Skip to main content
Log in

Prediction and modeling of water quality using deep neural networks

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

A Correction to this article was published on 27 June 2023

This article has been updated

Abstract

Water pollution is one of the most challenging environmental issues. A powerful tool for measuring the suitability of water for drinking is required. The Water Quality Index (WQI) is a widely used parameter for the assessment of water quality through mathematical formulas. In this paper, a Deep Neural Network (DNN) model is developed to forecast WQI based on parameters selected for the dry and wet seasons throughout the year. Statistical modeling and unsupervised machine learning techniques are used. These modelings include the Principal Component Analysis/Factor Analysis (PCA/FA) which is used to interpret seasonal changes and the sources of springs under study. The other modeling technique utilized in this study is the Hierarchical Cluster Analysis (HCA). The results of this study reveal that the developed DNN model has achieved a high accuracy of ***. The goodness of fit of the developed model using R-Squared (R2) is 0.98 which is deemed high. The Mean Square Error metric is close to zero. Furthermore, the PCA/FA revealed five major parameters that impact water quality which together account for 92% of the total variance of water quality in summer and 96% in winter. Moreover, results show that the average of the WQI for all springs is of poor water quality at 46.75% during the dry season and medium water quality at 55.5% during the wet season.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Some of the data used in this research is publicly available as referenced within this paper. Newly generated data are not public as it is still under study by the authors.

Change history

References

  • Abba, S. I., Pham, Q. B., Saini, G., Linh, N. T. T., Ahmed, A. N., Mohajane, M., Khaledian, M., Abdulkadir, R. A., & Bach, Q.-V. (2020). Implementation of data intelligence models coupled with ensemble machine learning for prediction of water quality index. Environmental Science and Pollution Research, 27(33), 41524–41539.

    CAS  Google Scholar 

  • Abbasi, T., & Abbasi, S. A. (2012). Water quality indices. Elsevier.

    Google Scholar 

  • Abu-Zreig, M., Ababneh, F., & Abdullah, F. (2019). Assessment of rooftop rainwater harvesting in northern Jordan. Physics and Chemistry of the Earth, Parts a/b/c, 114, 102794.

    Google Scholar 

  • Adimalla, N., Li, P., & Venkatayogi, S. (2018). Hydrogeochemical evaluation of groundwater quality for drinking and irrigation purposes and integrated interpretation with water quality index studies. Environmental Processes, 5(2), 363–383.

    CAS  Google Scholar 

  • Alberto, W. D., del Pilar, D. M., Valeria, A. M., Fabiana, P. S., Cecilia, H. A., & de Los Ángeles, B. M. (2001). Pattern recognition techniques for the evaluation of spatial and temporal variations in water quality. A case study: Suquıa River Basin (Córdoba–Argentina). Water Research, 35(12), 2881–2894.

    CAS  Google Scholar 

  • Ansari, K., & Hemke, N. (2013). Water quality index for assessment of water samples of different zones in Chandrapur city. Ground Water, 3(3).

  • Apha, A. (1985). Standard methods for the examination of water and wastewater. Apha Washington.

    Google Scholar 

  • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology, A.T.C. (2000). Artificial neural networks in hydrology. I: Preliminary concepts. Journal of Hydrologic Engineering, 5(2), 115–123.

    Google Scholar 

  • Ashraf, M. A., Maah, M. J., Yusoff, I., & Mehmood, K. (2010). Effects of polluted water irrigation on environment and health of people in Jamber, District Kasur, Pakistan. International Journal of Basic & Applied Sciences, 10(3), 37–57.

    Google Scholar 

  • Awomeso, J., Ahmad, S., & Taiwo, A. (2020). Multivariate assessment of groundwater quality in the basement rocks of Osun state, southwest, Nigeria. Environmental Earth Sciences, 79(5), 1–9.

    Google Scholar 

  • Babushkina, E. A., Belokopytova, L. V., Grachev, A. M., Meko, D. M., & Vaganov, E. A. (2017). Variation of the hydrological regime of Bele-Shira closed basin in southern Siberia and its reflection in the radial growth of Larix sibirica. Regional Environmental Change, 17(6), 1725–1737.

    Google Scholar 

  • Barakat, A., Meddah, R., Afdali, M., & Touhami, F. (2018). Physicochemical and microbial assessment of spring water quality for drinking supply in Piedmont of Béni-Mellal Atlas (Morocco). Physics and Chemistry of the Earth, Parts a/b/c, 104, 39–46.

