Skip to main content

Advertisement

Log in

Democratizing cognitive technology: a proactive approach

  • Published:
Ethics and Information Technology Aims and scope Submit manuscript

Abstract

Cognitive technology is an umbrella term sometimes used to designate the realm of technologies that assist, augment or simulate cognitive processes or that can be used for the achievement of cognitive aims. This technological macro-domain encompasses both devices that directly interface the human brain as well as external systems that use artificial intelligence to simulate or assist (aspects of) human cognition. As they hold the promise of assisting and augmenting human cognitive capabilities both individually and collectively, cognitive technologies could produce, in the next decades, a significant effect on human cultural evolution. At the same time, due to their dual-use potential, they are vulnerable to being coopted by State and non-State actors for non-benign purposes (e.g. cyberterrorism, cyberwarfare and mass surveillance) or in manners that violate democratic values and principles. Therefore, it is the responsibility of technology governance bodies to align the future of cognitive technology with democratic principles such as individual freedom, avoidance of centralized, equality of opportunity and open development. This paper provides a preliminary description of an approach to the democratization of cognitive technologies based on six normative ethical principles: avoidance of centralized control, openness, transparency, inclusiveness, user-centeredness and convergence. This approach is designed to universalize and evenly distribute the potential benefits of cognitive technology and mitigate the risk that such emerging technological trend could be coopted by State or non-State actors in ways that are inconsistent with the principles of liberal democracy or detrimental to individuals and groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In 2001, the Coventry University organized a conference called “Cognitive Technology: Instruments of Mind” which marked an important milestone in the study of CT (Beynon et al. 2003).

  2. See IBM’s best practices for cognitive technology: https://www.ibm.com/watson/advantage-reports/getting-started-cognitive-technology.html

  3. The program was called the Creeper and spread through the early Bulletin Board networks (Ferbrache 1992).

  4. The workshop and the resulting white paper adopted the label “technologies for cognitive enhancement” to describe a large variety of technological applications holding “capabilities to enhance human cognition” (Sarewitz and Karas 2007).

  5. During the 2012 Neurotech Leaders Forum, leaders of the neurotechnology industry and venture capital professionals discussed the impact of FDA approval cycles on commercialization of neurotechnology devices and investment in neurotechnology startups. They stated that “it was very difficult for them to invest in devices that require a premarket approval path through the FDA” due to “FDA tardiness in approving new devices”(Cavuoto 2012).

  6. This definition of democratization is built upon the broad definition of democracy developed by T. Christiano. See Christiano (1993, 2004).

  7. For more detailed information on Microsoft’s approach see Microsoft Cognitive Services’ Documentation: https://www.microsoft.com/cognitive-services/en-us/documentation. Last accessed: 30 January 2017.

  8. See http://openbci.com/

  9. See http://www.ajlunited.org/the-coded-gaze

  10. See http://openai.sourceforge.net/OpenAI-srs.html

References

  • Beynon, M., Nehaniv, C. L., & Dautenhahn, K. (2003). Cognitive Technology. Instruments of Mind. In 4th International Conference, CT 2001 Coventry, UK, August 6–9, 2001 Proceedings (Vol. 2117), Springer.

  • Bostrom, N. (2014). Superintelligence: Paths, dangers, strategies. Oxford: OUP

    Google Scholar 

  • Bostrom, N. (2017). Strategic implications of openness in AI development. Global Policy, 8(2), 135–148.

    Google Scholar 

  • Bostrom, N., & Sandberg, A. (2009). Cognitive enhancement: Methods, ethics, regulatory challenges. Science and Engineering Ethics, 15(3), 311–341. https://doi.org/10.1007/s11948-009-9142-5.

    Article  Google Scholar 

  • Buch, E., Weber, C., Cohen, L. G., Braun, C., Dimyan, M. A., Ard, T., … Fourkas, A. (2008). Think to move: a neuromagnetic brain-computer interface (BCI) system for chronic stroke. Stroke, 39(3), 910–917.

    Google Scholar 

  • Callam, A. (2015). Drone wars: Armed unmanned aerial vehicles. International Affairs Review, 18(3), 122–132.

