Skip to main content
Log in

Identification of critical source areas and delineation of management subzones of non-point source pollution in Jing River Basin

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

Critical source area (CSAs) identification and subzone delineation could aid in streamlining watershed management. However, how to build a comprehensive evaluation index system based on the identification of CSAs is the key to solving the problem of management zoning, and this issue has not been fully reported yet. We applied the soil and water assessment tool to investigate non-point source (NPS) pollution for two periods from 1967 to 1990 and from 2000 to 2020 in the Jing River Basin, identify the CSAs in each period using four methods, and delineate the watershed management subzones using K-means cluster analysis. Results showed that, from 1970 to 1990, the annual average sediment yield in the basin was 46.91 Mg/ha/year, while from 2000 to 2020, it decreased by 53.24% to 22.01 Mg/ha/year. Between 2000 and 2020, the average load of total phosphorous (TP) pollution was 0.168 kg/ha/year, which was around 92.1% less than that from 1967 to 1990. Although the areas with the most severe total nitrogen (TN) load (15–18 kg/ha/year) had been treated, the pollution intensity was still relatively serious, and there was a trend of large-scale diffusion. The comprehensive evaluation index could effectively identify CSAs under the triple superposition of sediment yield, TN, and TP, which could be defined as one of the important indicators affecting the management subzones of the Jing River Basin. The watershed was divided into four different management zones, namely: northern loess hills and ravines ecological restoration zone, the priority management subzone in the middle west, the middle-eastern forested ecological conservation area, and the southeastern pollution control zone. This study could provide reference and specific directions for decision makers in efficient and sustainable watershed NPS pollution management at the scale of sub-watershed and management subzone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author, [Lei Wu], upon reasonable request.

References

  • Arnold, J. G., Srinivasan, R., Muttiah, R. S., & Williams, J. R. (1998). Large area hydrologic modeling and assessment part I: Model development. Journal of the American Water Resources Association, 34, 73–89. https://doi.org/10.1111/j.1752-1688.1998.tb05961.x

    Article  CAS  Google Scholar 

  • Bai, X., Wang, B., & Qi, Y. (2021). The effect of returning farmland to grassland and coniferous forest on watershed runoff—A case study of the Naoli river basin in Heilongjiang province, China. Sustainability, 13(11), 6264. https://doi.org/10.3390/su13116264

    Article  Google Scholar 

  • Chang, D., Lai, Z., Li, S., Li, D., & Zhou, J. (2021). Critical source areas’ identification for non-point source pollution related to nitrogen and phosphorus in an agricultural watershed based on SWAT model. Environmental Science and Pollution Research, 28(34), 47162–47181. https://doi.org/10.1007/s11356-021-13973-9

    Article  CAS  Google Scholar 

  • Chen, C., Xie, G., Zhen, L., Geng, Y., & Leng, Y.-F. (2008). Analysis of Jinghe watershed vegetation dynamics and evaluation of its relation to precipitation. Acta Ecologica Sinica, 03, 925–938.

    Google Scholar 

  • Chen, D., Jin, G., Zhang, Q., Arowolo, A. O., & Li, Y. (2016). Water ecological function zoning in Heihe River Basin, Northwest China. Physics and Chemistry of the Earth, Parts a/b/c, 96, 74–83. https://doi.org/10.1016/j.pce.2016.08.005

    Article  Google Scholar 

  • Chen, P., Yuan, Y., Li, W., LeDuc, S. D., Lark, T. J., Zhang, X., & Clark, C. (2021). Assessing the impacts of recent crop expansion on water quality in the Missouri river basin using the soil and water assessment tool. Journal of Advances in Modeling Earth Systems, 13(6), 1–25. https://doi.org/10.1029/2020MS002284

    Article  Google Scholar 

  • Chen, Y., Xu, C. Y., Chen, X., Xu, Y., Yin, Y., Gao, L., & Liu, M. (2019). Uncertainty in simulation of land-use change impacts on catchment runoff with multi-timescales based on the comparison of the HSPF and SWAT models. Journal of Hydrology, 573, 486–500.

