Skip to main content

Advertisement

Log in

Using droplet digital PCR (ddPCR) to detect copy number variation in sugarcane, a high-level polyploid

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Copy number variation (CNV) generally refers to duplications or deletions of sections of DNA, including genes. In polyploid plant species, CNV can also take the form of multiple copies of an allele at a given locus. This variation in dosage has been shown to alter gene expression and phenotype. As copy number rises, it becomes increasingly challenging to quantify dosage changes. A new technique, known as droplet digital PCR (ddPCR), has been used for measuring CNV. Digital PCR partitions a PCR reaction into many thousands to millions of discrete reactions (emulsified droplets in the case of ddPCR). This partitioning has the effect of diluting the target DNA, such that some droplets contain zero copies of the target, while others contain one or more copies. Post-PCR, this results in a binary (positive or negative) outcome, hence the term digital. Partitioning the reaction into a large number of discrete tests also increases sensitivity and dynamic range. In this article, ddPCR was employed to survey sugarcane (Saccharum spp.) germplasm for dosage variation for the Bru1 locus, which imparts resistance to the fungal disease known as brown rust. The breeding nursery at the USDA-ARS Sugarcane Field Station in Canal Point, FL was surveyed for the presence of Bru1 using standard methods. Those clones which were Bru1-positive were then analyzed via ddPCR. Out of 80 Bru1-positive clones, 60 were simplex or single copy. Eighteen clones were duplex for Bru1, and there were two clones that were triplex. The progeny of several testcrosses supported the results of ddPCR; a simplex parent produced approximately 50 % positive progeny, while parents that were duplex produced more than 80 %. Further verification was done via quantitative PCR. Results generally agreed with ddPCR, in that three groups could be distinguished, but the groups were relative, and not quantitative. This analysis of dosage variation has important implications for both breeding and molecular biology research. Clones with more than one copy of Bru1 (or any other gene of interest) will pass on the gene at much higher frequencies than clones that are simplex. In addition, the identification of clones with varying gene dosages allows for formal testing of dosage effects. This is the first report of ddPCR being used to measure copy number/dosage variation in a high-level polyploid plant species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agresti A, Coull B (1998) Approximate is better than ‘exact’ for interval estimation of binomial proportions. Am Stat 52:119–126

    Google Scholar 

  • Carter NP (2007) Methods and strategies for analyzing copy number variation using DNA microarrays. Nat Genet 39:S16–S21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conrad DF et al (2010) Origins and functional impact of copy number variation in the human genome. Nature 464:704–712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costet L, Le Cunff L, Royaert S, Raboin L-M, Hervouet C, Toubi L, Telismart H, Garsmeur O, Rousselle Y, Pauquet J, Nibouche S, Glaszmann JC, Hoarau J-Y, D’Hont A (2012) Haplotype structure around Bru1 reveals a narrow genetic basis for brown rust resistance in modern sugarcane cultivars. Theor Appl Genet 125:825–836

    Article  CAS  PubMed  Google Scholar 

  • Cronn RC, Adams KL (2003) Quantitative analysis of transcript accumulation from genes duplicated by polyploidy using cDNA-SSCP. Biotechniques 34:726–730, 732, 734

  • D’haene B, Vandesompele J, Hellemans J (2010) Accurate and objective copy number profiling using real-time quantitative PCR. Methods 50:262–270

    Article  PubMed  Google Scholar 

  • Davidson RW, Sandhu H, McCord PH, Comstock JC, Edmé SJ, Zhao D, Glaz B, Sood SG, Glynn NC, Gilbert R, Singh M, Baltazar M, McCorkle KM (2015) Registration of ‘CP 06-2042’ sugarcane. J Plant Regist 9:71–77 (submitted)

    Article  Google Scholar 

  • De Jong WS, De Jong DM, Bodis M (2003) A fluorogenic 5′ nuclease (TaqMan) assay to assess dosage of a marker tightly linked to red skin color in autotetraploid potato. Theor Appl Genet 107:1384–1390

    Article  PubMed  Google Scholar 

  • Dube S, Qin J, Ramakrishnan R (2008) Mathematical analysis of copy number variation in a DNA sample using digital PCR on a nanofluidic device. PLoS ONE 3:e2876

    Article  PubMed  PubMed Central  Google Scholar 

  • Girirajan S, Campbell CD, Eichler EE (2011) Human copy number variation and complex genetic disease. Annu Rev Genet 45:203–226