    Google Scholar 

  • Cavuoto, J. (2012). Regulatory efficacy. Neurotech Report. Retrieved on December 12, 2017 from http://www.neurotechreports.com/pages/publishersletterOct12.html.

  • Chacko, P., & Jayasuriya, K. (2017). Trump, the authoritarian populist revolt and the future of the rules-based order in Asia. Australian Journal of International Affairs, 1–7.

  • Christiano, T. (1993). Social choice and democracy. The idea of democracy (pp. 173–195). Cambridge: Cambridge University Press.

    Google Scholar 

  • Christiano, T. (2004). The authority of democracy. Journal of Political Philosophy, 12(3), 266–290.

    Google Scholar 

  • Clark, A. (2001). Reasons, robots and the extended mind. Mind & Language, 16(2), 121–145.

    Google Scholar 

  • Clark, A. (2003). Natural-Born Cyborgs: Minds, technologies, and the future of human intelligence. Oxford: Oxford University Press.

    Google Scholar 

  • Clark, A., & Chalmers, D. (1998). The extended mind. Analysis, 58, 7–19.

    Google Scholar 

  • Collomb, A., & Sok, K. (2016). Blockchain/Distributed Ledger Technology (DLT): What Impact on the Financial Sector? Communications & Strategies, 103, 93.

    Google Scholar 

  • Dascal, M., & Dror, I. E. (2005). The impact of cognitive technologies: Towards a pragmatic approach. Pragmatics & Cognition, 13(3), 451–457.

    Google Scholar 

  • De Vito Dabbs, A., Myers, B. A., Curry, M., Dunbar-Jacob, K. R., Hawkins, J., Begey, R. P. A., & Dew, M. A. (2009). User-centered design and interactive health technologies for patients. Computers, Informatics, Nursing: CIN, 27(3), 175. https://doi.org/10.1097/NCN.0b013e31819f7c7c.

    Article  Google Scholar 

  • Deibert, R. (2015). The geopolitics of cyberspace after Snowden. Current History, 114(768), 9.

    Google Scholar 

  • Dupont, B. (2013). Cybersecurity futures: How can we regulate emergent risks? Technology Innovation Management Review, 3(7), 6.

    Google Scholar 

  • Ehrenfeld, J. M. (2017). Wannacry, cybersecurity and health information technology: A time to act. Journal of Medical Systems, 41(7), 104.

    Google Scholar 

  • Europol. (2016). 2016 Internet Organised Crime Threat Assessment (IOCTA) (pp. 0890–8044). Retrieved from https://www.europol.europa.eu/activities-services/main-reports/internet-organised-crime-threat-assessment-iocta-2016.

  • Farah, M. J., Illes, J., Cook-Deegan, R., Gardner, H., Kandel, E., King, P., … Wolpe, P. R. (2004). Neurocognitive enhancement: what can we do and what should we do? Nature Reviews Neuroscience, 5(5), 421.

    Google Scholar 

  • Ferbrache, D. (1992). Historical perspectives. In A pathology of computer viruses (pp. 5–30). London: Springer.

    MATH  Google Scholar 

  • Fernandez, A., & Nikhil, S. (2015). Pervasive neurotechnology. San Francisco: SharpBrains.

    Google Scholar 

  • Fitz, N. S., & Reiner, P. B. (2016). Perspective: Time to expand the mind. Nature, 531(7592), S9–S9. https://doi.org/10.1038/531S9a.

    Article  Google Scholar 

  • Floridi, L. (2010). The Cambridge handbook of information and computer ethics. Cambridge: Cambridge University Press.

    Google Scholar 

  • Floridi, L. (2014a). The fourth revolution: How the infosphere is reshaping human reality. Oxford: OUP.

    Google Scholar 

  • Floridi, L. (2014b). The latent nature of global information warfare. The Philosophers’ Magazine, 67, 17–19.

    Google Scholar 

  • Forge, J. (2010). A note on the definition of “Dual Use”. Science and Engineering Ethics, 16(1), 111–118. https://doi.org/10.1007/s11948-009-9159-9.

    Article  Google Scholar 

  • Fu, T.-M., Hong, G., Zhou, T., Schuhmann, T. G., Viveros, R. D., & Lieber, C. M. (2016). Stable long-term chronic brain mapping at the single-neuron level. Nature Methods, 13(10), 875–882. https://doi.org/10.1038/nmeth.3969.

