Skip to main content
Log in

Soil properties and carbon dynamics under coffee-based agroforestry system in Bastar region of Chhattisgarh, India

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

Quantifying soil attributes in agroforestry reflects its productivity and carbon dynamics which indicates a healthier ecosystem functioning toward achieving sustainable production of coffee in the Southern region of Chhattisgarh. The present study was carried out in the coffee-based agroforestry system (AFs) of the Darbha Block, Bastar region in Chhattisgarh. The objective of this paper was to analyze soil properties and carbon dynamics of soil under five varietal treatments of coffee-based AFs. Silver oak cultivation was added to the AFs as it protects coffee and helps in sustainable coffee production. The soil was collected randomly using the auger from two different depths viz., 0–15 and 15–30 cm under coffee-based AFs. The value of N, P, K, S, B, Zn, C, Fe, Mn, OC%, and SOC stock were higher in San Ramon (T3) based AFs. The values of bulk density (BD), pH, and EC were recorded as highest under control treatment (To), respectively. Soil organic carbon (SOC) stock ranged between 10.21 (T0)–13.86 (T3) and 0.34 (T0)–0.59 (T3) t ha−1 for surface and sub-soil, respectively. Data analysis revealed the isolation of six PCA (principle component analysis) from the various soil attributes. The first component reflected maximum variability for both layers. Further, correlation studies revealed a strong association between the soil attributes. Therefore, the present work highlights the importance of agroforestry systems towards improving soil quality along with sustainable production of coffee.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and material

The original contributions are included in MS, further inquiries can be directed to the corresponding author.

References

  • Agoumé, V., & Birang, A. P. (2009). Impact of land-use systems on some physical and chemical soil properties of an oxisol in the humid forest zone of Southern Cameroon. Tropicultura, 27, 15–20.

    Google Scholar 

  • Banerjee, A., Jhariya, M. K., Bargali, S. S., & Palit, D. (2023). Ecorestoration for sustainability. USA: Wiley. https://doi.org/10.1002/9781119879954

    Book  Google Scholar 

  • Bedison, J. E., & Johnson, A. H. (2009). Controls on the spatial pattern of carbon and nitrogen in Adirondack forest soil along a gradient of nitrogen deposition. Soil Science Society of America Journal, 73(6), 2105–2117. https://doi.org/10.2136/sssaj2008.0336

    Article  CAS  Google Scholar 

  • Beer, J., Muschler, R., Kass, D., & Somarriba, E. (1998). Shade management in coffee and cacao plantations. Agroforestry Systems, 38(1–3), 139–164. https://doi.org/10.1023/A:1005956528316

    Article  Google Scholar 

  • Bhardwaj, S. D., Panwar, P., & Gautam, S. (2001). Biomass production potential and nutrient dynamics of Populus deltoides under high density plantations. Indian Forester, 127(2), 144–153.

    Google Scholar 

  • Blake, G. R., & Hartge, K. H. (1986). Methods of soil analysis. Madison: American Society of Agronomy Publisher. https://doi.org/10.2136/sssabookser5.1.2ed.c13

    Book  Google Scholar 

  • Bote, A. D., & Struik, P. C. (2011). Effects of shade on growth, production and quality of coffee (Coffea arabica) in Ethiopia. Journal of Horticulture and Forestry, 3(11), 336–341. https://doi.org/10.5897/JHF.9000045

    Article  Google Scholar 

  • Bower, C. A., & Wilcox, L. V. (1965). Methods of soil analysis. Madison: American Society of Agronomy Inc Publisher. https://doi.org/10.2134/agronmonogr9.2.c11

    Book  Google Scholar 

  • Campanha, M. M., Santos, R. H., Freitas, G. B., Martinez, H. E., Jaramillo-Botero, C., & Garcia, S. L. (2007). Analise comparativa das ´ caracter´ısticas da serrapilheira e do solo emcafezais (Cofea arabica L.) cultivadosemsistemaagroforestal e emmonocultura, na Zona da Mata MG. Revista Arvore, 31(5), 805–812. https://doi.org/10.1590/S0100-67622007000500004

    Article  CAS  Google Scholar 

  • Carrillo, Y., Bell, C., Koyama, A., Canarini, A., Boot, C. M., Wallenstein, M., & Pendall, E. (2017). Plant traits, stoichiometry and microbes as drivers of decomposition in the rhizosphere in a temperate grassland. Journal of Ecology, 105, 1750–1765. https://doi.org/10.1111/1365-2745.12772

    Article  CAS  Google Scholar 

  • Cetin, M. (2013). Landscape engineering, protecting soil, and runoff storm water. In: Advances in landscape architecture. Intech Open, Pp. 697–722. https://doi.org/10.5772/55812.

