Skip to main content
Log in

Seasonal variation and spatial distribution of heavy metal (loid)s concentration in groundwater and surface water from hard-rock terrain, Ranchi, India

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

This study explores seasonal variation in heavy metal(loid)s [HMs] enrichment in water and its adverse effect on human health in urban and peri-urban areas of Ranchi, Jharkhand, India. Surface and groundwater samples for November 2021 (Post-monsoon) and May 2022 (Pre-monsoon) were analysed for EC, pH, TDS, and 12 HMs concentrations. U was detected for the first time in groundwater samples, indicating groundwater interaction with the granitic aquifer might be a dominant process for the release of U in the aquifer system. Further, calculated pollution indices revealed that groundwater samples from industrial and urban regions are at high pollution risk. Fe, Mn, Pb, and Zn show a significant positive correlation with the heavy metal pollution index (HPI) in both seasons, making these HMs the primary groundwater pollutants. One-way ANOVA analysis suggested that there was a significant seasonal difference in the mean concentrations of HMs, indicating monsoonal recharge a regulating factor. The spatial distribution map revealed a significant amount of contamination in urban centres and industrial areas, confirming the influence of anthropogenic activities and urbanisation on groundwater contamination. Health risk assessment revealed that children are more vulnerable to both non-carcinogenic and carcinogenic health hazards. This study provides a database for decision makers to choose area of concern and will help in the effective execution of sustainable water management strategies for urban centres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Analysed data which supports the findings of this study are available in the material of this article and also available as supplementary file.

References

  • Ahmad, S., Ahmad, I., & Umar, R. (2022). Spatio-temporal variation and health risk associated with trace element concentrations in groundwater of Mathura city using modified indexing approach. Arabian Journal of Geosciences, 15, 318. https://doi.org/10.1007/s12517-022-09434-3

    Article  Google Scholar 

  • Aithani, D., Jyethi, D. S., Siddiqui, Z., Yadav, A. K., & Khillare, P. S. (2020). Source apportionment, pollution assessment, and ecological and human health risk assessment due to trace metals contaminated groundwater along urban river floodplain. Groundwater for Sustainable Development. https://doi.org/10.1016/j.gsd.2020.100445

    Article  Google Scholar 

  • Akshitha, V., Balakrishna, K., Hegde, P., & Udayashankar, H. N. (2022). Evaluation of heavy metal contamination and human health risk using geo-statistical techniques in selected shallow hard rock aquifers of southwest India. Groundwater for Sustainable Development, 19, 100812. https://doi.org/10.1016/j.gsd.2022.100812

    Article  Google Scholar 

  • Arslan, H., & Turan, N. A. (2015). Estimation of spatial distribution of heavy metals in groundwater using interpolation methods and multivariate statistical techniques; its suitability for drinking and irrigation purposes in the middle black sea region of Turkey. Environmental Monitoring and Assessment. https://doi.org/10.1007/s10661-015-4725-x

    Article  PubMed  Google Scholar 

  • Ayedun, H., Gbadebo, A. M., Idowu, O. A., & Arowolo, T. A. (2015). Toxic elements in groundwater of Lagos and Ogun States, southwest, Nigeria and their human health risk assessment. Environmental Monitoring and Assessment, 187(6), 351. https://doi.org/10.1007/s10661-015-4319-7

    Article  CAS  PubMed  Google Scholar 

  • Babu, M. N. S., Somashekar, R. K., Kumar, S. A., Shivanna, K., Krishnamurthy, V., & Eappen, K. P. (2008). Concentration of uranium levels in groundwater. International Journal of Environmental Science and Technology, 5, 263–266. https://doi.org/10.1007/BF03326020

    Article  CAS  Google Scholar 

  • Backman, B., Bodiš, D., Lahermo, P., Rapant, S., & Tarvainen, T. (1998). Application of a groundwater contamination index in Finland and Slovakia. Environmental Geology, 36(1–2), 55–64. https://doi.org/10.1007/s002540050320

    Article  CAS  Google Scholar 

  • Baidya, T. K. (2015). Archean metallogeny and crustal evolution in the East Indian shield. Earth Sciences, 4, 1–14. https://doi.org/10.11648/j.earth.s.2015040401.1

    Article  Google Scholar 

  • Bhutiani, R., Kulkarni, D. B., Khanna, D. R., & Gautam, A. (2017). Geochemical distribution and environmental risk assessment of heavy metals in groundwater of an industrial area and its surroundings, Haridwar, India. Energy, Ecology and Environment, 2, 155–167. https://doi.org/10.1007/s40974-016-0019-6

    Article  Google Scholar 

  • BIS (Bureau of Indian Standards), (2012) Indian standard for drinking water—specification, second ed. Drinking Water Sectional Committee, FAD, New Delhi, India 25. IS 10500: 2012.