    Article  Google Scholar 

  • Choi, J., Park, B., Kim, J., Lee, S., Ryu, J., Kim, K., & Kim, Y. (2021). Determination of NPS pollutant unit loads from different landuses. Sustainability, 13(13), 7193.

    Article  CAS  Google Scholar 

  • Dan, Y., Dong, X., Xie, P., Wei, C., Liu, J., Hu, X., Wang, K., Xu, S., Wan, H., & Su, Z. (2020). Prioritization of critical source areas for soil and water conservation by using a one-at-a-time removal approach in the upper Huaihe River basin. Land Degradation and Development, 32(3), 1513–1524. https://doi.org/10.1002/ldr.3814

    Article  Google Scholar 

  • Di, C., Zhengqing, L., Shuo, L., Dan, L., & Jun, Z. (2021). Critical source areas’ identification for non-point source pollution related to nitrogen and phosphorus in an agricultural watershed based on SWAT model. Environmental Science and Pollution Research International. https://doi.org/10.1007/s11356-021-13973-9

    Article  Google Scholar 

  • Ellison, D., Morris, C. E., Locatelli, B., Sheil, D., Cohen, J., Murdiyarso, D., Gutierrez, V., Van Noordwijk, M., Creed, I. F., Pokorny, J., & Gaveau, D. (2017). Trees, forests and water: Cool insights for a hot world. Global Environmental Change, 43, 51–61. https://doi.org/10.1016/j.gloenvcha.2017.01.002

    Article  Google Scholar 

  • Fan, Y., Jin, X., Gan, L., Jessup, L. H., Pijanowski, B. C., Yang, X., Xiang, X., & Zhou, Y. (2018). Spatial identification and dynamic analysis of land use functions reveals distinct zones of multiple functions in eastern China. Science of the Total Environment, 642, 33–44. https://doi.org/10.1016/j.scitotenv.2018.05.383

    Article  CAS  Google Scholar 

  • Fu, Y., Shi, X., He, J., Yuan, Y., & Qu, L. (2020). Identification and optimization strategy of county ecological security pattern: A case study in the Loess Plateau, China. Ecological Indicators, 112, 106030. https://doi.org/10.1016/j.ecolind.2019.106030

    Article  Google Scholar 

  • Gao, Y., Feng, Z., Wang, Y., Liu, J. L., Li, S. C., & Zhu, Y. K. (2014). Clustering urban multifunctional landscapes using the self-organizing feature map neural network model. Journal of Urban Planning and Development, 140(2), 05014001. https://doi.org/10.1061/(ASCE)UP.1943-5444.0000170

    Article  Google Scholar 

  • Geng, R., Yin, P., & Sharpley, A. N. (2019). A coupled model system to optimize the best management practices for nonpoint source pollution control. Journal of Cleaner Production, 220, 581–592. https://doi.org/10.1016/j.jclepro.2019.02.127

    Article  CAS  Google Scholar 

  • Hanief, A., & Laursen, A. E. (2019). Meeting updated phosphorus reduction goals by applying best management practices in the Grand River watershed, southern Ontario. Ecological Engineering, 130, 169–175. https://doi.org/10.1016/j.ecoleng.2019.02.007

    Article  Google Scholar 

  • Himanshu, S. K., Pandey, A., Yadav, B., & Gupta, A. (2019). Evaluation of best management practices for sediment and nutrient loss control using SWAT model. Soil and Tillage Research, 192, 42–58. https://doi.org/10.1016/j.still.2019.04.016

    Article  Google Scholar 

  • Huang, J. J., Lin, X., Wang, J., & Wang, H. (2015). The precipitation driven correlation based mapping method (PCM) for identifying the critical source areas of non-point source pollution. Journal of Hydrology, 524, 100–110. https://doi.org/10.1016/j.jhydrol.2015.02.011

    Article  CAS  Google Scholar 

  • Huang, W., Jia, Y., Huang, G., Niu, C., & Zhang, H. (2022). Temporal and spatial distribution and management measures of non-point source pollution in lake Hongfeng watershed. Water Resources Protection, 2022, 1–8.

