Skip to main content

Advertisement

Log in

Integrated modeling for sustainable fisheries in Morocco: a dynamic computable general equilibrium approach

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

This paper explores how public policies and economic conditions impact fisheries sustainability using an integrated approach. Combining a synthetic fisheries resource assessment model with a dynamic computable general equilibrium model (DCGEM), the research challenges the belief that overexploited fish stocks inevitably lead to extinction. It highlights the sensitivity of the fishing sector and its sustainability to changes in fishing effort and fluctuations in fuel prices, emphasizing the risks of overexploitation in the medium and long term, even under initially acceptable conditions. The key takeaway is the importance of maintaining balanced catch levels and fishing efforts below their recommended theoretical threshold to ensure sustainable fisheries. The study brings original insights, providing practical policy implications and advocating for continuous monitoring along with adaptive management strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. MEFISTO: MEditerranean FIsheries Simulation Tool.

  2. Refer to Kamili and Maynou (2011)’s study for a practical demonstration of the application of the MEFISTO model (Version 3.0; 2005).

  3. See”Framework Law No. 99-12 concerning the National Charter for the Environment and Sustainable Development. Official Bulletin of the Kingdom of Morocco No. 6240-18 Jumada I 1435 (20-3-2014); http://www.sgg.gov.ma/”.

  4. Refer to Doukkali and Kamili (2018) for more details on the Moroccan fisheries production system.

  5. Catchability (Q) can be interpreted as the probability that a unit of biomass will be caught when a unit of fishing effort is engaged (Laloë, 1990). It is influenced by two main groups of factors shown by Chadwick and O’Boyle (1990). The first group includes operation-related factors like fishing gear, boat characteristics, and fishermen’s skills, which contribute significantly to catchability variability. The second group consists of factors associated with the targeted species, such as their physiology (growth rate) and behavior, including daily and seasonal migration patterns.

  6. IFPRI: International Food Policy Research Institute.

    N.B. For consistency and ease of use, we have kept the main symbols used in the IFPRI static reference model using the GAMS software (General Algebraic Modeling System).

  7. The National Observatory of Human Development (https://www.ondh.ma/) predicts an annual Moroccan population growth rate of 1% between 2015 and 2050.

  8. Sub-sector growth is assumed to be in line with that of the main sectors with which they are associated.

    Government consumption expenditure is assumed to grow by 3%, and transfers to households by 5%.

  9. “Mer en chiffre 2018” in http://www.mpm.gov.ma/.

  10. \({CPUE}_{sp,t}={Q}_{sp,t}.{B}_{sp,t}=\frac{{Y}_{sp,t}}{{E}_{sp,t}}\)

  11. Octopus (Octopus vulgaris) Stock Evaluation Report, 2004: Findings from the Trawling Assessment Campaign aboard the Research Vessel ‘Charif Al Idrissi,’ conducted by the Moroccan National Institute of Fisheries Research, Department of Fisheries Resources.

  12. Pan et al. (2007) support the assumption that parameter (\({r}_{sp}\)) can be influenced by abiotic factors, which are strongly related to the overall health of marine ecosystems.

References

  • Anderson, L. G., & Seijo, J. C. (2010). Bioeconomics of fisheries management. Wiley.

    Google Scholar 

  • Annabi, J., Cockburn, J., & Decaluwé, B. (2003). Formes fonctionnelles et paramétrisation dans les MCEG. CRÉFA Université Laval.

    Google Scholar 

  • Azaguagh, I., & Driouchi, A. (2019). Gestion des ressources halieutiques au Maroc et modes d’accès: Le modèle des «Anti-Commons» et la pêcherie poulpière. Revue Marocaine Des Sciences Agronomiques Et Vétérinaires, 7(1), 5–17.

    Google Scholar 

  • Banerjee, O., Cicowiez, M., Horridge, M., & Vargas, R. (2016). A conceptual framework for integrated economic–environmental modeling. The Journal of Environment & Development, 25(3), 276–305.

    Article  Google Scholar 

  • Barry-Gérard, M., Brêthes, J.-C., & O’Boyle, R. N. (1990). Méthodes d’évaluation des stocks halieutiques (Vol. 1). Centre international d’exploitation des océans.

    Google Scholar 

  • Beverton, R. J. H., & Holt, S. J. (1956). A review of methods for estimating mortality rates in fish populations, with special reference to sources of bias in catch sampling. Rapports et Procès-Verbaux des RèunI ons Commission Internationale pour l’Exploration Scientifique de la Mer Méditerranée, 140, 67–83.

    Google Scholar 

  • Caddy, J., Mahon, R., Dominique, D., Nirina, R., Koechlin, B., Rasolofonirina, R., . . . others. (1996). Points de référence en aménagement des pêcheries (FAO Document technique sur les pêches, 347, 89). Food and Agriculture Organization.