  • Bon, A. F., Ngo Ngoss, T. A. M., Ewodo Mboudou, G., Banakeng, L. A., Ndam Ngoupayou, J. R., & Ekodeck, G. E. (2021). Groundwater flow patterns, hydrogeochemistry and metals background levels of shallow hard rock aquifer in a humid tropical urban area in sub-Saharan Africa-A case study from Olézoa watershed (Yaoundé-Cameroon). Journal of Hydrology Reginal Studies. https://doi.org/10.1016/j.ejrh.2021.100904

    Article  Google Scholar 

  • Bondu, R., Cloutier, V., Rosa, E., & Benzaazoua, M. (2017). Mobility and speciation of geogenic arsenic in bedrock groundwater from the Canadian shield in western Quebec, Canada. Science of the Total Environment, 574, 509–519. https://doi.org/10.1016/j.scitotenv.2016.08.210

    Article  ADS  CAS  PubMed  Google Scholar 

  • Briffa, J., Sinagra, E., & Blundell, R. (2020). Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon, 6(9), e04691. https://doi.org/10.1016/j.heliyon.2020.e04691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brindha, K., & Elango, L. (2013). Occurrence of uranium in groundwater of a shallow granitic aquifer and its suitability for domestic use in southern India. Journal of Radioanalytical and Nuclear Chemistry, 295, 357–367. https://doi.org/10.1007/s10967-012-2090-6

    Article  CAS  Google Scholar 

  • Brindha, K., Jagadeshan, G., Kalpana, L., & Elango, L. (2016). Fluoride in weathered rock aquifers of southern India: Managed aquifer recharge for mitigation. Environmental Science and Pollution Research, 23, 8302–8316. https://doi.org/10.1007/s11356-016-6069-7

    Article  CAS  PubMed  Google Scholar 

  • Busico, G., Cuoco, E., Kazakis, N., Colombani, N., Mastrocicco, M., Tedesco, D., & Voudouris, K. (2018). Multivariate statistical analysis to characterize/discriminate between anthropogenic and geogenic trace element occurrence in campania plain. Southern Italy Environmental Pollution, 234, 260–269. https://doi.org/10.1016/j.envpol.2017.11.053

    Article  CAS  PubMed  Google Scholar 

  • Caboi, R., Cidu, R., Fanfani, L., Lattanzi, P., & Zuddas, P. (1999). Environmental mineralogy and geochemistry of the abandoned Pb-Zn Montevecchio-Ingurtosu mining district, Sardinia, Italy. Chronique de la rechérche miniére, 534, 21–28.

    Article  Google Scholar 

  • CGWB (Central Ground Water Board). (2011). Ground water scenario in major cities of India.

  • CGWB (Central Ground Water Board). (2020). Dynamic groundwater resource of Jharkhand, Central Groundwater Board.

  • Chakraborty, S., & Kumar, R. N. (2016). Assessment of groundwater quality at a MSW landfill site using standard and AHP based water quality index: A case study from Ranchi, Jharkhand, India. Environmental Monitoring and Assessment, 188, 1–18.