    CAS  Google Scholar 

  • Izydorczyk, K., Piniewski, M., Krauze, K., Courseau, L., Czyż, P., Giełczewski, M., Kardel, I., Marcinkowski, P., Szuwart, M., Zalewski, M., & Frątczak, W. (2019). The ecohydrological approach, SWAT modelling, and multi-stakeholder engagement—A system solution to diffuse pollution in the Pilica basin, Poland. Journal of Environmental Management, 248, 109329. https://doi.org/10.1016/j.jenvman.2019.109329

    Article  CAS  Google Scholar 

  • Ji, H., Peng, D., Fan, C., Zhao, K., Gu, Y., & Liang, Y. (2022). Assessing effects of non-point source pollution emission control schemes on Beijing’s sub-center with a water environment model. Urban Climate, 43, 101148. https://doi.org/10.1016/j.uclim.2022.101148

    Article  Google Scholar 

  • Jin, Y. Y., Li, J., Zhou, Z. X., & Tang, C. Y. (2022). Spatial pattern optimization of ecosystem services based on Bayesian networks: A case of the Jing River Basin. Arid Land Geography, 45(4), 1268–1280.

    Google Scholar 

  • Li, H., Zhang, J., Zhang, S., Zhang, W., Zhang, S., Yu, P., & Song, Z. (2022). A framework to assess spatio-temporal variations of potential non-point source pollution risk for future land-use planning. Ecological Indicators, 137, 108751. https://doi.org/10.1016/j.ecolind.2022.108751

    Article  Google Scholar 

  • Li, H., Zhang, S., Yu, P., Song, Z., Xie, C., & Zhang, J. (2023). Non-point source pollution assessment and key source area identification based on improved output coefficient model: A case study of the upper watershed of the North Canal. Environmental Science, 146, 1–15.

    Google Scholar 

  • Li, H. L., Zhang, S. H., Yu, P. D., Song, Z. Y., Xie, C. X., & Zhang, J. J. (2023). Estimation and critical source area identification of non-point source pollution based on improved export coefficient models: A case study of the upper Beiyun River Basin. Environmental Science, 44(11), 6194–6204.

    Google Scholar 

  • Li, S., Li, J., Xia, J., & Hao, G. (2021). Optimal control of nonpoint source pollution in the Bahe River Basin, Northwest China, based on the SWAT model. Environmental Science and Pollution Research, 28(39), 55330–55343. https://doi.org/10.1007/s11356-021-14869-4

    Article  CAS  Google Scholar 

  • Liu, R., Xu, F., Zhang, P., Yu, W., & Men, C. (2016). Identifying non-point source critical source areas based on multi-factors at a basin scale with SWAT. Journal of Hydrology, 533, 379–388. https://doi.org/10.1016/j.jhydrol.2015.12.024

    Article  CAS  Google Scholar 

  • Liu, X., Beusen, A. H., Van Beek, L. P., Mogollón, J. M., Ran, X., & Bouwman, A. (2018). Exploring spatiotemporal changes of the Yangtze River (Changjiang) nitrogen and phosphorus sources, retention and export to the East China Sea and Yellow Sea. Water Research, 142, 246–255. https://doi.org/10.1016/j.watres.2018.06.006

    Article  CAS  Google Scholar 

  • Liu, Y., Yang, C., Yu, X., Wang, M., & Qi, W. (2021). Monitoring the landscape pattern and characteristics of non-point source pollution in a mountainous river basin. International Journal of Environmental Research and Public Health, 18(21), 11032. https://doi.org/10.3390/ijerph182111032

    Article  CAS  Google Scholar 

  • Liu, Z., Huang, Q., Zhou, Y., & Sun, X. (2022). Spatial identification of restored priority areas based on ecosystem service bundles and urbanization effects in a megalopolis area. Journal of Environmental Management, 308, 114627. https://doi.org/10.1016/j.jenvman.2022.114627