    Article  Google Scholar 

  • Gans, E., Roberts, D., Bennett, M., Towles, H., Menozzi, A., Cook, J., & Sherrill, T. (2015). Augmented reality technology for day/night situational awareness for the dismounted Soldier. In Display technologies and applications for defense, security, and avionics IX; and head-and helmet-mounted displays XX (Vol. 9470, p. 947004). Bellingham: International Society for Optics and Photonics

    Google Scholar 

  • Gent, E. (2017). Brain-hacking tech gets real: 5 companies leading the charge. Retrieved on August 2, 2017 from https://www.livescience.com/59326-companies-investing-in-brain-hacking-tech.html.

  • Gershgorn, D. (2016). The US government seriously wants to weaponize artificial intelligence. Quartz. Retrieved from https://qz.com/767648/weaponized-artificial-intelligence-us-military/.

  • Ghahramani, Z. (2015). Probabilistic machine learning and artificial intelligence. Nature, 521(7553), 452–459. https://doi.org/10.1038/nature14541.

    Article  Google Scholar 

  • Gilbert, F. (2017). Deep brain stimulation: Inducing self-estrangement. Neuroethics, 11(2), 157–165.

    Article  MathSciNet  Google Scholar 

  • Gil de Zúñiga, H., Veenstra, A., Vraga, E., & Shah, D. (2010). Digital democracy: Reimagining pathways to political participation. Journal of Information Technology & Politics, 7(1), 36–51.

    Google Scholar 

  • Giordano, J. (2014). Neurotechnology in National Security and Defense: Practical Considerations. Neuroethical Concerns: CRC Press.

    Google Scholar 

  • Goering, S., & Yuste, R. (2016). On the necessity of ethical guidelines for novel neurotechnologies. Cell, 167(4), 882–885.

    Google Scholar 

  • Göhring, D., Latotzky, D., Wang, M., & Rojas, R. (2013). Semi-autonomous car control using brain computer interfaces. Intelligent autonomous Systems, 12, 393–408.

    Google Scholar 

  • Gorayska, B., & Mey, J. L. (1996). Cognitive technology. In K. S. Gill (Ed.), Information society: New Media, ethics and postmodernism (pp. 287–294). London: Springer.

    Google Scholar 

  • Halperin, J. M., & Healey, D. M. (2011). The influences of environmental enrichment, cognitive enhancement, and physical exercise on brain development: Can we alter the developmental trajectory of ADHD? Neuroscience and Biobehavioral Reviews, 35(3), 621–634. https://doi.org/10.1016/j.neubiorev.2010.07.006.

    Article  Google Scholar 

  • Helbing, D., Frey, B. S., Gigerenzer, G., Hafen, E., Hagner, M., Hofstetter, Y., … Zwitter, A. (2017). Will democracy survive big data and artificial intelligence. Scientific American. p. 25.

  • Helbing, D., & Pournaras, E. (2015). Build digital democracy: Open sharing of data that are collected with smart devices would empower citizens and create jobs. Nature, 527(7576), 33–35.

    Google Scholar 

  • Hodges, A. (2012). Alan Turing: the enigma. New York: Random House.

    MATH  Google Scholar 

  • Hughes, V. (2010). Head case. Nature, 464(7287), 340.

    Google Scholar 

  • IBM-THINK. (2017). Transparency and trust in the cognitive era. Retrieved on August, 2017 from https://www.ibm.com/blogs/think/2017/01/ibm-cognitive-principles/.

  • Ienca, M. (2016). Meet tomorrow’s world: A meeting on the ethics of emerging technologies. Retrieved on March 26, 2017 from http://www.theneuroethicsblog.com/2016/12/meet-tomorrows-worlda-meeting-on-ethics.html.

  • Ienca, M. (2018). Cognitive technology and human-machine interaction: The contribution of externalism to the theoretical foundations of machine and cyborg ethics. Annals of the University of Bucharest—Philosophy Series; Vol 66 No 2 (2017): Annals of the University of Bucharest: Philosophy Series.