    Article  CAS  Google Scholar 

  • Chandrasekar, T., Keesari, T., Gopalakrishnan, G., Karuppannan, S., Senapathi, V., Sabarathinam, C., & Viswanathan, P. M. (2021). Occurrence of heavy metals in groundwater along the lithological interface of K/T boundary, peninsular India: A special focus on source, geochemical mobility and health risk. Archives of Environmental Contamination and Toxicology, 80(1), 183–207. https://doi.org/10.1007/s00244-020-00803-1

    Article  CAS  PubMed  Google Scholar 

  • Dippong, T., Hoaghia, M. A., & Senila, M. (2022). Appraisal of heavy metal pollution in alluvial aquifers. Study case on the protected area of Ronișoara forest. Romania Ecology Indicators, 143, 109347. https://doi.org/10.1016/j.ecolind.2022.109347

    Article  CAS  Google Scholar 

  • Dorleku, M. K., Nukpezah, D., & Carboo, D. (2018). Effects of small-scale gold mining on heavy metal levels in groundwater in the lower pra basin of Ghana. Applied Water Science, 8, 1–11. https://doi.org/10.1007/s13201-018-0773-z

    Article  CAS  Google Scholar 

  • Duan, X. C., Yu, H. H., Ye, T. R., Huang, Y., Li, J., & Yuan, G. L. (2020). Geostatistical mapping and quantitative source apportionment of potentially toxic elements in top- and sub-soils: A case of suburban area in Beijing China. Ecological Indicators, 112, 106085. https://doi.org/10.1016/j.ecolind.2020.106085

    Article  CAS  Google Scholar 

  • Franciscodo, L. F. V., Amaral Crispim, B., Sposito, J. C. V., Solorzano, J. C. J., Maran, N. H., Kummrow, F., Barufatti, A. (2019). Metals and emerging contaminants in groundwater and human health risk assessment. Environmental Science and Pollution Control Service, 26(24), 24581–24594. https://doi.org/10.1007/s11356-019-05662-5

    Article  CAS  Google Scholar 

  • Ghaderpoori, M., Kamarehie, B., Jafari, A., Ghaderpoury, A., & Karami, M. (2018). Heavy metals analysis and quality assessment in drinking water Khorramabad city Iran. Data in Brief, 16, 685–692. https://doi.org/10.1016/j.dib.2017.11.078

    Article  PubMed  Google Scholar 

  • DMG GJ, (2023) Geological map Ranchi district Jharkhand, (Government of Jharkhand Department of Mine and Geology). (https://geology.jharkhand.gov.in/dist_geological_map.html)

  • Guibaud, G., & Gauthier, C. (2003). Study of aluminium concentration and speciation of surface water in four catchments in the Limousin region (France). Journal of Inorganic Biochemistry, 97(1), 16–25.

    Article  CAS  PubMed  Google Scholar 

  • Gupta, S., & Gajbhiye, V. T. (2002). Effect of concentration, moisture and soil type on the dissipation of flufenacet from soil. Chemosphere, 47(9), 901–906. https://doi.org/10.1016/S0045-6535(02)00017-6

    Article  ADS  CAS  PubMed  Google Scholar 

  • IARC. (2011). IARC monographs on the evaluation of carcinogenic risks to humans [M]. IARC Press, Lyon.

    Google Scholar 

  • ICMR. (2009). Nutrient requirements and recommended dietary allowances for Indians (p. 334). A report of the expert group of the ICMR, Hyderabad.

    Google Scholar 

  • IMD (2022) Rainfall statistics of india, (2021) Report No. MoES/IMD/HS/Rainfall Report/02(2022)/60.

  • Instruments, R.S., (2008) Report on slope, aspect and altitude of Ranchi district, Jharkhand.

  • Jiang, C., Zhao, Q., Zheng, L., Li, C., Chen, X., & Ren, M. (2021). Distribution, source and health risk assessment based on the Monte Carlo method of heavy metals in shallow groundwater in an area affected by mining activities China. Ecotoxicology Environmental Safety, 224, 112679. https://doi.org/10.1016/j.ecoenv.2021.112679

    Article  CAS  PubMed  Google Scholar 

  • Kara, H., Demir Yetis, A., & Temel, H. (2021). Assessment of heavy metal contamination in groundwater of diyarbakir oil production area, (Turkey) using pollution indices and chemometric analysis. Environment and Earth Science, 80(20), 1–15.

    Article  Google Scholar 

  • Karthikeyan, S., Arumugam, S., Muthumanickam, J., Kulandaisamy, P., Subramanian, M., Annadurai, R., & Sekar, S. (2021). Causes of heavy metal contamination in groundwater of Tuticorin industrial block, Tamil Nadu India. Environmental Science and Pollution Research, 28, 18651–18666.