    Article  Google Scholar 

  • López-Ballesteros, A., Senent-Aparicio, J., Srinivasan, R., & Pérez-Sánchez, J. (2019). Assessing the impact of best management practices in a highly anthropogenic and ungauged watershed using the SWAT model: A case study in the El Beal watershed (Southeast Spain). Agronomy, 9(10), 576. https://doi.org/10.3390/agronomy9100576

    Article  Google Scholar 

  • Lyu, D., Yang, Y., Zhao, W., Xu, X., He, L., Guo, J., Lei, S., Liu, B., & Zhang, X. (2022). Effects of different vegetation restoration types on soil hydro-physical properties in the hilly region of the Loess Plateau, China. Soil Research, 61, 94–105.

    Article  Google Scholar 

  • Martin, J. F., Kalcic, M. M., Aloysius, N., Apostel, A. M., Brooker, M. R., Evenson, G., Kast, J. B., Kujawa, H., Murumkar, A., Becker, R., & Boles, C. (2021). Evaluating management options to reduce Lake Erie algal blooms using an ensemble of watershed models. Journal of Environmental Management, 280, 111710. https://doi.org/10.1016/j.jenvman.2020.111710

    Article  CAS  Google Scholar 

  • Merriman, K. R., Daggupati, P., Srinivasan, R., Toussant, C., Russell, A. M., & Hayhurst, B. (2018). Assessing the impact of site-specific BMPs using a spatially explicit, field-scale SWAT model with edge-of-field and tile hydrology and water-quality data in the Eagle Creek watershed, Ohio. Water, 10(10), 1299. https://doi.org/10.3390/w10101299

    Article  Google Scholar 

  • Michalek, A., Zarnaghsh, A., & Husic, A. (2021). Modeling linkages between erosion and connectivity in an urbanizing landscape. Science of the Total Environment, 764, 144255.

    Article  CAS  Google Scholar 

  • Nanda, S. J., & Panda, G. (2014). A survey on nature inspired metaheuristic algorithms for partitional clustering. Swarm and Evolutionary Computation, 16, 1–18. https://doi.org/10.1016/j.swevo.2013.11.003

    Article  Google Scholar 

  • Niraula, R., Kalin, L., Srivastava, P., & Anderson, C. J. (2013). Identifying critical source areas of nonpoint source pollution with SWAT and GWLF. Ecological Modelling, 268, 123–133.

    Article  CAS  Google Scholar 

  • Özcan, Z., Kentel, E., & Alp, E. (2017). Evaluation of the best management practices in a semi-arid region with high agricultural activity. Agricultural Water Management, 194, 160–171. https://doi.org/10.1016/j.agwat.2017.09.007

    Article  Google Scholar 

  • Pang, S., Wang, X., Melching, C. S., Guo, H., & Li, W. (2022). Identification of multilevel priority management areas for diffuse pollutants based on streamflow continuity in a water-deficient watershed. Journal of Cleaner Production, 351, 131322. https://doi.org/10.1016/j.jclepro.2022.131322

    Article  CAS  Google Scholar 

  • Risal, A., & Parajuli, P. B. (2022). Evaluation of the impact of best management practices on streamflow, sediment and nutrient yield at field and watershed scales. Water Resources Management, 36(3), 1093–1105. https://doi.org/10.1007/s11269-022-03075-7

    Article  Google Scholar 

  • Shukla, S., Jain, S. K., & Kansal, M. L. (2021). Hydrological modelling of a snow/glacier-fed western Himalayan basin to simulate the current and future streamflows under changing climate scenarios. Science of the Total Environment, 795, 148871. https://doi.org/10.1016/j.scitotenv.2021.148871

    Article  CAS  Google Scholar 

  • Sun, Y., Hao, R., Qiao, J., & Xue, H. (2020). Function zoning and spatial management of small watersheds based on ecosystem disservice bundles. Journal of Cleaner Production, 255, 120285. https://doi.org/10.1016/j.jclepro.2020.120285