  • Ienca, M., Fabrice, J., Elger, B., Caon, M., Pappagallo, A. S., Kressig, R. W., & Wangmo, T. (2017). Intelligent assistive technology for Alzheimer’s disease and other dementias: A systematic review. Journal of Alzheimer’s Disease, 56(4), 1301–1340. https://doi.org/10.3233/jad-161037.

    Article  Google Scholar 

  • Ienca, M., & Haselager, P. (2016). Hacking the brain: Brain–computer interfacing technology and the ethics of neurosecurity. Ethics and Information Technology, 18(117), 117–129.

    Google Scholar 

  • Ienca, M., Jotterand, F., & Elger, B. S. (2018). From healthcare to warfare and reverse: How should we regulate dual-use neurotechnology? Neuron, 97(2), 269–274. https://doi.org/10.1016/j.neuron.2017.12.017.

    Article  Google Scholar 

  • Ienca, M., Jotterand, F., Vică, C., & Elger, B. (2016). Social and assistive robotics in dementia care: Ethical recommendations for research and practice. International Journal of Social Robotics. https://doi.org/10.1007/s12369-016-0366-7.

    Article  Google Scholar 

  • Ikegami, S., Takano, K., Saeki, N., & Kansaku, K. (2011). Operation of a P300-based brain–computer interface by individuals with cervical spinal cord injury. Clinical Neurophysiology, 122(5), 991–996.

    Google Scholar 

  • Illes, J., & Bird, S. J. (2006). Neuroethics: A modern context for ethics in neuroscience. Trends in neurosciences, 29(9), 511–517.

    Google Scholar 

  • Inglehart, R., & Norris, P. (2016). Trump, Brexit, and the rise of Populism: Economic have-nots and cultural backlash. KS Working Paper No. RWP16-026. Available at SSRN: https://ssrn.com/abstract=2818659 or https://doi.org/10.2139/ssrn.2818659. Retrieved on April 12, 2017 from http://wotantue.us/Trump-Brexit-Populism.pdf.

  • Jamieson, M., Cullen, B., McGee-Lennon, M., Brewster, S., & Evans, J. J. (2014). The efficacy of cognitive prosthetic technology for people with memory impairments: A systematic review and meta-analysis. Neuropsychological Rehabilitation, 24(3–4), 419–444.

    Google Scholar 

  • Jotterand, F., & Ienca, M. (2017). The Biopolitics of neuroethics. In E. Racine & J. Aspler (Eds.), Debates about neuroethics: perspectives on its development, focus, and future (pp. 247–261). Cham: Springer.

    Google Scholar 

  • Kaufmann, T., Völker, S., Gunesch, L., & Kübler, A. (2012). Spelling is just a click away – a user-centered brain-computer interface including auto-calibration and predictive text entry. Frontiers in Neuroscience. https://doi.org/10.3389/fnins.2012.00072.

    Article  Google Scholar 

  • Kiger, P. J. (2017). 5 Ways society will be affected by cognitive technology. Retrieved on December 12, 2017 from http://electronics.howstuffworks.com/future-tech/5-ways-society-will-be-affected-by-cognitive-technology.htm.

  • Kirkpatrick, D. (2007). Cognitive technology threat warning systems (CT2WS). Retrieved on August 2, 2017 from https://web.archive.org/web/20080204203721/http://www.darpa.mil/baa/BAA07-25.html.

  • Kirkpatrick, K. (2016). Battling algorithmic bias: How do we ensure algorithms treat us fairly? Communications of the ACM, 59(10), 16–17.

    Google Scholar 

  • Klare, B. F., Burge, M. J., Klontz, J. C., Bruegge, R. W. V., & Jain, A. K. (2012). Face recognition performance: Role of demographic information. IEEE Transactions on Information Forensics and Security, 7(6), 1789–1801. https://doi.org/10.1109/TIFS.2012.2214212.

    Article  Google Scholar 

  • Kosmyna, N., Tarpin-Bernard, F., & Rivet, B. (2015). Towards brain computer interfaces for recreational activities: Piloting a drone. Paper presented at the Human-Computer Interaction.

  • Kübler, A., Holz, E. M., Riccio, A., Zickler, C., Kaufmann, T., Kleih, S. C., … Mattia, D. (2014). The user-centered design as novel perspective for evaluating the usability of BCI-controlled applications. PLoS ONE, 9(12), e112392. https://doi.org/10.1371/journal.pone.0112392.