    Article  CAS  PubMed  Google Scholar 

  • Hayes JL, Tzika A, Thygesen H, Berri S, Wood HM, Hewitt S, Pendlebury M, Coates A, Willoughby L, Watson CM, Rabbitts P, Roberts P, Taylor GR (2013) Diagnosis of copy number variation by Illumina next generation sequencing is comparable in performance to oligonucleotide array comparative genomic hybridization. Genomics 102:174–181

    Article  CAS  PubMed  Google Scholar 

  • Henrichsen CN, Chaignat E, Reymond A (2009) Copy number variants, diseases, and gene expression. Hum Mol Genet 18:R1–R8

    Article  CAS  PubMed  Google Scholar 

  • Hindson BJ et al (2011) High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal Chem 83:8604–8610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeon JP, Shim SM, Nam HY, Ryu GM, Hon EJ, Kim HL, Han BG (2010) Copy number variation at leptin receptor gene locus associated with metabolic traits and the risk of type 2 diabetes mellitus. BMC Genom 11:426

    Article  Google Scholar 

  • Kalinina O, Lebedeva I, Brown J, Silver J (1997) Nanoliter scale PCR with TaqMan detection. Nucleic Acids Res 25:1999–2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lun FMF, Chiu RWK, Chang KCA, Leung TY, Lau TK, Lo YMD (2008) Microfluidics digital PCR reveals a higher than expected fraction of fetal DNA in maternal plasma. Clin Chem 54:1664–1672

    Article  CAS  PubMed  Google Scholar 

  • McCarroll SA et al (2008) Deletion polymorphism upstream of IRGM associated with altered IRGM and Crohn’s disease. Nat Genet 40:1107–1112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCord PH, Migneault AJ (2015) Genotyping sugarcane for the brown rust resistance locus Bru1 using unlabeled probe melting. Sug Tech. doi:10.1007/s12355-015-0390-1

    Google Scholar 

  • McDermott GP et al (2013) Multiplexed target detection using DNA-binding dye chemistry in droplet digital PCR. Anal Chem 85:11619–11627

    Article  CAS  PubMed  Google Scholar 

  • Ni X et al (2013) Reproducible copy number variation patterns among single circulating tumor cells of lung cancer patients. P Natl Acad Sci USA 110:21083–21088

    Article  CAS  Google Scholar 

  • Park RW, Kim T-M, Kasif S, Park PJ (2015) Identification of rare germline copy number variations overrepresented in five human cancer types. Mol Cancer 14:25

    Article  PubMed  PubMed Central  Google Scholar 

  • Pfaffl MW, Horgan GW, Dempfle L (2002) Relative Expression Software Tool (REST©) for group wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30:e36

    Article  PubMed  PubMed Central  Google Scholar 

  • Piperidis G, Piperidis N, D’Hont A (2010) Molecular cytogenetic investigation of chromosome composition and transmission in sugarcane. Mol Genet Genom 284:65–73

    Article  CAS  Google Scholar 

  • Ruijter JM, Ramakers C, Hoogaars WMH, Karlen Y, Bakker O, van den Hoff MJB, Moorman AFM (2009) Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Res 37:e45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen F, Du W, Kreutz JE, Fok A, Ismagilov RF (2010) Digital PCR on a slipchip. Lab Chip 10:2666–2772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sykes PJ, Neoh SH, Brisco MJ, Hughes E, Condon J, Morley AA (1992) Quantitation of targets for PCR by use of limiting dilution. Biotechniques 13:444–449

    CAS  PubMed  Google Scholar 

  • Vogelstein B, Kinzler KW (1999) Digital PCR. P Natl Acad Sci USA 96:9236–9241

    Article  CAS  Google Scholar 

  • Wang H, Nettleton D, Ying K (2014) Copy number variation using next generation sequencing read counts. BMC Bioinform 15:109

    Article  Google Scholar 

  • Yang TL et al (2008) Genome-wide copy-number-variation study identified a susceptibility gene, UGT2B17, for osteoporosis. Am J Hum Genet 83:663–674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang TL, Guo Y, Shen H, Li J, Glessner JT, Qiu C, Deng FY, Tian Q, Yu P, Liu YZ, Liu YJ, Hakonarson H, Grant SF, Deng HW (2013) Copy number variation on chromosome 10q26.3 for obesity identified by a genome-wide study. J Clin Endocr Metab 98:E191–E195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zarrei M, MacDonald JR, Merico D, Scherer SW (2015) A copy number variation map of the human genome. Nat Rev Genet 16:172–183

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Per H. McCord.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McCord, P.H. Using droplet digital PCR (ddPCR) to detect copy number variation in sugarcane, a high-level polyploid. Euphytica 209, 439–448 (2016). https://doi.org/10.1007/s10681-016-1657-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-016-1657-7

Keywords

Navigation