Skip to main content
Log in

Benefits of systems thinking for a human and organizational factors approach to safety management

  • Published:
Environment Systems and Decisions Aims and scope Submit manuscript

Abstract

This paper highlights the value of systems theory and its application to human and organizational factors (HOF). HOF specialists consider multiple systems characteristics in their analyses but are often unaware of the relevant theory applied in their analysis. We argue that a structured effort to take key systems characteristics into account in HOF practice would increase the depth and breadth of safety management analyses and help HOF specialists to act more effectively on industrial socio-technical systems. First, the paper identifies the following seven system theory characteristics: constitution, multi-axis representation, limit, emergence, variety, coherence, and causal interaction, which are then illustrated with examples from the HOF field. Finally, we discuss the two main benefits of integrating system thinking in a HOF approach to safety management: (1) an improved understanding of the inner workings of an industrial socio-technical system; and (2) a compendium or a reference to guide for decision-making and the implementation of actions within the industrial socio-technical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Notes

  1. In the “Arrêté du 7 février 2012 fixant les règles générales relatives aux installations nucléaires de base”.

  2. Other models may include other types of interactions besides that of coherence. For example, certain actors may be linked together by convergent versus divergent relationships. For example, this expresses the fact that they agree (converge) or disagree (diverge) on the way to solve a problem.

  3. In France, Mr Jourdain is a well-known classic literature character. This expression means that we may carry out many tasks without knowing the principles underlying them.

References

  • Amalberti R (2013). Navigating safety, necessary compromises and trade-offs—theory and practice, Springer, The Netherlands

    Google Scholar 

  • Amalberti R, et Mosneron-Dupin F (1997) Facteurs humains et fiabilité: quelles démarches pratiques? OCTARES Editions

  • Aristotle (1930). Physics, Book II, Chaps. 3 and 7 (trans: Hardie RP, Gaye RK). Oxford Press, Oxford

  • Aristotle (2008) Metaphysics (The original is in French: Métaphysique). In: Book ∆, Chap. 2, Translation of Marie-Paule Duminil et Annick Jaulin. Editions Garnier Flammarion, Paris

    Google Scholar 

  • Ashby WR (1956). An introduction to cybernetics, Chapman & Hall, London

    Book  Google Scholar 

  • Bainbridge L (1983). Ironies of automation, Automatica, 19(6):775–779

    Article  Google Scholar 

  • Bernard B (2014). Comprendre les facteurs humains et organisationnels - Sûreté nucléaire et organisations à risques, EDP Sciences

  • Bignell V, Fortune J (1984). Understanding system failures, Manchester University Press, Manchester

    Google Scholar 

  • CAIB (2003). Report Volume 1, national aeronautics and space administration, Washington DC, available at http://caib.nasa.gov

  • Cullen WD [Lord] (2000) The Ladbroke grove rail inquiry, Part 1 and Part 2 reports. HSE Books, Her Majesty’s Stationery Office, Norwich

    Google Scholar 

  • De Rosnay J (1975) Le macroscope. Seuil, Paris

    Google Scholar 

  • Dechy N, Rousseau J-M, Llory M (2011). Are organizational audits of safety that different from organizational investigation of accidents? ESREL 2011 Conference, Troyes, France, pp. 18–22

  • Dechy N, Dien Y, Funnemark E, Roed-Larsen S, Stoop J, Valvisto T, Vetere Arellano A-L, on behalf of ESReDA Accident Investigation Working Group (2012). Results and lessons learned from the ESReDA’s accident investigation working group, Saf Sci, 50(6):1380–1391

    Article  Google Scholar 

  • Dekker S (2006), The field guide to understanding ‘human error’. Ashgate Publishing Limited, Farnham

    Google Scholar 

  • Dekker S (2011), Drift into failure: from hunting broken components to understanding complex systems, Ashgate Publishing Limited, Farnham

    Google Scholar 

  • Descartes R (1637). Discours de la méthode

  • Dien Y (2006) Les facteurs organisationnels des accidents industriels, dans L. Magne. In: et Vasseur D (eds) Risques industriels – Complexité, incertitude et décision: une approche interdisciplinaire. Éditions TEC & DOC, Lavoisier, pp 133–174

    Google Scholar 

  • Dien Y, Llory M, Montmayeul R (2004) Organisational accidents investigation: methodology and lessons learned. J Hazard Mater 111(1–3):147–153

    Article  CAS  Google Scholar 

  • Dien Y, Dechy N, Guillaume E (2012) Accident investigation: from searching direct causes to finding in-depth causes. Problem of analysis or/and of analyst? Saf Sci 50(6):1398–1407

    Article  Google Scholar 

  • Endsley M, Bolte B, Jones D (2003). Designing for situational awareness: An approach to user-centered design. Taylor and Francis, Routledge

    Book  Google Scholar 

  • ESReDA (2009) Eds., ESReDA working group on accident investigation, Guidelines for safety investigation of accidents, available http://www.esreda.org

  • Fornette M-P, Jollans J-Y (2016). Former les équipes à la sécurité et à la performance avec le crew resource management. Octares Editions, Toulouse

    Google Scholar 

  • Garandel S, Périnet R (2013) A daisy to multiply the points of view in analyses of events, Third European Conference for High Reliability Organizations, 5, 6 november 2013, Aix-En-Provence

  • Grant E, Salmon P, Stevens N, Goode N, Read G (2018) Back to the future: what to accident causation models tell us about accident prediction? J Saf Sci 104:99–109