    Article  Google Scholar 

  • Kübler, A., Nijboer, F., Mellinger, J., Vaughan, T. M., Pawelzik, H., Schalk, G., … Wolpaw, J. R. (2005). Patients with ALS can use sensorimotor rhythms to operate a brain-computer interface. Neurology, 64(10), 1775–1777.

    Google Scholar 

  • Lacy, M., & Prince, D. (2018). Securitization and the global politics of cybersecurity. Global Discourse, 8(1), 100–115.

    Google Scholar 

  • Langfitt, F. (2013). China beware: A camera may be watching you. NPR, 29, 40.

    Google Scholar 

  • Langleben, D. D., Hakun, J. G., Seelig, D., Wang, A.-L., Ruparel, K., Bilker, W. B., & Gur, R. C. (2016). Polygraphy and functional magnetic resonance imaging in lie detection: A controlled blind comparison using the concealed information test. The Journal of Clinical Psychiatry, 77(10), 1372–1380.

    Google Scholar 

  • Langleben, D. D., Loughead, J. W., Bilker, W. B., Ruparel, K., Childress, A. R., Busch, S. I., & Gur, R. C. (2005). Telling truth from lie in individual subjects with fast event-related fMRI. Human Brain Mapping, 26(4), 262–272. https://doi.org/10.1002/hbm.20191.

    Article  Google Scholar 

  • Lee, T.-S., Goh, S. J. A., Quek, S. Y., Phillips, R., Guan, C., Cheung, Y. B., ... Chin, Z. Y. (2013). A brain-computer interface based cognitive training system for healthy elderly: A randomized control pilot study for usability and preliminary efficacy. PLoS ONE, 8(11), e79419.

    Google Scholar 

  • Liberati, G., Dalboni da Rocha, J. L., van der Heiden, L., Raffone, A., Birbaumer, N., Belardinelli, O. M., & Sitaram, R. (2012). Toward a brain-computer interface for Alzheimer’s disease patients by combining classical conditioning and brain state classification. Journal of Alzheimer’s Disease, 31(Suppl 3), 211–220. https://doi.org/10.3233/jad-2012-112129.

    Article  Google Scholar 

  • Limited, C. T. C. (2014). China telecom 2014 annual work conference highlights [Press release]. Retrieved on August 2, 2017 from http://www.irasia.com/listco/hk/chinatelecom/press/p140103.htm.

  • Liu, J., Fu, T.-M., Cheng, Z., Hong, G., Zhou, T., Jin, L., … Lieber, C. M. (2015). Syringe-injectable electronics. Nature Nanoelectronics, 10(7), 629–636. https://doi.org/10.1038/nnano.2015.115.

    Article  Google Scholar 

  • Lyon, D. (2014). Surveillance, Snowden, and big data: Capacities, consequences, critique. Big Data & Society, 1(2), 2053951714541861.

    Google Scholar 

  • Manuti, A., & de Palma, P. D. (2018). The cognitive technology revolution: A new identity for workers. In A. Manuti & P. D. de Palma (Eds.), Digital HR: A critical management approach to the digitilization of organizations (pp. 21–37). Cham: Springer.

    Google Scholar 

  • Mao, C.-C., Chen, C.-H., & Sun, C.-C. (2017). Impact of an augmented reality system on learning for army military decision-making process (MDMP) course. In M. Soares, C. Falcão, & T. Z. Ahram (Eds.), Advances in ergonomics modeling, usability & special populations: Proceedings of the AHFE 2016 international conference on ergonomics modeling, usability & special populations, July 27–31, 2016, Walt Disney World®, Florida, USA (pp. 663–671). Cham: Springer.

    Google Scholar 

  • Martinovic, I., Davies, D., Frank, M., Perito, D., Ros, T., & Song, D. (2012). On the feasibility of side-channel attacks with brain-computer interfaces. Paper presented at the USENIX Security Symposium.

  • Mascarenhas, H. (2016). Elon Musk’s $1bn non-profit launches ‘gym’ to train AI with Atari games. International Business Times.