    Article  CAS  PubMed  Google Scholar 

  • Kasprzak, K. S., Sunderman, F. W., Jr., & Salnikow, K. (2003). Nickel carcinogenesis. Mutation Research/fundamental and Molecular Mechanisms of Mutagenesis, 533(1–2), 67–97. https://doi.org/10.1016/j.mrfmmm.2003.08.021

    Article  CAS  PubMed  Google Scholar 

  • Keen, C. L., Ensunsa, J. L., & Clegg, M. S. (2000). Manganese metabolism in animals and humans including the toxicity of manganese. In A. Sigel & H. Sigel (Eds.), Manganese and its Role in Biological Processes (pp. 89–121). Marcel Dekker.

    Google Scholar 

  • Khan, I., Choudhary, B. C., Izhar, S., Kumar, D., Satyanarayanan, M., Rajput, V. D., & Khan, S. (2023). Exploring geochemical distribution of potentially toxic elements (PTEs) in wetland and agricultural soils and associated health risks. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-023-25141-2

    Article  PubMed  Google Scholar 

  • Khan, I., Khan, M. U., Umar, R., & Rai, N. (2023). Occurrence, speciation, and controls on arsenic mobilization in the alluvial aquifer system of the Ghaghara basin. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-023-01691-9

    Article  PubMed  Google Scholar 

  • Khan, I., Umar, R., & Izhar, S. (2022). Hydrogeochemical and health risk assessment in and around a ramsar-designated wetland, the Ganges river basin, India: Implications for natural and human interactions. Environmen Monit Assess, 194(7), 483. https://doi.org/10.1007/s10661-022-10154-0

    Article  CAS  Google Scholar 

  • Khan, Y. K., Toqeer, M., & Shah, M. H. (2023). Characterization, source apportionment and health risk assessment of trace metals in groundwater of metropolitan area in Lahore. Pakistan Expo Healthcare. https://doi.org/10.1007/s12403-022-00531-y

    Article  Google Scholar 

  • Klepper, M. R., & Wyant, D. G. (1957). Notes on the Geology of Uranium. Government Printing Office.

    Google Scholar 

  • Kumar, A., & Pandey, A. C. (2016). Geoinformatics based groundwater potential assessment in hard rock terrain of Ranchi urban environment, Jharkhand state (India) using MCDM–AHP techniques. Groundwater for Sustainable Development. https://doi.org/10.1016/j.gsd.2016.05.001

    Article  Google Scholar 

  • Lee, C. S., Li, X. D., Zhang, G., Li, J., Ding, A. J., & Wang, T. (2007). Heavy metals and Pb isotopic composition of aerosols in urban and suburban areas of Hong Kong and Guangzhou, South China—evidence of the long-range transport of air contaminants. Atmospheric Environment, 41(2), 432–447. https://doi.org/10.1016/j.atmosenv.2006.07.035

    Article  ADS  CAS  Google Scholar 

  • Li, Y., Li, P., Cui, X., & He, S. (2021). Groundwater quality, health risk and major influencing factors in the lower Beiluo River watershed of northwest China. Human and Ecological Risk Assessment. https://doi.org/10.1080/10807039.2021.1940834

    Article  Google Scholar 

  • Luzati, S., Beqiraj, A., Beqiraj Goga, E., & Jaupaj, O. (2016). Iron and manganese in groundwater of rrogozhina aquifer. Journal of Environmental Science and Engineering B. https://doi.org/10.17265/2162-5263/2016.06.002

    Article  Google Scholar 

  • Magesh, N. S., Chandrasekar, N., & Elango, L. (2017). Trace element concentrations in the groundwater of the Tamiraparani river basin, South India: Insights from human health risk and multivariate statistical techniques. Chemosphere, 185, 468–479. https://doi.org/10.1016/j.chemosphere.2017.07.044

    Article  ADS  CAS  PubMed  Google Scholar 

  • Mahapatra, S. R., Venugopal, T., Shanmugasundaram, A., Giridharan, L., & Jayaprakash, M. (2020). Heavy metal index and geographical information system (GIS) approach to study heavy metal contamination: A case study of north Chennai groundwater. Applied Water Science, 10, 1–17.