  • Chaplot, V., Podwojewski, P., Phachomphon, K., & Valentin, C. (2009). Soil erosion impact on soil organic carbon spatial variability on steep tropical slopes. Soil Sci Society America Journal, 73(3), 769–779. https://doi.org/10.2136/sssaj2008.0031

    Article  CAS  Google Scholar 

  • Chaudhry, A. K., Khan, G. S., & Ahmad, I. (2007). Effect of poplar tree intercropping at various densities on the post-harvest soil nutrient contents. Pakistani Journal of Agricultural Science, 44(2), 468–472.

    Google Scholar 

  • Chenu, C., Angers, D. A., Barré, P., Derrien, D., Arrouays, D., & Balesdent, J. (2019). Increasing organic stocks in agricultural soils: Knowledge gaps and potential innovations. Soil and Tillage Research, 188, 41–52. https://doi.org/10.1016/j.still.2018.04.011

    Article  Google Scholar 

  • Chibsa, T., & Asefa, T. A. (2009). Assessment of soil organic matter under four land use systems in the major soils of Bale Highlands, South East Ethiopia b. factors affecting soil organic matter distribution. World Applied Science Journal, 6, 1506–1512.

    CAS  Google Scholar 

  • Cicek, N., Tuccar, M., Yucedag, C., & Cetin, M. (2023). Exploring different organic manures in the production of quality basil seedlings. Environmental Science and Pollution Research, 30, 4104–4110. https://doi.org/10.1007/s11356-022-22463-5

    Article  Google Scholar 

  • Garcia, L. B. M., Korthals, G. W., Brussard, L., Mainardi, G., & De Deyn, G. B. (2021). Litter quality drives nitrogen release, and agricultural management (organic vs. conventional) drives carbon loss during litter decomposition in agro-ecosystems. Soil Biology Biochemistry, 153, 108115. https://doi.org/10.1016/j.soilbio.2020.108115

    Article  CAS  Google Scholar 

  • Ghimire, T. B. (2010). Effect of fertility levels on mustard (Brassica juncea L.) productivity under varying poplar tree densities. Ph.D. Thesis. G.B. Pant University of Agriculture and Technology, Pantnagar 263 145, Uttarakhand, p. 306.

  • Guimarães, G. P., Mendonça, E. D. S., Passos, R. R., & Andrade, F. V. (2014). Soil aggregation and organic carbon of oxisols under coffee in agroforestry systems. Revista Brasileira De Ciência Do Solo, 38, 278–287. https://doi.org/10.1590/S0100-06832014000100028

    Article  Google Scholar 

  • Gupta, M. K., & Sharma, S. D. (2008). Effect of tree plantation on soil properties, profile morphology and productivity index in Uttarakhand. Annals of Forestry, 16(2), 209–224.

    Google Scholar 

  • Jackson, M. L. (1958). Soil chemical analysis. New Jersey: Prentice-Hall. https://doi.org/10.1002/jpln.19590850311

    Book  Google Scholar 

  • Jácome, M. G. O., Mantovani, J. R., da Silva, A. B., Rezende, T. T., & Landgraf, P. R. C. (2020). Soil attributes and coffee yield in an agroforestry system. Coffee Science, 15, e151676–e151676. https://doi.org/10.25186/.v15i.1676

    Article  Google Scholar 

  • Jhariya, M. K., & Singh, L. (2021a). Herbaceous diversity and biomass under different fire regimes in a seasonally dry forest ecosystem. Environment Development Sustainability, 23(5), 6800–6818. https://doi.org/10.1007/s10668-020-00892-x

    Article  Google Scholar 

  • Jhariya, M. K., & Singh, L. (2021b). Effect of fire severity on soil properties in a seasonally dry forest ecosystem of Central India. International Journal of Environmental Science and Technology, 18(12), 3967–3978. https://doi.org/10.1007/s13762-020-03062-8

    Article  CAS  Google Scholar 

  • Khan, N., Jhariya, M. K., Raj, A., Banerjee, A., & Meena, R. S. (2021). Eco-designing for sustainability. Ecological intensification of natural resources for sustainable agriculture (pp. 565–595). Singapore: Springer. https://doi.org/10.1007/978-981-33-4203-3_16

    Chapter  Google Scholar 

  • Kumar, K., Laik, R., Das, D. K., & Chaturvedi, O. P. (2008). Soil microbial biomass and respiration in afforested calciorthent. Indian Journal of Agroforestry, 10(2), 75–83.