  • Matusitz, J. (2005). Cyberterrorism: How can American foreign policy be strengthened in the Information Age? American Foreign Policy Interests, 27(2), 137–147.

    Google Scholar 

  • McCane, L. M., Heckman, S. M., McFarland, D. J., Townsend, G., Mak, J. N., Sellers, E. W., … Vaughan, T. M. (2015). P300-based brain-computer interface (BCI) event-related potentials (ERPs): People with amyotrophic lateral sclerosis (ALS) vs. age-matched controls. Clinical Neurophysiology, 126(11), 2124–2131.

    Google Scholar 

  • Millán, J. d. R., Rupp, R., Mueller-Putz, G., Murray-Smith, R., Giugliemma, C., Tangermann, M., … Leeb, R. (2010). Combining brain–computer interfaces and assistive technologies: state-of-the-art and challenges. Frontiers in Neuroscience, 4, 161.

    Google Scholar 

  • Miranda, R. A., Casebeer, W. D., Hein, A. M., Judy, J. W., Krotkov, E. P., Laabs, T. L., … Sanchez, J. C. (2015). DARPA-funded efforts in the development of novel brain–computer interface technologies. Journal of Neuroscience Methods, 244, 52–67.

    Google Scholar 

  • Mitterlehner, B. (2014). Cyber-Democracy and Cybercrime: Two Sides of the Same Coin. Cyber-Development, Cyber-Democracy and Cyber-Defense (pp. 207–230). New York: Springer.

    Google Scholar 

  • Moor, J. H. (2005). Why we need better ethics for emerging technologies. Ethics and Information Technology, 7(3), 111–119.

    Google Scholar 

  • Moore, B. E. (2013). The brain computer interface future: time for a strategy. Alabama: Air University.

    Google Scholar 

  • Müller, K.-R., Tangermann, M., Dornhege, G., Krauledat, M., Curio, G., & Blankertz, B. (2008). Machine learning for real-time single-trial EEG-analysis: From brain–computer interfacing to mental state monitoring. Journal of Neuroscience Methods, 167(1), 82–90.

    Google Scholar 

  • National Academies of Sciences, E., and Medicine. (2012). The safety promise and challenge of automotive electronics insights from unintended acceleration. Washington, DC: The National Academies Press.

    Google Scholar 

  • Nissenbaum, H. (2005). Where computer security meets national security. Ethics and Information Technology, 7(2), 61–73.

    Google Scholar 

  • Ølnes, S., Ubacht, J., & Janssen, M. (2017). Blockchain in government: Benefits and implications of distributed ledger technology for information sharing. Government Information Quarterly, 34(3), 355–364. https://doi.org/10.1016/j.giq.2017.09.007.

    Article  Google Scholar 

  • Open, A. I. (2016). Retrieved from https://openai.com/about/.

  • Paganini, P. (2014). New powers for the Russian surveillance system SORM-2. Security Affairs. Retrieved on August 2, 2017 from http://securityaffairs.co/wordpress/27611/digital-id/new-powers-sorm-2.html.

  • Posner, R. A. (2009). Antitrust law: University of Chicago Press.

  • Powell, C., Munetomo, M., Schlueter, M., & Mizukoshi, M. (2013). Towards thought control of next-generation wearable computing devices. Paper presented at the International Conference on Brain and Health Informatics.

  • Pycroft, L., Boccard, S. G., Owen, S. L. F., Stein, J. F., Fitzgerald, J. J., Green, A. L., & Aziz, T. Z. (2016). Brainjacking: Implant Security Issues in Invasive Neuromodulation. World Neurosurgery, 92, 454–462. https://doi.org/10.1016/j.wneu.2016.05.010.

    Article  Google Scholar 

  • Russell, S., Dewey, D., & Tegmark, M. (2015). Research priorities for robust and beneficial artificial intelligence. AI Magazine, 36(4), 105–114.

    Google Scholar 

  • Sapaty, P. (2015). Military robotics: Latest trends and spatial grasp solutions. International Journal of Advanced Research in Artificial Intelligence, 4(4), 9–18.

    Google Scholar 

  • Sarewitz, D., & Karas, T. H. (2007). Policy implications of technologies for cognitive enhancement. SAND2006-7909. Sandia National Laboratories Albuquerque, New Mexico 87185. Retrieved from http://prod.sandia.gov/techlib/access-control.cgi/2006/067909.pdf.