    Article  Google Scholar 

  • Manne, R., Kumaradoss, M. M. R. M., Iska, R. S. R., Devarajan, A., & Mekala, N. (2022). Water quality and risk assessment of copper content in drinking water stored in copper container. Applied Water Science. https://doi.org/10.1007/s13201-021-01542-x

    Article  Google Scholar 

  • Mayer, J. E., & Goldman, R. H. (2016). Arsenic and skin cancer in the USA: The current evidence regarding arsenic-contaminated drinking water. International Journal of Dermatology, 55(11), 585–591. https://doi.org/10.1111/ijd.13318

    Article  CAS  Google Scholar 

  • Meng, L., Zuo, R., Wang, J. S., Yang, J., Teng, Y. G., Shi, R. T., & Zhai, Y. Z. (2018). Apportionment and evolution of pollution sources in a typical riverside groundwater resource area using PCA-APCS-MLR model. Journal of Contaminant Hydrology, 218, 70–83. https://doi.org/10.1016/j.jconhyd.2018.10.005

    Article  ADS  CAS  PubMed  Google Scholar 

  • Mishra, A., & Lal, B. (2023). Assessment of groundwater quality in Ranchi district, Jharkhand, India, using water evaluation indices and multivariate statistics. Environmental Monitoring and Assessment, 195(4), 472.

    Article  CAS  PubMed  Google Scholar 

  • Mohan, S. V., Nithila, P., & Reddy, S. J. (1996). Estimation of heavy metals in drinking water and development of heavy metal pollution index. Journal of Environmental Science Health Part A, 31(2), 283–289. https://doi.org/10.1080/10934529609376357

    Article  Google Scholar 

  • Mthembu, P. P., Elumalai, V., Li, P., Uthandi, S., Rajmohan, N., & Chidambaram, S. (2022). Integration of heavy metal pollution indices and health risk assessment of groundwater in semi-arid coastal aquifers, South Africa. Exposure and Health, 14, 487–502. https://doi.org/10.1007/s12403-022-00478-0

    Article  CAS  Google Scholar 

  • Nisa, F. U., & Umar, R. (2023). Evaluation of physicochemical and microbiological parameters, and their correlation in Himalayan Spring Water Systems: A case study of district Kulgam of Kashmir valley, India Western Himalaya. Environmental Monitoring and Assessment, 195(4), 1–19. https://doi.org/10.1007/s10661-023-11025-y

    Article  CAS  Google Scholar 

  • Nizam, S., Dutta, S., & Sen, I. S. (2022). Geogenic controls on the high levels of uranium in alluvial aquifers of the Ganga Basin. Applied Geochemistry, 143, 105374. https://doi.org/10.1016/j.apgeochem.2022.105374

    Article  CAS  Google Scholar 

  • Qiao, J., Zhu, Y., Jia, X., Niu, X., & Liu, J. (2020). Distributions of arsenic and other heavy metals, and health risk assessments for groundwater in the Guanzhong plain region of China. Environmental Research, 181, 108957. https://doi.org/10.1016/j.envres.2019.108957

    Article  ADS  CAS  PubMed  Google Scholar 

  • Ramesh, K., & Elango, L. (2012). Groundwater quality and its suitability for domestic and agricultural use in Tondiar river basin, Tamil Nadu India. Environmental Monitoring and Assessment, 184, 3887–3899. https://doi.org/10.1007/s10661-011-2231-3

    Article  CAS  PubMed  Google Scholar 

  • Ramesh, R. P., Subramanian, M., Lakshmanan, E., Subramaniyan, A., & Ganesan, G. (2021). Human health risk assessment using Monte Carlo simulations for groundwater with uranium in southern India. Ecotoxicology and Environmental Safety, 226, 112781. https://doi.org/10.1016/j.ecoenv.2021.112781

    Article  CAS  PubMed  Google Scholar 

  • Rezaei, A., Hassani, H., Hassani, S., Jabbari, N., Fard Mousavi, S. B., & Rezaei, S. (2019). Evaluation of groundwater quality and heavy metal pollution indices in Bazman basin, southeastern Iran. Sustainable Development for Groundwater. https://doi.org/10.1016/j.gsd.2019.100245

