Skip to main content
Log in

Pollen characteristics and stigma receptivity for Anemone coronaria L.

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

To obtain crossing products, an efficient pollination and subsequent fertilization is essential. This efficient pollination is achieved by pollen germination and tube growth. Here, these pollen characteristics of 2 genetically differentiating cultivars of Anemone coronaria L. were investigated in vitro. For the essential components boron, calcium and an osmoticant, only calcium showed to be crucial for pollen germination. Boron concentrations influenced the pollen tube length with a concentration of 100 mg l−1 H3BO3 resulting in the longest pollen tubes. For the osmoticant sucrose, a concentration of 100 g l−1 caused a significant positive effect on both pollen germination and pollen tube length for the 2 cultivars. The cultivars reacted similarly with respect to the investigated compounds. Next to this, the pollen development was correlated with 8 different flower stages in A. coronaria. As a final point, the germination of an optimized pollen germination medium was compared with in vivo pollen germination in cross-pollinations within the same cultivar (identified by aniline blue staining). For ‘Mistral Wine’, pollen germination percentage was lower in vitro than in vivo, while ‘Wicabri Blue’ pollen showed no significant difference in germination rates in vivo and in vitro. To achieve fertilization a following requisite is that the stigma is receptive. To study this, the most receptive female flower stage of the 8 different flower stages for A. coronaria was characterized by aniline blue staining. A. coronaria clearly showed protogyny.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ari E, Buyukalaca S, Eti S, Gok P (2005) Some cytological observations on pollen grains of wild poppy Anemone variaties from Turkey. Acta Hortic 673:699–703

    Article  Google Scholar 

  • Brewbaker JL, Kwack BH (1963) Essential role of calcium ion in pollen germination and pollen tube growth. Am J Bot 50(9):859–865

    Article  CAS  Google Scholar 

  • Calic D, Radojevic LJ (2017) Horse chestnut pollen quality. Genetika 49(1):105–115

    Article  Google Scholar 

  • Candan F, Cani IO (2015) Studies on the comparison of pollen morphology and viability of four naturally distributed and commercial varieties of Anemone coronaria L. Pak J Bot 47(2):517–522

    Google Scholar 

  • Cox RM (1983) Sensitivity of forest plant reproduction to long range transported air pollutants: in vitro sensitivity of pollen to simulated acid rain. New Phytol 95:269–276

    Article  CAS  Google Scholar 

  • Dhooghe E, Grunewald W, Reheul D, Goetghebeur P, Van Labeke M-C (2012) Floral characteristics and gametophyte development of Anemone coronaria L. and Ranunculus asiaticus L. (Ranunculaceae). Sci Hortic 138:73–80

    Article  Google Scholar 

  • Dumont-Béboux N, Anholt B, von Aderkas P (1999) In vitro Douglas fir pollen germination: influence of hydration, sucrose and polyethylene glycol. Ann For Sci 56:11–18

    Article  Google Scholar 

  • Edlund AF, Swanson R, Preuss D (2004) Pollen and stigma structure and function: the role of diversity in pollination. Plant Cell 16:S84–S97

    Article  CAS  Google Scholar 

  • Fan LM, Wang YF, Wang H, Wu WH (2001) In vitro Arabidopsis pollen germination and characterization of the inward potassium currents in Arabidopsis pollen grain protoplasts. J Exp Bot 52:1603–1614

    Article  CAS  Google Scholar 

  • Fei S, Nelson E (2003) Estimation of pollen viability, shedding pattern, and longevity of creeping bentgrass on artificial media. Crop Sci 43(6):2177–2181

    Article  Google Scholar 

  • Heslop-Harrison JS (1992) Cytological techniques to assess pollen quality. In: Cresti M, Tiezzi A (eds) Sexual plant reproduction. Springer, Berlin, pp 41–48

    Chapter  Google Scholar 

  • Heslop-Harrison Y, Shivanna KR (1977) The receptive surface of the angiosperm stigma. Ann Bot 41:1233–1258

    Article  Google Scholar 

  • Holdaway-Clarke TL, Hepler PK (2003) Control of pollen tube growth: role of ion gradients and fluxes. New Phytol 159:539–563

    Article  CAS  Google Scholar 

  • Hoot SB, Reznicek A (1994) Phylogenetic relationships in Anemone (Ranunculaceae) based on morphology and chloroplast DNA. Syst Bot 19:169–200

    Article  Google Scholar 

  • Horovitz A (1991) The pollination syndrome of Anemone coronaria L.; an insect-biased mutualism. Acta Hortic 288:283–287

    Article  Google Scholar 

  • Koncalova MN, Jicinska D, Sykorova O (1976) Effect of calcium and sucrose concentration on pollen germination in vitro of six Rosa species. Biol Plant 18:26–30

    Article  CAS  Google Scholar 

  • Laura M, Allavena A (2007) Anemone coronaria breeding: current status and perspectives. Eur J Hortic Sci 72:241–247

    Google Scholar 

  • Laura M, Allavena A, Magurno F, Lanteri S, Portis E (2006a) Genetic variation of commercial Anemone coronaria cultivars assessed by AFLP. J Hortic Sci Biotechnol 81(4):621–626