    Google Scholar 

  • Bhanja, S., & Das, A. (2018). Impact of data normalization on deep neural network for time series forecasting. arXiv preprint arXiv:1812.05519

  • Bouslah, S., Djemili, L., & Houichi, L. (2017). Water quality index assessment of Koudiat Medouar Reservoir, northeast Algeria using weighted arithmetic index method. Journal of Water and Land Development, 35(1), 221.

    CAS  Google Scholar 

  • Brown, R. M., McClelland, N. I., Deininger, R. A., & Tozer, R. G. (1970). A water quality index-do we dare. Water and Sewage Works, 117(10), 339–343.

  • Buduma, N., Buduma, N., & Papa, J. (2022). Fundamentals of deep learning. O’Reilly Media, Inc.

    Google Scholar 

  • Burden, R. L., & Faires, J. D. (2005). Numerical analysis (8th ed.). Thomson Brooks/Cole.

    Google Scholar 

  • Cameron, A. C., & Windmeijer, F. A. (1997). An R-squared measure of goodness of fit for some common nonlinear regression models. Journal of Econometrics, 77(2), 329–342.

    Google Scholar 

  • Chapp, A. D., Schum, S., Behnke, J. E., Hahka, T., Huber, M. J., Jiang, E., Larson, R. A., Shan, Z., & Chen, Q.-H. (2018). Measurement of cations, anions, and acetate in serum, urine, cerebrospinal fluid, and tissue by ion chromatography. Physiological Reports, 6(7), 13666.

    Google Scholar 

  • Chauhan, A., Pawar, M., & Lone, S. A. (2010). Water quality status of Golden Key lake in clement town, Dehradun, Uttarakhand. Journal of American Science, 6(11), 459–464.

    Google Scholar 

  • Chen, Q., & Mynett, A. E. (2003). Integration of data mining techniques and heuristic knowledge in fuzzy logic modelling of eutrophication in Taihu Lake. Ecological Modelling, 162(1–2), 55–67.

    Google Scholar 

  • Dawson, C., & Wilby, R. (2001). Hydrological modelling using artificial neural networks. Progress in Physical Geography, 25(1), 80–108.

    Google Scholar 

  • Deepa, S., & Venkateswaran, S. (2018). Appraisal of groundwater quality in upper Manimuktha sub basin, Vellar river, Tamil Nadu, India by using water quality index (WQI) and multivariate statistical techniques. Modeling Earth Systems and Environment, 4(3), 1165–1180.

    Google Scholar 

  • Dike, H. U., Zhou, Y., Deveerasetty, K. K., & Wu, Q. (2018). Unsupervised learning based on artificial neural network: A review. In 2018 IEEE International Conference on Cyborg and Bionic Systems (CBS) (pp. 322–327). IEEE.

  • Ebrahimi, P., Guarino, A., Allocca, V., Caliro, S., Avino, R., Bagnato, E., Capecchiacci, F., Carandente, A., Minopoli, C., Santi, A., & Albanese, S. (2022). Hierarchical clustering and compositional data analysis for interpreting groundwater hydrogeochemistry: The application to Campi Flegrei volcanic aquifer (south Italy). Journal of Geochemical Exploration, 233, 106922.

    CAS  Google Scholar 

  • Eljaiek-Urzola, M., Romero-Sierra, N., Segrera-Cabarcas, L., Valdelamar-Martínez, D., & Quiñones-Bolaños, É. (2019). Oil and grease as a water quality index parameter for the conservation of marine biota. Water, 11(4), 856.

    CAS  Google Scholar 

  • Federation, W.E., & Association, A. (2005). Standard methods for the examination of water and wastewater (vol. 21). American Public Health Association (APHA).

  • Fischer, M. M. (2006). Neural networks: A general framework for non-linear function approximation. Transactions in GIS, 10(4), 521–533.

    Google Scholar 

  • George, B., Kumar, J. N., & Kumar, R. N. (2012). Study on the influence of hydrochemical parameters on phytoplankton distribution along Tapi estuarine area of Gulf of Khambhat, India. The Egyptian Journal of Aquatic Research, 38(3), 157–170.