  • Schatsky, D., Muraskin, C., & Gurumurthy, R. (2015). Cognitive technologies: The real opportunities for business. Deloitte Review, 16, 115–129.

    Google Scholar 

  • Selgelid, M. J. (2009). Governance of dual-use research: an ethical dilemma. Bulletin of the World Health Organization, 87(9), 720–723.

    Google Scholar 

  • Sententia, W. (2004). Neuroethical considerations: cognitive liberty and converging technologies for improving human cognition. Annals of the New York Academy of Sciences, 1013(1), 221–228.

    Google Scholar 

  • Statt, N. (2017). Elon Musk launches Neuralink, a venture to merge the human brain with AI. The Verge. Retrieved on August 2, 2017 from http://www.theverge.com/2017/3/27/15077864/elon-musk-neuralink-brain-computer-interface-ai-cyborgs.

  • Stewart, I. I. I. C. (2017). Electoral Vulnerabilities in the United States: Past, Present, and Future. MIT Political Science Department Research Paper(5).

  • Sweller, J. (1989). Cognitive technology: Some procedures for facilitating learning and problem solving in mathematics and science. Journal of Educational Psychology, 81(4), 457.

    Google Scholar 

  • Taddeo, M. (2017). Cyberwar: How to regulate nation state warfare on the internet. Retrieved on February 12, 2018 from http://www.scienceviewsthenews.com/cyberwar-how-to-regulate-nation-state-warfare-on-the-internet/.

  • Taddeo, M., & Floridi, L. (2018). Regulate artificial intelligence to avert cyber arms race. Nature, 556(7701), 296–298. https://doi.org/10.1038/d41586-018-04602-6.

    Article  Google Scholar 

  • Tennison, M. N., & Moreno, J. D. (2012). Neuroscience, ethics, and national security: The state of the art. PLoS Biology, 10(3), e1001289. https://doi.org/10.1371/journal.pbio.1001289.

    Article  Google Scholar 

  • Tonin, L., Carlson, T., Leeb, R., & Millán, J. d. R. (2011). Brain-controlled telepresence robot by motor-disabled people. Paper presented at the Engineering in Medicine and Biology Society, EMBC, 2011 Annual International Conference of the IEEE.

  • Tonin, L., Leeb, R., Tavella, M., Perdikis, S., & Millán, J. d. R. (2010). The role of shared-control in BCI-based telepresence. Paper presented at the Systems Man and Cybernetics (SMC), 2010 IEEE International Conference on.

  • Vincent, J. (2018). Badly implemented AI could ‘jeopardize democracy’. The Verge.

  • Walker, W. R., & Herrmann, D. J. (2004). Cognitive technology: Essays on the transformation of thought and society. Jefferson, NC: McFarland.

    Google Scholar 

  • WEF (2016). The global risks report 2016 (11th ed.). World Economic Forum. Retrieved from https://www.weforum.org/reports/the-global-risks-report-2016.

  • White, A. (2014). Future special operations protection systems (tactical assault light operator suit). Military Technology, 38(12), 70–73.

    Google Scholar 

  • Yudkowsky, E. (2008). Artificial intelligence as a positive and negative factor in global risk. Global Catastrophic Risks, 1(303), 184.

    Google Scholar 

  • Yuste, R., Goering, S., Bi, G., Carmena, J. M., Carter, A., Fins, J. J., … Illes, J. (2017). Four ethical priorities for neurotechnologies and AI. Nature News, 551(7679), 159.

    Google Scholar 

  • Zickler, C., Halder, S., Kleih, S. C., Herbert, C., & Kübler, A. (2013). Brain painting: Usability testing according to the user-centered design in end users with severe motor paralysis. Artificial Intelligence in Medicine, 59(2), 99–110. https://doi.org/10.1016/j.artmed.2013.08.003.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcello Ienca.

Ethics declarations

Conflict of interests

The author declares no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ienca, M. Democratizing cognitive technology: a proactive approach. Ethics Inf Technol 21, 267–280 (2019). https://doi.org/10.1007/s10676-018-9453-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10676-018-9453-9

Keywords

Navigation