    Google Scholar 

  • Kusumawati, I. A., Mardiani, M. O., Purnamasari, E., Batoro, J., van Noordwijk, M., & Hairiah, K. (2022). Agrobiodiversity and plant use categories in coffee-based agroforestry in East Java Indonesia. Biodiversitas, 23(10), 5412–5422. https://doi.org/10.13057/biodiv/d231051

    Article  Google Scholar 

  • Malik, K. P. S., Prakash, O., Kohli, R. K., & Arya, K. S. (1996). Change in some physical and chemical properties of soil in an agrisilvicultural system with some multipurpose tree spp. in Tarai region of Uttar Pradesh. In: Proceeding of IUFRO-DNAES international meeting: Resource inventory techniques to support agroforestry and environment (Eds), pp. 249–254.

  • Meena, R. S., Kumar, S., Datta, R., Lal, R., Vijaykumar, V., Brtnicky, M., Sharma, M. P., Yadav, G. S., Jhariya, M. K., Jangir, C. K., Pathan, S. I., Dokulilova, T., Pecina, V., & Marfo, T. D. (2020). Impact of agrochemicals on soil microbiota and management: A review. Land, 9(2), 34. https://doi.org/10.3390/land9020034

    Article  Google Scholar 

  • Meena, R. S., Yadav, A., Kumar, S., Jhariya, M. K., & Jatav, S. S. (2022). Agriculture ecosystem models for CO2 sequestration, improving soil physicochemical properties, and restoring degraded land. Ecological Engineering, 176, 106546. https://doi.org/10.1016/j.ecoleng.2022.106546

    Article  Google Scholar 

  • Misra, R. (1968). Ecology work book. Oxford and IBH Publ. Co.

    Google Scholar 

  • Munishamappa, M., Austin, D. K., & Muddumadappa, N. (2012). Carbon sequestration in litter and soil of coffee based agroforestry systems central western Ghats Kodagu district of Karnataka. Environment and Ecology, 30(3B), 985–987.

    CAS  Google Scholar 

  • Nayak, A. K., Khan, U., Sharma, D. K., Mishra, V. K., Sharma, C. J., Singh, R., & Singh, G. (2009). Spatial variability of soil physicchemical properties under Prosopis juliflora and Terminalia arjuna in sodic soil of Indo–gangetic plains. Journal of Indian Society Soil Science, 57(1), 31–38.

    Google Scholar 

  • Newaj, R., Dar, S. A., Bhagwan, M. K., & Yadav, R. S. (2007). Effect of management practices on growth of white siris (Albiziaprocera), grain yield of intercrops, weed population and soil fertility changes in agri-silvicultural system in semiarid India. Indian Journal of Agricultural Science, 77(7), 403–407.

    Google Scholar 

  • Panchal, N. S., & Pandey, A. N. (2002). Desertification in the western region of Gujarat state in India. In: Proceedings of international soil conservation organization, 2002.

  • Pekkan, O. I., Senyel Kurkcuoglu, M. A., Cabuk, S. N., Aksoy, T., Yilmazel, B., Kucukpehlivan, T., Dabanli, A., Cabuk, A., & Cetin, M. (2021). Assessing the effects of wind farms on soil organic carbon. Environmental Science and Pollution Research, 28, 18216–18233. https://doi.org/10.1007/s11356-020-11777-x

    Article  Google Scholar 

  • Pinto Neto, J. N., Alvarenga, M. I. N., Corrêa, M. D. P., & Oliveira, C. C. D. (2014). Effect of environmental variables on coffee production in an agroforestry system. Coffee Science, 9(2), 187–195.

    Google Scholar 

  • Prasadini, P., & Sreemannnarayana, B. (2007). Impact of agroforestry systems on nutritional status and biological activity on rain fed and sandy loam soils. Indian Forester, 133(11), 1519–1525.

    CAS  Google Scholar 

  • Raj, A., Jhariya, M. K., Banerjee, A., Meena, R. S., Nema, S., Khan, N., Yadav, S. K., & Pradhan, G. (2022). Agroforestry for ecological sustainability. Natural resources conservation and advances for sustainability (pp. 289–307). London: Elsevier. https://doi.org/10.1016/B978-0-12-822976-7.00002-8

    Chapter  Google Scholar 

  • Raj, A., Jhariya, M. K., Banerjee, A., Nema, S., & Bargali, K. (2023). Land and environmental management through forestry. USA: Wiley.

    Book  Google Scholar 

  • Roy, O., Meena, R. S., Kumar, S., Jhariya, M. K., & Pradhan, G. (2022). Assessment of land use systems for CO2 sequestration, carbon credit potential and income security in Vindhyan region India. Land Degradation and Development, 33(4), 670–682. https://doi.org/10.1002/ldr.4181

    Article  Google Scholar 

  • Shahariar, M. S., Rukhsana, B., & Alam, M. D. U. (2013). Physiochemical properties of soil under two different land use management in tropical moist deciduous sal (Shorea robusta) Forests in Bangladesh. European Journal of Agricultural Sciences, 10, 77–89.