    Google Scholar 

  • Ghojogh, B., & Crowley, M. (2019). Unsupervised and supervised principal component analysis: Tutorial. arXiv preprint arXiv:1906.03148

  • Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press.

    Google Scholar 

  • Gorsuch, R. L. (1997). Exploratory factor analysis: Its role in item analysis. Journal of Personality Assessment, 68(3), 532–560.

    CAS  Google Scholar 

  • Gradilla-Hernández, M. S., de Anda, J., Garcia-Gonzalez, A., Meza-Rodríguez, D., Yebra Montes, C., & Perfecto-Avalos, Y. (2020). Multivariate water quality analysis of lake Cajititlán, Mexico. Environmental Monitoring and Assessment, 192(1), 1–22.

    Google Scholar 

  • Heddam, S., & Kisi, O. (2017). Extreme learning machines: A new approach for modeling dissolved oxygen (do) concentration with and without water quality variables as predictors. Environmental Science and Pollution Research, 24(20), 16702–16724.

    CAS  Google Scholar 

  • Helena, B., Pardo, R., Vega, M., Barrado, E., Fernandez, J. M., & Fernandez, L. (2000). Temporal evolution of groundwater composition in an alluvial aquifer (Pisuerga River, Spain) by principal component analysis. Water Research, 34(3), 807–816.

    CAS  Google Scholar 

  • Hem, J. D. (1985). Study and interpretation of the chemical characteristics of natural water (Vol. 2254). Department of the Interior, US Geological Survey.

    Google Scholar 

  • Hinrichsen, D., & Tacio, H. (2002). The coming freshwater crisis is already here. The linkages between population and water (pp. 1–26). Woodrow Wilson International Center for Scholars.

    Google Scholar 

  • Horton, R. K. (1965). An index number system for rating water quality. Journal of Water Pollution Control Federation, 37(3), 300–306.

    Google Scholar 

  • Hubert, M., & Rousseeuw, P. (2010). International encyclopedia of statistical science.

  • Jahin, H. S., Abuzaid, A. S., & Abdellatif, A. D. (2020). Using multivariate analysis to develop irrigation water quality index for surface water in Kafr El-Sheikh Governorate, Egypt. Environmental Technology & Innovation, 17, 100532.

    CAS  Google Scholar 

  • Jain, A., Rallapalli, S., & Kumar, D. (2022). Cloud-based neuro-fuzzy hydro-climatic model for water quality assessment under uncertainty and sensitivity. Environmental Science and Pollution Research, 29(43), 65259–65275.

  • Jaiswal, R., Ghosh, N., Galkate, R., & Thomas, T. (2015). Multi criteria decision analysis (MCDA) for watershed prioritization. Aquatic Procedia, 4, 1553–1560.

    Google Scholar 

  • Jammalamdaka, S. R. (1999). The Cambridge dictionary of statistics. Journal of the American Statistical Association, 94(446), 657.

    Google Scholar 

  • Janiesch, C., Zschech, P., & Heinrich, K. (2021). Machine learning and deep learning. Electronic Markets, 31(3), 685–695.

    Google Scholar 

  • Jolliffe, I. (2011) Principal component analysis. In International Encyclopedia of Statistical Science (vol. 183, pp. 1094–1096). Berlin Heidelberg.

  • Jospin, L. V., Laga, H., Boussaid, F., Buntine, W., & Bennamoun, M. (2022). Hands-on Bayesian neural networks: A tutorial for deep learning users. IEEE Computational Intelligence Magazine, 17(2), 29–48.

    Google Scholar 

  • Kadam, A., Wagh, V., Patil, S., Umrikar, B., & Sankhua, R. (2021). Seasonal assessment of groundwater contamination, health risk and chemometric investigation for a hard rock terrain of western India. Environmental Earth Sciences, 80(5), 1–22.

    Google Scholar 

  • Kaiser, H. F. (1955). An analytic rotational criterion for factor analysis. American Psychologist, 10, 438.

    Google Scholar 

  • Kamble, S. R., & Vijay, R. (2011). Assessment of water quality using cluster analysis in coastal region of Mumbai, India. Environmental Monitoring and Assessment, 178(1), 321–332.

    Google Scholar 

  • Kim, B. S. M., Angeli, J. L. F., Ferreira, P. A. L., de Mahiques, M. M., & Figueira, R. C. L. (2019). A multivariate approach and sediment quality index evaluation applied to Baixada Santista, southeastern Brazil. Marine Pollution Bulletin, 143, 72–80.