    Article  Google Scholar 

  • Tao, Y., Xu, J., Ren, H. J., Guan, X. Y., You, L. J., & Wang, S. L. (2021). Spatiotemporal variation and factors analysis of agricultural non-point source pollution in the Yellow River Basin. Chinese Journal of Agricultural Engineering, 37(04), 257–264. https://doi.org/10.11975/j.issn.1002-6819.2021.04.031

    Article  Google Scholar 

  • Trumbore, S., Brando, P., & Hartmann, H. (2015). Forest health and global change. Science, 349(6250), 814–818. https://doi.org/10.1126/science.aac6759

    Article  CAS  Google Scholar 

  • Uniyal, B., Jha, M. K., Verma, A. K., & Anebagilu, P. K. (2020). Identification of critical areas and evaluation of best management practices using SWAT for sustainable watershed management. Science of the Total Environment, 744, 140737. https://doi.org/10.1016/j.scitotenv.2020.140737

    Article  CAS  Google Scholar 

  • Volk, M., Bosch, D., Nangia, V., & Narasimhan, B. (2016). SWAT: Agricultural water and nonpoint source pollution management at a watershed scale. Agricultural Water Management, 175, 1–3. https://doi.org/10.1016/j.agwat.2016.06.013

    Article  Google Scholar 

  • Wang, B., Yang, Q., & Liu, Z. (2009). Effect of conversion of farm land to forest or grassland on soil erosion intensity changes in Yanhe River Basin, Loess Plateau of China. Frontiers for China, 4(1), 68–74. https://doi.org/10.1007/s11461-009-0015-5

    Article  Google Scholar 

  • Wang, J., Peng, J., Zhao, M., Liu, Y., & Chen, Y. (2017). Significant trade-off for the impact of Grain-for-Green Programme on ecosystem services in North-western Yunnan, China. Science of the Total Environment, 574, 57–64. https://doi.org/10.1016/j.scitotenv.2016.09.026

    Article  CAS  Google Scholar 

  • Wang, Z., Jiao, J., Rayburg, S., Wang, Q., & Su, Y. (2016). Soil erosion resistance of “Grain for Green” vegetation types under extreme rainfall conditions on the Loess Plateau, China. CATENA, 141, 109–116. https://doi.org/10.1016/j.catena.2016.02.025

    Article  Google Scholar 

  • Wei, W., Chen, L., Fu, B., Lü, Y., & Gong, J. (2009). Responses of water erosion to rainfall extremes and vegetation types in a loess semiarid hilly area, NW China. Hydrological Processes, 23(12), 1780–1791. https://doi.org/10.1002/hyp.7294

    Article  Google Scholar 

  • Wu, C. L., Herrington, S. J., Charry, B., Chu, M. L., & Knouft, J. H. (2021). Assessing the potential of riparian reforestation to facilitate watershed climate adaptation. Journal of Environmental Management, 277, 111431. https://doi.org/10.1016/j.jenvman.2020.111431

    Article  Google Scholar 

  • Wu, L., Li, X., & Ma, X. (2019). Particulate nutrient loss from drylands to grasslands/forestlands in a large-scale highly erodible watershed. Ecological Indicators, 107, 105673. https://doi.org/10.1016/j.ecolind.2019.105673

    Article  CAS  Google Scholar 

  • Wu, L., Liu, X., Yang, Z., Yu, Y., & Ma, X. Y. (2022). Effects of single- and multi-site calibration strategies on hydrological model performance and parameter sensitivity of large-scale semi-arid and semi-humid watersheds. Hydrological Processes, 36(6), e14616.

    Article  Google Scholar 

  • Wu, L., Ma, X., Wang, Y., & Zhou, J. G. (2023). Increasing areas of aquaculture ponds and reservoirs reshape runoff coefficients: Evidence from a subtropical catchment, China. Environmental Science and Pollution Research, 30, 41253–41271.