  • Cadima, E. L. (2002). Manuel d’évaluation des ressources halieutiques (Document technique sur les pêches(639.2 F3f v. 393)). Food and Agriculture Organization.

  • CECAF. (2016). Twenty-first session of the fishery committee for the eastern central Atlantic, 20–22 April 2016 (FAO fisheries and aquaculture report). FAO/CECAF, Dakar, Senegal.

  • CECAF. (2017). Report of the FAO/CECAF working group on the assessment of demersal resources – subgroup north Tenerife (Fisheries and aquaculture report). FAO, 6–15 June 2017.

  • Chadwick, M., & O’Boyle, R. (1990). L’analyse des données de capture et d’effort. Méthodes d’évaluation des stocks halieutiques. Centre International d’Exploitation des Océans (pp. 77–101).

  • Chassot, E., Floros, C., Failler, P., Bernard, P., Rouyer, T., & Gascuel, D. (2004). From sea to shore: Development of a static computable general equilibrium model (CGEM) for fisheries. Example of the fishing industry in Finisterre (France). ICES.

  • Clark, C. W. (2010). Mathematical bioeconomics: The mathematics of conservation (Vol. 91). Wiley.

    Google Scholar 

  • Demirel, N., Nauen, C. E., & Palomares, M. L. (2023). Fishing effort and the evolving nature of its efficiency. (Frontiers, Éd.) Frontiers in Marine Science, 10, 1180174.

  • Devasa, R., Azzahra, S. B., Nahar, A., Maysabila, A., Adiara, F. A., & Akbarsyah, N. (2023). Analysis of maximum sustainable yield (MSY) and catch per unit effort (CPUE) multi fishing gear in PP Cikidang, Pangandaran Regency, West Java, Indonesia. World Scientific News, 180, 14–24.

    Google Scholar 

  • Doukkali, M. R., & Kamili, A. (2018). Système marocain de production halieutique et sa dépendance du reste du monde/Moroccan fishing production system and its dependence on the rest of the world (Research papers, RP-18/07). Policy Center for the New South, Éd.

  • DPM. (2009). Stratégie de développement et de compétitivité du secteur halieutique. Département de la Pêche Maritime relevant du Ministère de l’Agriculture, de la Pêche Maritime, du Développement Rural et des Eaux et Forêts.

  • Ekins, P. (2002). Economic growth and environmental sustainability: the prospects for green growth. Routledge, Éd.

  • FAO. (1995a). Code de conduite pour une pêche responsable (p. 46). Publications de la FAO.

  • FAO. (1995b). Precautionary approach to fisheries. Part 1: Guidelines on the precautionary approach to capture fisheries and species introductions. Elaborated by the Technical Consultation on the Precautionary Approach to Capture Fisheries (FAO Fisheries Technical Paper. 350/Part 1, p. 52). Lysekil, Sweden, 6–13 June 1995: Rome, FAO.

  • FAO. (1996). Precautionary approach to fisheries. Part 2: Scientific papers. Prepared for the Technical Consultation on the Precautionary Approach to Capture Fisheries (Including Species Introductions) (FAO Fisheries Technical Paper, 350/Part 2, p. 210). Lysekil, Sweden, 6–13 June 1995.

  • FAO. (2001). Report of the Reykjavik conference on responsible fisheries in the marine ecosystem. FAO FIsheries Report, 1(658), 136.

    Google Scholar 

  • FAO. (2018). La situation mondiale des pêches et de l’aquaculture 2018. Food and Agriculture Organization.

  • Fox, W. (1970). An exponential surplus-yield model for optimizing exploited fish populations. Transactions of the American Fisheries Society, 99(1), 80–88.

    Article  Google Scholar 

  • Garcia, S. M., Rice, J., & Charles, A. (2016). Balanced harvesting in fisheries: A preliminary analysis of management implications. ICES Journal of Marine Science, Oxford University Press, 73(6), 1668–1678.

    Article  Google Scholar 

  • Garrod, D.-J. (1967). Population dynamics of the Arcto Norwegian cod. Journal of the Fisheries Board of Canada, 24(1), 145–190.

    Article  Google Scholar 

  • Gilliland, T., Sanchirico, J. N., & Taylor, J. E. (2019). An integrated bioeconomic local economy-wide assessment of the environmental impacts of poverty programs. Proceedings of the National Academy of Sciences, 116(14), 6737–6742.

    Article  CAS  Google Scholar 

  • Gilliland, T. E., Sanchirico, J., & Taylor, J. E. (2020). Market-driven bioeconomic general equilibrium impacts of tourism on resource-dependent local economies: A case from the western Philippines. Journal of Environmental Management, 271, 110968.