    Article  CAS  Google Scholar 

  • Laura M, Safaverdi G, Allavena A (2006b) Androgenetic plants of Anemone coronaria derived through anther culture. Plant Breed 125:629–634

    Article  CAS  Google Scholar 

  • Muccifora S, Bellani LM, Gori P (2003) Ultrastructure, viability and in vitro germination of the tricellular Sambucus nigra L. pollen. Int J Plant Sci 164:855–860

    Article  Google Scholar 

  • Mulcahy GB, Mulcahy DL (1988) The effect of supplemented media on the growth in vitro of bi- and trinucleate pollen. Plant Sci 55:213–216

    Article  CAS  Google Scholar 

  • Nepi M, Franchi GG (2000) Cytochemistry of mature angiosperm pollen. Plant Syst Evol 222:45–62

    Article  CAS  Google Scholar 

  • Niimi Y, Shiokawa Y (1992) A study on the storage of Lilium pollen. J Jpn Soc Hortic Sci 61(2):399–403

    Article  CAS  Google Scholar 

  • Pareddy DR, Petolino JF (1992) Maturation of maize pollen in vitro. Plant Cell Rep 11(10):535–539

    Article  CAS  Google Scholar 

  • Parton E, Vervaeke I, Delen R, Vandenbussche B, Deroose R, De Proft M (2002) Viability and storage of bromeliad pollen. Euphytica 125(2):155–161

    Article  CAS  Google Scholar 

  • Read SM, Clarke AE, Bacic A (1993) Stimulation of growth of cultured Nicotiana tabacum W38 pollen tubes by poly(ethylene glycol) and Cu(II) salts. Protoplasma 177:1–14

    Article  CAS  Google Scholar 

  • Rihova L, Hrabetova E, Tupy J (1996) Optimization of conditions for in vitro pollen germination and tube growth in potatoes. Int J Plant Sci 157:561–566

    Article  Google Scholar 

  • Shivanna KR, Linskens HF, Cresti M (1991) Pollen viability and pollen vigor. Theor Appl Genet 81(1):38–42

    Article  CAS  Google Scholar 

  • Tamura M (1995) Reproductive structures. In: Engler A, Prantl K (eds) Die Natürlichen Pflanzenfamilien. Bd. 17 a IV Angiospermae. Ordnung Ranunculales. Fam. Ranunculaceae, 2nd edn. Duncker and Humblot, Berlin, pp 41–76

    Google Scholar 

  • Taylor LP, Hepler PK (1997) Pollen germination and tube growth. Ann Rev Plant Physiol Plant Mol Biol 48:461–491

    Article  CAS  Google Scholar 

  • Tian HQ, Russell SD (1997) Micromanipulation of male and female gametes of Nicotiana tabacum.1. Isolation of gametes. Plant Cell Rep 16(8):555–560

    CAS  Google Scholar 

  • Tupy J, Rihova L (1984) Changes and growth effect of pH in pollen-tube culture. J Plant Physiol 115(1):1–10

    Article  CAS  Google Scholar 

  • Tupy J, Hrabetova E, Capkova V (1983) Amino-acids and bivalent-cations in the growth of tobacco pollen in mass-culture. Plant Sci Lett 30(1):91–98

    Article  CAS  Google Scholar 

  • Vervaeke I, Delen R, Wouters J, Deroose R, De Proft MP (2004) Division of the generative nucleus in cultured pollen tubes of the Bromeliaceae. Plant Cell Tissue Organ 76:17–28

    Article  CAS  Google Scholar 

  • Vervaeke I, Londers E, Piot G, Deroose R, De Proft MP (2005) The division of the generative nucleus and the formation of callose plugs in pollen tubes of Aechmea fasciata (Bromeliaceae) cultured in vitro. Sex Plant Reprod 18(1):9–19

    Article  Google Scholar 

  • Wolukau JN, Zhang SL, Xu GH, Chen DX (2004) The effect of temperature, polyamines and polyamine synthesis inhibitor on in vitro pollen germination and pollen tube growth of Prunus mume. Sci Hortic 99(3–4):289–299

    Article  CAS  Google Scholar 

  • Zhan N, Huang L (2016) Effects of Ca2+ on in vitro pollen germination of three Acacia species. Silvae Genet 65(2):11–16

    Article  Google Scholar 

  • Zhang LX, Chang WC, Wei YJ, Liu L, Wang YP (1993) Cryopreservation of ginseng pollen. Hortsci 28(7):742–743

    Google Scholar 

Download references

Acknowledgements

We thank IRF (Istituto Regionale per la Floricoltura, Sanremo, Italy) and Biancheri Creations (Camporosso Mare, Italy) for delivering high qualitative plant material.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmy Dhooghe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhooghe, E., Reheul, D., Versluys, T. et al. Pollen characteristics and stigma receptivity for Anemone coronaria L.. Euphytica 214, 211 (2018). https://doi.org/10.1007/s10681-018-2294-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-018-2294-0

Keywords

Navigation