    Article  Google Scholar 

  • Haeckel E (1899) Riddle of the Universe at the Close of the Nineteenth Century

  • Hardy K, et Guarnieri F (2012) Modéliser les accidents et les catastrophes industrielles: la méthode STAMP. Editions Lavoisier, Paris

    Google Scholar 

  • Hollifield BR, Habibi E (2010) The alarm management handbook, 2 edn. PAS, Houston, TX

    Google Scholar 

  • Hollnagel E, (2012), FRAM: the functionnal resonance analysis method: modelling complex sociotechnical systems. Ashgate Publishing Limited, Farnham

    Google Scholar 

  • Hollnagel E, Woods D, Leveson N, (2006), Resilience engineering: concepts and precepts. Ashgate publishing limited, Farnham

    Google Scholar 

  • IAEA (International Atomic Energy Agency) (2013). Human and organizational factors in nuclear safety in the light of the accident at the Fukushima Daiichi nuclear power plant, International Experts Meeting, 21–24 May 2013, Vienna, Austria

  • IAEA (International Atomic Energy Agency) (2016). Leadership and Management for Safety, GSR Part 2

  • ISO 9241-210, Ergonomics of human-system interaction—Part 210: human-centred design for interactive systems, January 2011

  • Koffka K (1935) Principles of Gestalt psychology

  • Le Moigne J-L (1977) La théorie du système général, théorie de la modélisation (2nd edn in1994)

  • Leveson N (2004) A new accident model for engineering safer systems. J Saf Sci 42:237–270

    Article  Google Scholar 

  • Lewes G-H (1875) Problem of life and mind

  • Llory M (1999) L’accident de la centrale nucléaire de Three Mile Island, Éditions L’Harmattan, Paris

    Google Scholar 

  • Llory M, et Montmayeul R (2010). L’accident et l’organisation, Editions Préventique, Paris

    Google Scholar 

  • Manna G (2007). Human and organizational factors in nuclear installations: analysis of available models and identification of R&D issues, JRC Scientific and Technical Reports

  • Mill J-S (1862). A system of logic

  • Perrow C (1984). Normal accidents, living with high risk-technologies, Princeton University Press, Princeton

    Google Scholar 

  • Rasmussen J (1997) Risk management in a dynamic society: a modelling problem. Saf Sci 27(2–3):183–213

    Article  Google Scholar 

  • Rasmussen J, Svedung I (2000) Proactive risk management in a dynamic society. Swedish Rescue Services Agency, Karlstad

    Google Scholar 

  • Reason J (1990). Human error, Cambridge University Press, New York

    Book  Google Scholar 

  • Reason J (1997) Managing the risks of organisational accidents. Ashgate, Aldershot

    Google Scholar 

  • Reason J, Hollnagel E, Paries J (2006) Revisiting the « swiss cheese » model of accidents. EUROCONTROL

  • Rousseau J-M, et Largier A (2008). Conduire un diagnostic organisationnel par la recherche de facteurs pathogènes, Techniques de l’Ingénieur AG 1576

  • Tosello M, et Vautier J-F (2001). Présentation et illustration d’une démonstration de sûreté « facteurs humains », XXXVIth congress of SELF, Montréal, Canada, 3–5

  • Tosello M, Vautier J-F, Sevestre B (2003). A new study of human factors in the nuclear safety field, XVth Congress of the International Ergonomics Association (IEA), August 24–29, 2003, Seoul, Korea, 5, SAFETY V

  • Turner B (1978). Man-made disasters, Wykeham Publications, London

    Google Scholar 

  • Underwood P, Waterson P (2013) Systemic accident analysis: Examining the gap between research and practice. J Accid Anal Prev 55:154–164

    Article  Google Scholar 

  • Vaughan D (1996) The challenger launch decision. Risky technology, culture, and deviance at NASA. The Chicago University Press, Chicago

    Google Scholar 

  • Vautier J-F (2007) “Art et Systémique” La gouvernance dans les systèmes. Polimetrica, January

    Google Scholar 

  • Vautier J-F (2008) A systemic approach to question complexity: the systemic scores, 7th Congress of the European Union for Systemics EUS-UES, Lisbon

  • Vautier J-F (2015) Making a causal contextualization with the four causes of Aristotle. Adv Syst Sci Appl 15(2), 176–187

    Google Scholar 

  • Vautier J-F, Tosello M, Hernandez G, Dutillieu S, Quiblier S, Sylvestre C, Lévêque F, Barnabé I, Baussart N, Paulus V, Lipart C, Barrière V, Dupont M (2016). A synchro-diachro approach to question the development of a human and organizational factors (HOF) network, International Conference on Human and Organizational Aspects of Assuring Nuclear Safety—Exploring 30 years of safety culture, IAEA, Vienna, Austria, 22–26

  • Vautier J-F, Dechy N, De Coye Brunélis T, Hernandez G, Launay R (2018). Systemic characteristics of a human and organizational factors (HOF) approach of safety management, in Cybernetics and Systems by Routledge

  • Von Bertalanffy L (1968) General system theory: foundations, development. George Braziller, Canada

    Google Scholar 

  • Wilpert B, Fahlbruch B (1998). Safety related interventions in inter-organisational fields, In: Hale A, Baram M (eds), Safety management—the challenge of change, Elsevier Science Ltd, Pergamon, pp 235–248

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Gaël Laurans, Ph.D., for his contribution to the language editing of this paper and the two blind authors for their challenging comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-François Vautier.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vautier, JF., Dechy, N., Coye de Brunélis, T. et al. Benefits of systems thinking for a human and organizational factors approach to safety management. Environ Syst Decis 38, 353–366 (2018). https://doi.org/10.1007/s10669-018-9692-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10669-018-9692-7

Keywords

Navigation