    Article  Google Scholar 

  • Gilly, B. (1989). Les modèles bioéconomiques en halieutique: démarches et limites. Cahier Des Sciences Humaines, 25(1–2), 23–33.

    Google Scholar 

  • Graham, M. (1935). Modern theory of exploiting a fishery, and application to North Sea trawling. ICES Journal of Marine Science, 10(3), 264–274.

    Article  Google Scholar 

  • HCP. (2019). Comptes Nationaux des Secteurs Institutionnels 2018. (Base 2007). Maroc.

  • Hermitte, M. A., Maljean, D. S., & Truilhé, M. E. (2011). Actualités de la convention sur la diversité biologique: science et politique, équité, biosécurité. Annuaire Français De Droit International, 57(1), 399–437.

    Article  Google Scholar 

  • INRH/DP. (2017). Rapport annuel de l’état des stocks et des pêcheries marocaines 2017. Institut National de Recherche Halieutique, Casablanca, Morocco.

  • Kamili, A., & Maynou, F. (2011). Bioéconomie et gestion de la pêcherie des petits pélagiques. Cas de l’Atlantique Centre Marocain. Dans S. Garcia, M. Tandstad, & A. Caramelo (Éd.), Science et aménagement des petits pélagiques (pp. 327–350). 11–14 mars 2008. FAO - Comptes rendus des pêches et de l’aquaculture.

  • Laloë, F. (1990). Présentation générale des modèles globaux pour l’étude des populations marines exploitées. (CIEO, Éd.) Méthodes d’évaluation des stocks halieutiques.

  • Laurec, A., & Le Guen, J.-C. (1981). Dynamique des populations marines exploitées. tome 1. concepts et modèles. (CNEXO, Éd.) Série Rapports scientifiques et techniques, 1(45), 1–120.

  • Lemelin, A., & Decaluwé, B. (2007). Issues in recursive dynamic CGE modeling: investment by destination, savings, and public debt. A survey. Politique économique et Pauvreté/Poverty and Economic Policy Network. Université Laval, Québec.

  • Lleonart, J., Franquesa, R., & Maynou, F. (1998). MEditerranean FIsheries Simulation TOol (MEFISTO): A bioeconomic model for Mediterranean fisheries. version 2005-3.0., 32.

  • Lofgren, H., Harris, R., & Robinson, S. (2002). A standard computable general equilibrium (CGE) model in GAMS (Vol. 5). Intl Food Policy Res Inst.

  • Lopes, R. M. (1985). L’économie des ressources renouvelables. (FeniXX, Éd.)

  • Mullowney, D. R., & Baker, K. D. (2023). Multi-indicator precautionary approach frameworks for crustacean fisheries. Canadian Journal of Fisheries and Aquatic Sciences, 80(7), 1207–1220.

    Article  Google Scholar 

  • Nong, D. (2019). Potential economic impacts of global wild catch fishery decline in Southeast Asia and South America. Economic Analysis and Policy, 62, 213–226. (Elsevier, Éd.)

  • ONU. (2002). Rapport du sommet mondial pour le développement durable. Johannesburg (Afrique du Sud)-Nations Unies, 26, 9.

  • Palomares, M. L., Froese, R., Derrick, B., Meeuwig, J. J., Nöel, S. L., Tsui, G., . . . Pauly, D. (2020). Fishery biomass trends of exploited fish populations in marine ecoregions, climatic zones and ocean basins. Estuarine, Coastal and Shelf Science, 243, 106896. (Elsevier, Éd.)

  • Pan, H., Failler, P., & Floros, C. (2007). A regional computable general equilibrium model for fisheries. (Citeseer, Éd.)

  • Pan, H., Failler, P., Du, Q., Floros, C., Malvarosa, L., Chassot, E., & Placenti, V. (2022). An inter-temporal computable general equilibrium model for fisheries. Sustainability, 14(11), 6444. (MDPI, Éd.)

  • Pauly, D., & Zeller, D. (2016). Catch reconstructions reveal that global marine fisheries catches are higher than reported and declining. Nature Communications, 7(1), 10244. Nature Publishing Groupe UK London.

  • Pella, J. J., & Tomlinson, P. (1969). A generalized stock production model. Bulletin Inter-American Tropical, 13(3), 421–458. (L. Jolla-Californi, Éd.)

  • Qu, Y., Hooper, T., Austen, M. C., Papathanasopoulou, E., Huang, J., & Yan, X. (2023). Development of a computable general equilibrium model based on integrated macroeconomic framework for ocean multi-use between offshore wind farms and fishing activities in Scotland. Applied Energy, 332, 120529. (Elsevier, Éd.)