    Article  Google Scholar 

  • Rostern, N. T. (2017). The effects of some metals in acidified waters on aquatic organisms. Fish Ocean Opj, 4(4), 555645. https://doi.org/10.19080/OFOAJ.2017.04.555645

    Article  Google Scholar 

  • Saha, D., Dwivedi, S. N., Roy, G. K., & Reddy, D. V. (2013). Isotope-based investigation on the groundwater flow and recharge mechanism in a hard-rock aquifer system: The case of Ranchi urban area. India Hydrogeology Journal, 21, 1101–1115. https://doi.org/10.1007/s10040-013-0974-3

    Article  ADS  Google Scholar 

  • Saleh, H. N., Panahande, M., Yousefi, M., Asghari, F. B., Conti, G. O., Talaee, E., & Mohammadi, A. A. (2019). Carcinogenic and non-carcinogenic risk assessment of heavy metals in groundwater wells in Neyshabur plain Iran. Biological Trace Element Research, 190(1), 251–261. https://doi.org/10.1007/s12011-018-1516-6

    Article  CAS  PubMed  Google Scholar 

  • Senze, M., Kowalska-Góralska, M., & Czyż, K. (2021). Availability of aluminum in river water supplying dam reservoirs in lower Silesia considering the hydrochemical conditions. Environmental Nanotechnology, Monitoring & Management, 16, 100535.

    Article  CAS  Google Scholar 

  • Sharma, G. K., Jena, R. K., Ray, P., Yadav, K. K., Moharana, P. C., Cabral-Pinto, M. M., & Bordoloi, G. (2021). Evaluating the geochemistry of groundwater contamination with iron and manganese and probabilistic human health risk assessment in endemic areas of the world’s largest River Island India. Environmental Toxicology and Pharmacology, 87, 103690. https://doi.org/10.1016/j.etap.2021.103690

    Article  CAS  PubMed  Google Scholar 

  • Sharma, K., Raju, N. J., Singh, N., & Sreekesh, S. (2022). Heavy metal pollution in groundwater of urban Delhi environs: Pollution indices and health risk assessment. Urban Climate, 45, 101233. https://doi.org/10.1016/j.uclim.2022.101233

    Article  Google Scholar 

  • Sheng, D., Meng, X., Wen, X., Wu, J., Yu, H., & Wu, M. (2022). Contamination characteristics, source identification, and source-specific health risks of heavy metal (loid) s in groundwater of an arid oasis region in Northwest China. Science of the Total Environment, 841, 156733. https://doi.org/10.1016/j.scitotenv.2022.156733

    Article  ADS  CAS  PubMed  Google Scholar 

  • Singh, M. J., Somashekar, R. K., Prakash, K. L., & Shivanna, K. (2010). Investigation of heavy metals in crystalline aquifer groundwater from different valleys of Bangalore, Karnataka. Journal of Geography and Regional Planning, 3(10), 262.

    Google Scholar 

  • Singha, S., Pasupuleti, S., Singha, S. S., & Kumar, S. (2020). Effectiveness of groundwater heavy metal pollution indices studies by deep-learning. Journal of Contaminant Hydrology, 235, 103718. https://doi.org/10.1016/j.jconhyd.2020.103718

    Article  CAS  PubMed  Google Scholar 

  • Sridhar, S. G. D., Sakthivel, A. M., Sangunathan, U., Balasubramanian, M., Jenefer, S., Mohamed Rafik, M., & Kanagaraj, G. (2017). Heavy metal concentration in groundwater from besant nagar to sathankuppam, south Chennai, Tamil nadu, India. Applied Water Science, 7, 4651–4662.