    Google Scholar 

  • Silva, F. C. D. S. (2009). Manual de análisesquímicas de solos, plantas e fertilizantes (Vol. 627). Brasília: EmbrapaInformaçãoTecnológica; Rio de Janeiro: Embrapa Solos.

  • Singh, I., Rawat, P., Kumar, A., & Bhatt, P. (2018). Soil physico-bio-chemical properties under different agroforestry systems in Terai region of the Garhwal Hiamalayas. Journal of Pharmacognosy and Phytochemistry, 7(5), 2813–2821.

    Google Scholar 

  • Singh, K. P., Singh, B., Patil, S. K., Rahangdale, C. P., Banerjee, A., Shukla, R., Sahu, K., & Jhariya, M. K. (2023). Biomass, carbon stock, CO2 mitigation and carbon credits of coffee-based multitier cropping model in central India. Environmental Monitoring and Assessment, 195, 1–13. https://doi.org/10.1007/s10661-023-11892-5

    Article  CAS  Google Scholar 

  • Singh, K. P., Singh, B., Rahangdale, C. P., & Thakur, D. S. (2021). Coffee cultivation in agro forestry system in the non-traditional Bastar zone of Chhattisgarh. Agricultural Mechanization in Asia, 52(2), 1–8.

    CAS  Google Scholar 

  • Souza, G. S. D., Alves, D. I., Dan, M. L., Lima, J. S. D. S., Fonseca, A. L. C. C. D., Araújo, J. B. S., & Guimarães, L. A. D. O. P. (2017). Soil physico-hydraulic properties under organic conilon coffee intercropped with tree and fruit species. Pesquisa Agropecuária Brasileira, 52, 539–547. https://doi.org/10.1590/S0100-204X2017000700008

    Article  Google Scholar 

  • Sudharta, K. A., Hakim, A. L., Fadhilah, M. A., Fadzil, M. N., Prayogo, C., Kusum, Z., & Suprayogo, D. (2022). Soil organic matter and nitrogen in varying management types of coffee-pine agroforestry systems and their effect on coffee bean yield. Biodiversitas, 23(11), 5884–5891. https://doi.org/10.13057/biodiv/d231142

    Article  Google Scholar 

  • Supriadi, H., Randriani, E., & Towaha, J. (2016). Correlation between altitude, soil chemical properties, and physical quality of arabica coffee beans in Highland areas of Garut. Jurnal Teknologi Informasi Dan Pendidikan, 3(1), 45–52. https://doi.org/10.21082/jtidp.v3n1.2016.p45-52.[Indonesian]

    Article  Google Scholar 

  • Swamy, S. L., Mishra, A., & Puri, S. (2006). Comparison of growth, biomass and nutrient distribution in five promising clones of Populus deltoides under an agri-silvicultural system. Bioresource Technology, 97, 57–68. https://doi.org/10.1016/j.biortech.2005.02.032

    Article  CAS  Google Scholar 

  • Waktola, T. U., & Kidist, F. (2021). Adoption of coffee shade agroforestry technology and shade tree management in Gobu Seyo district, east Wollega Oromia. Advances in Agriculture, 2021, 8574214. https://doi.org/10.1155/2021/8574214

    Article  Google Scholar 

  • Walkley, A., & Black, I. A. (1934). An examination of Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science, 37, 29–37. https://doi.org/10.1097/00010694-193401000-00003

    Article  CAS  Google Scholar 

  • Wardani, N., Meidaliyantisyah, J., Hendra, & Rivaie, A. A. (2021). Improvement of robusta coffee performance with conservation and fertilizer treatment in Air Naningan District, Tanggamus Regency, Lampung. IOP Conference Series: Earth and Environmental Science, 648(1), 012040. https://doi.org/10.1088/1755-1315/648/1/012040.

Download references

Acknowledgements

The authors are thankful to the district administration of Bastar (C.G.) for granting permission and support. Thanks to the authorities of the College of Horticulture and Research Station, Jagdalpur, IGKV for the necessary support needed during the study. The authors are thankful to the editor and reviewers for the closer look and constructive comments.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoj Kumar Jhariya.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Consent to participate

Not applicable.

Consent to publish

All the authors approved the manuscript for publication.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, K.P., Singh, B., Jhariya, M.K. et al. Soil properties and carbon dynamics under coffee-based agroforestry system in Bastar region of Chhattisgarh, India. Environ Dev Sustain 26, 13411–13428 (2024). https://doi.org/10.1007/s10668-023-04230-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-023-04230-9

Keywords

Navigation