye, L. et al. Genome-wide association analysis of potassium uptake and translocation rates under low K stress in Tibetan wild barley. Euphytica 216, 35 (2020). https://doi.org/10.1007/s10681-020-2556-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-020-2556-5

Keywords

Navigation