    Article  ADS  CAS  Google Scholar 

  • Su, H., Kang, W., Xu, Y., & Wang, J. (2017). Evaluation of groundwater quality and health risks from contamination in the north edge of the loess plateau, Yulin City northwest China. Environmental Earth Science, 76(13), 467. https://doi.org/10.1007/s12665-017-6781-8

    Article  ADS  CAS  Google Scholar 

  • Sunkari, E. D., & Abu, M. (2019). Hydrochemistry with special reference to fluoride contamination in groundwater of the Bongo district, upper east region Ghana. Sustainable Water Resources Management, 5, 1803–1814. https://doi.org/10.1007/s40899-019-00335-0

    Article  Google Scholar 

  • The Telegraph. (2005). Impure water threat to Ranchi - contamination hits state capital. https://www.telegraphindia.com/jharkhand/impure-water-threat-to-ranchi-contamination-hits-state-capital/cid/663385. Accessed on 21/10/23

  • Thomas, E. Y., Omueti, J. A. I., & Ogundayomi, O. (2012). The effect of phosphate fertilizer on heavy metal in soils and Amaranthus caudatus. Agriculture and Biology Journal of North America, 3(4), 145–149. https://doi.org/10.5251/abjna.2012.3.4.145.149

    Article  CAS  Google Scholar 

  • Tirkey, P., Bhattacharya, T., Chakraborty, S., & Baraik, S. (2017). Assessment of groundwater quality and associated health risks: A case study of Ranchi city, Jharkhand, India. Groundwater for Sustainable Development, 5, 85–100. https://doi.org/10.1016/j.gsd.2017.05.002

    Article  Google Scholar 

  • TOI., Times Of India (2015). Contamination a bigger challenge for govt. https://timesofindia.indiatimes.com/city/ranchi/contamination-a-bigger-challenge-for-govt/articleshow/46651133.cms Assessed 26 Oct 2023

  • TOI., Times Of India (2016). Ranchiites consuming highly toxic water, says new study. https://timesofindia.indiatimes.com/city/ranchi/ranchiites-consuming-highly-toxic-water-says-new-study/articleshow/54455854.cms. Assessed 26 Oct 2023

  • USEPA (U.S. Environmental Protection Agency), 1999USEPA (U.S. Environmental Protection Agency), (1999) A risk assessment–multi way exposure spread sheet calculation tool United States Environmental Protection Agency

  • USEPA (U.S. Environmental Protection Agency) (1989). Risk assessment guidance for superfund, US environmental protection agency, office of emergency and remedial response, Washington, DC Human Health Evaluation Manual (Part A) vol. I (EPA 540/1–89/002).

  • USEPA (U.S. Environmental Protection Agency) (2002). Supplemental guidance for developing soil screening levels for Superfund sites. Appendix D-Dispersion Factors Calculations., United States Environmental Protection Agency, Washington, DC, USA, OSWER93552002, pp 4–24.

  • USEPA (U.S. Environmental Protection Agency) (2004). Risk assessment guidance for superfund, U.S. environmental protection agency, vol I: Human Health Evaluation Manual (Part E).

  • USEPA (U.S. Environmental Protection Agency) (2010). Human Health Risk Assessment: Risk-Based Concentration Table. http://www.epa.gov/reg3hwmd/risk/human/rb-concentration_table/Generic_Tables/ (Accessed 08 July 2020).

  • USEPA (US Environmental Protection Agency) (2015) EPA’s Integrated Risk Information System (IRIS) Program Progress Report and Report to Congress U.S. Environmental Protection Agency: Office of Research and Development.

  • Varol, M., & Tokatlı, C. (2022). Seasonal variations of toxic metal(loid)s in groundwater collected from an intensive agricultural area in north western Turkey and associated health risk assessment. Environmental Research. https://doi.org/10.1016/j.envres.2021.111922

    Article  PubMed  Google Scholar 

  • Vinnarasi, F., Srinivasamoorthy, K., Saravanan, K., Rajesh Kanna, A., Gopinath, S., Prakash, R., Ponnumani, G., & Babu, C. (2022). Hydrogeochemical characteristics and risk evaluation of potential toxic elements in groundwater from Shanmughanadhi, Tamilnadu India. Environmental Research, 204, 112199. https://doi.org/10.1016/j.envres.2021.112199

    Article  ADS  CAS  PubMed  Google Scholar 

  • Wagh, V. M., Panaskar, D. B., Mukate, S. V., Gaikwad, S. K., Muley, A. A., & Varade, A. M. (2018). Health risk assessment of heavy metal contamination in groundwater of Kadava river basin, Nashik India. Modeling Earth Systems and Environment, 4, 969–980. https://doi.org/10.1007/s40808-018-0496-z