    Article  Google Scholar 

  • Wu, L., Qi, T., & Zhang, J. (2017). Spatiotemporal variations of adsorbed nonpoint source nitrogen pollution in a highly erodible Loess Plateau watershed. Polish Journal of Environmental Studies, 26(3), 1343–1352. https://doi.org/10.15244/pjoes/67974

    Article  CAS  Google Scholar 

  • Wu, L., Yao, W. W., & Ma, X. Y. (2018). Using the comprehensive governance degree to calibrate a piecewise sediment delivery ratio algorithm for dynamic sediment predictions: A case study in an ecological restoration watershed of northwest China. Journal of Hydrology, 564, 888–899.

    Article  Google Scholar 

  • Xu, C., Jiang, Y., Su, Z., Liu, Y., & Lyu, J. (2022). Assessing the impacts of grain-for-green programme on ecosystem services in Jinghe River basin, China. Ecological Indicators, 137, 108757. https://doi.org/10.1016/j.ecolind.2022.108757

    Article  CAS  Google Scholar 

  • Xu, K., Wang, J., Wang, J., Wang, X., Chi, Y., & Zhang, X. (2020). Environmental function zoning for spatially differentiated environmental policies in China. Journal of Environmental Management, 255, 109485. https://doi.org/10.1016/j.jenvman.2019.109485

    Article  Google Scholar 

  • Xue, Y. Y., Jin, X., Li, H., Zhang, S., Xu, B., & Fan, W. (2015). Investigation on the occurrence and control of apple canker in Gansu Province. Journal of Gansu Agricultural University, 50(06), 81–87. https://doi.org/10.13432/j.cnki.jgsau.2015.06.015

    Article  Google Scholar 

  • Yang, L., Pang, S., Wang, X., Du, Y., Huang, J., & Melching, C. S. (2021a). Optimal allocation of best management practices based on receiving water Capa-city constraints. Agricultural Water Management, 258, 107179. https://doi.org/10.1016/j.agwat.2021.107179

    Article  Google Scholar 

  • Yang, X., Liu, S., Jia, C., Liu, Y., & Yu, C. (2021b). Vulnerability assessment and management planning for the ecological environment in urban wetlands. Journal of Environmental Management, 298, 113540. https://doi.org/10.1016/j.jenvman.2021.113540

    Article  Google Scholar 

  • Yang, X., Warren, R., He, Y., Ye, J., Li, Q., & Wang, G. (2018). Impacts of climate change on TN load and its control in a River Basin with complex pollution sources. Science of the Total Environment, 615, 1155–1163.

    Article  CAS  Google Scholar 

  • Yu, D., Dong, X., Xie, P., Wei, C., Liu, J., Hu, X., Wang, K., Xu, S., Wan, H., & Su, Z. (2021). Prioritization of critical source areas for soil and water conservation by using a one-at-a-time removal approach in the upper Huaihe River basin. Land Degradation & Development, 32(3), 1513–1524. https://doi.org/10.1002/ldr.3814

    Article  Google Scholar 

  • Zhang, C. Q., Zhang, B., Li, W., Yang, Y. G., & Wang, B. (2011). Control mechanism and effect of forest ecosystem on non-point source pollution and its influencing factors. Resources Science, 2, 236–241.

    CAS  Google Scholar 

  • Zhang, X., Li, P., Li, Z. B., Yu, G. Q., & Li, C. (2018). Effects of precipitation and different distributions of grass strips on runoff and sediment in the loess convex hillslope. CATENA, 162, 130–140. https://doi.org/10.1016/j.catena.2017.12.002

    Article  Google Scholar 

  • Zhou, J., Fu, B., Gao, G., Lü, Y., Liu, Y., Lü, N., & Wang, S. (2016). Effects of precipitation and restoration vegetation on soil erosion in a semi-arid e-nvironment in the Loess Plateau, China. CATENA, 137, 1–11. https://doi.org/10.1016/j.catena.2015.08.015

    Article  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China, China (52070158, 42277073, 51679206).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Xu, Y., Wu, L. et al. Identification of critical source areas and delineation of management subzones of non-point source pollution in Jing River Basin. Environ Dev Sustain (2023). https://doi.org/10.1007/s10668-023-04206-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10668-023-04206-9

Keywords

Navigation