  • Ricker, W. E. (1958). Handbook of computations for biological statistics of fish populations. Bulletin Fisheries Research Board of Canada, 119, 300.

    Google Scholar 

  • Schaefer, M. B. (1954). Some aspects of the dynamics of populations important to the management of the commercial marine fisheries. Bulletin Inter-American Tropical, 1(2), 26–56. (L. Jolla-Californi, Éd.)

  • Schaefer, M. B. (1957). A study of the dynamics of the fishery for yellow fin tuna in the eastern tropical Pacific Ocean. Bulletin Inter-American Tropical, 2(6), 247–285. (L. Jolla-Californi, Éd.)

  • Seung, C., & Ianelli, J. (2016). Regional economic impacts of climate change: a computable general equilibrium analysis for an Alaska fishery. Natural Resource Modeling, 29(2), 289–333.

    Article  Google Scholar 

  • Seung, C. K., & Waters, E. C. (2010). Evaluating supply-side and demand-side shocks for fisheries: a computable general equilibrium (CGE) model for Alaska Economic Systems Research, 22(1), 87–109. (Taylor, & Francis, Éds)

  • Sumaila, U. R., Teh, L., Watson, R., Tyedmers, P., & Pauly, D. (2008). Fuel price increase, subsidies, overcapacity, and resource sustainability. ICES Journal of Marine Science, 65(6), 832–840.

    Article  Google Scholar 

  • Suo, A., Li, H., Zhou, W., Jiao, M., Zhang, L., & Yue, W. (2023). Estimation of ecological carrying capacity of small-scale fish in marine ranch of the Pearl River Estuary, China. Regional Studies in Marine Science, 61, 102901. (Elsevier, Éd.)

  • Susini, I., & Todd, V. L. (2021). Predictive capacity of ecopath with ecosim: model performance and ecological indicators’ response to imprecision. Environmental Modelling & Software, 143, 105098 (Elsevier, Éd.).

  • Thurlow, J. (2004). A dynamic computable general equilibrium (CGE) model for South Africa: Extending the static IFPRI model. Trade and Industrial Policy Strategies.

  • Thurlow, J. (2008). A Recursive dynamic CGE Model and Microsimulation Poverty Module for South Africa. International Food Policy Research Institute. (IFPRI, Éd.)

  • Wang, Y., Hu, J., Pan, H., & Failler, P. (2020). Ecosystem-based fisheries management in the pearl river delta: Applying a computable general equilibrium model. Marine Policy, 112, 103784. (Elsevier, Éd.)

  • Waters, E. C., & Seung, C. K. (2010). Impacts of recent shocks to Alaska fisheries: A computable general equilibrium (CGE) model analysis. Marine Resource Economics, 25(2), 155–183.

    Article  Google Scholar 

  • Yin, J., Xue, Y., Li, Y., Zhang, C., Xu, B., Liu, Y., . . . Chen, Y. (2023). Evaluating the efficacy of fisheries management strategies in China for achieving multiple objectives under climate change Ocean & Coastal Management, 245, 106870. (Elsevier, Éd.).

Download references

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

The author conceived and designed the study, developed the model, collected, and prepared the data, conducted the simulations, analyzed the results, and wrote the manuscript.

Corresponding author

Correspondence to Abdelkabir Kamili.

Ethics declarations

Competing interests

The author declares no conflict of interest.

Data availability statement

The data generated during this study are available upon request from the author, subject to reasonable request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1: Effects of changes in the model’s bioecological parameters

Appendix 1: Effects of changes in the model’s bioecological parameters

We have made modifications to the growth rate of sardines (\({r}_{sardine}\)) at various levels compared to the growth rates for reference state (\({r0}_{sardine}\)= 1.5). It is important to note that the maximum sustainable yield (MSY) parameter adjusts in different simulations as it depends on the growth rate. Figure 9 illustrates the MSY curve for the reference state and, for comparison purposes, the MSY curve for the simulation with \({r}_{sardine}=1.95\).

Assuming abiotic factors (e.g., water quality, phytoplankton and zooplankton abundance, temperature) affect bioecological parameters (such as \({r}_{sp}\)),Footnote 12 this scenario confirms the causal link between environmental degradation and resource depletion. Higher growth rates result in an augmentation of balanced catches. Conversely, to sustain biomass when growth rates are lower, balanced catches must be reduced.

Fig. 9
figure 9

Effects of changing the fish growth rate parameter (case of sardine \({r}_{sardine}\))

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamili, A. Integrated modeling for sustainable fisheries in Morocco: a dynamic computable general equilibrium approach. Environ Dev Sustain (2024). https://doi.org/10.1007/s10668-024-04864-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10668-024-04864-3

Keywords

Navigation