    Article  Google Scholar 

  • Wang, F. F., Guan, Q. Y., Tin, J., Lin, J. K., Yang, Y. Y., Yang, L. Q., & Pan, N. H. (2020). Contamination characteristics, source apportionment, and health risk assessment of heavy metals in agricultural soil in the Hexi Corridor. Catena, 191, 104573. https://doi.org/10.1016/j.catena.2020.104573

    Article  CAS  Google Scholar 

  • WHO (World Health Organisation) (2011). Environmental health criteria 216: disinfectants and disinfectant by-products. Geneva, Switzerland. Guidelines for drinking water quality, World Health Organization, 4th edn. ISBN 978 92 4 1548151.

  • WHO (World Health Organisation), World health statistics (2013). ISBN 978 92 4 156458 8.

  • WHO (World Health Organization) (2021). Nickel in drinking water: background document for development of WHO Guidelines for drinking-water quality (No. WHO/HEP/ECH/WSH/2021.6). World Health Organization.

  • WHO (World Health Organisation) (2022a). Lead in drinking-water: health risks, monitoring and corrective actions. Technical brief.

  • WHO (World Health Organisation) (2022b). Guidelines for drinking-water quality. Fourth edition incorporating the first and second addenda.

  • Wu, Y., Wang, Y., & Xie, X. (2014). Occurrence, behavior and distribution of high levels of uranium in shallow groundwater at Datong basin, northern China. Science of the Total Environment, 472, 809–817. https://doi.org/10.1016/j.scitotenv.2013.11.109

    Article  ADS  CAS  PubMed  Google Scholar 

  • Zakir, H. M., Sharmin, S., Akter, A., & Rahman, M. S. (2020). Assessment of health risk of heavy metals and water quality indices for irrigation and drinking suitability of waters: A case study of Jamalpur Sadar area. Bangladesh Environmental Advances, 2, 100005. https://doi.org/10.1016/j.envadv.2020.100005

    Article  Google Scholar 

  • Zamora, M. L. L., Zielinski, J. M., Moodie, G. B., Falcomer, R. A., Hunt, W. C., & Capello, K. (2009). Uranium in drinking water: Renal effects of long-term ingestion by an aboriginal community. Archives of Environmental Occupational Health, 64(4), 228–241. https://doi.org/10.1080/19338240903241267

    Article  PubMed  Google Scholar 

  • Zhang, Z., Xiao, C., Adeyeye, O., Yang, W., & Liang, X. (2020). Source and mobilization mechanism of iron, manganese and arsenic in groundwater of Shuangliao City northeast China. Water, 12(2), 534.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the editors and reviewers for their valuable suggestions that have improved the manuscript substantially. A.H. acknowledges the fellowship and support received through Maulana Azad National Fellowship for Minority Students (No. F. 82-27/2019 (SA-III): UGC-Ref. No.: 2591/(CSIR-UGC NET JUNE 2019), [University Grants Commission (UGC), Department of Higher Education, Ministry of Education, Government of India] at the Department of Geology, AMU, Aligarh.

Funding

The first author acknowledges the financial support from the University Grants Commission (UGC), Department of Higher Education, Ministry of Education, Government of India in the form of Maulana Azad National Fellowship for Minority Students (No. F. 82–27/2019 (SA-III): UGC-Ref. No.: 2591/ (CSIR-UGC NET JUNE 2019).

Author information

Authors and Affiliations

Authors

Contributions

AH: Fieldwork, analysis, Software; Writing- Original draft preparation; RU: Conceptualization, Supervision, Reviewing, and Editing; IK: Conceptualization, writing original draft preparation, Reviewing and Editing. All authors reviewed the manuscript.

Corresponding author

Correspondence to Rashid Umar.

Ethics declarations

Conflict of interest

Authors declare no competing interests.

Ethical approval

Not applicable.

Consent to participate

All authors duly participated.

Consent for publication

All authors hereby consent to publish this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 56 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haidery, A., Umar, R. & Khan, I. Seasonal variation and spatial distribution of heavy metal (loid)s concentration in groundwater and surface water from hard-rock terrain, Ranchi, India. Environ Dev Sustain (2024). https://doi.org/10.1007/s10668-024-04658-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10668-024-04658-7

Keywords

Navigation