    CAS  Google Scholar 

  • Ladjal, M., & Khelil, M. I. (2021). Application of machine learning techniques for predicting the WQI for water quality monitoring: A case study in Algeria. In 9th (Online) international conference on applied analysis and mathematical modeling (ICAAMM21) (p. 137) June 11–13, 2021. Istanbul-Turkey.

  • LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444.

    CAS  Google Scholar 

  • Li, L., Jiang, P., Xu, H., Lin, G., Guo, D., & Wu, H. (2019). Water quality prediction based on recurrent neural network and improved evidence theory: A case study of Qiantang River, China. Environmental Science and Pollution Research, 26(19), 19879–19896.

    Google Scholar 

  • Maier, H. R., & Dandy, G. C. (2000). Neural networks for the prediction and forecasting of water resources variables: A review of modelling issues and applications. Environmental Modelling & Software, 15(1), 101–124.

    Google Scholar 

  • Margaritis, A., Soenen, H., Fransen, E., Pipintakos, G., Jacobs, G., Blom, J., & den Bergh, W. (2020). Identification of ageing state clusters of reclaimed asphalt binders using principal component analysis (PCA) and hierarchical cluster analysis (HCA) based on chemo-rheological parameters. Construction and Building Materials, 244, 118276.

    CAS  Google Scholar 

  • McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. The Bulletin of Mathematical Biophysics, 5(4), 115–133.

    Google Scholar 

  • Mehdi, M., & Sharma, B. (2022). Prediction of water quality index of ground water using the artificial neural network and genetic algorithm. In Proceedings of international joint conference on advances in computational intelligence (pp. 355–367). Springer.

  • Minsky, M., & Papert, S. (1969). Perceptrons Cambridge. MIT Press. zbMATH.

    Google Scholar 

  • Mustafa, H. M., Mustapha, A., Hayder, G., & Salisu, A. (2021). Applications of iot and artificial intelligence in water quality monitoring and prediction: A review. In 2021 6th international conference on inventive computation technologies (ICICT) (pp. 968–975). IEEE.

  • Njuguna, S. M., Onyango, J. A., Githaiga, K. B., Gituru, R. W., & Yan, X. (2020). Application of multivariate statistical analysis and water quality index in health risk assessment by domestic use of river water. Case study of Tana River in Kenya. Process Safety and Environmental Protection, 133, 149–158.

    CAS  Google Scholar 

  • Nnorom, I. C., Ewuzie, U., & Eze, S. O. (2019). Multivariate statistical approach and water quality assessment of natural springs and other drinking water sources in southeastern Nigeria. Heliyon, 5(1), 01123.

    Google Scholar 

  • Ocampo-Duque, W., Ferre-Huguet, N., Domingo, J. L., & Schuhmacher, M. (2006). Assessing water quality in rivers with fuzzy inference systems: A case study. Environment International, 32(6), 733–742.

    CAS  Google Scholar 

  • Ofosu, S. A., Adjei, K. A., & Odai, S. N. (2021). Assessment of the quality of the Densu river using multicriterial analysis and water quality index. Applied Water Science, 11(12), 1–13.

    Google Scholar 

  • Olsen, R. L., Chappell, R. W., & Loftis, J. C. (2012). Water quality sample collection, data treatment and results presentation for principal components analysis–literature review and Illinois River watershed case study. Water Research, 46(9), 3110–3122.

    CAS  Google Scholar 

  • Ongley, E. D., & Booty, W. G. (1999). Pollution remediation planning in developing countries: Conventional modelling versus knowledge-based prediction. Water International, 24(1), 31–38.

    Google Scholar 

  • Özesmi, S. L., Tan, C. O., & Özesmi, U. (2006). Methodological issues in building, training, and testing artificial neural networks in ecological applications. Ecological Modelling, 195(1–2), 83–93.

    Google Scholar 

  • Patki, V. K., Jahagirdar, S., Patil, Y., Karale, R., & Nadagouda, A. (2021). Prediction of water quality in municipal distribution system. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2021.02.826

    Article  Google Scholar 

  • Paun, I., Cruceru, L., Chiriac, F. L., Niculescu, M., Vasile, G., & Marin, N. M. (2016). Water quality indices-methods for evaluating the quality of drinking water.

  • PCRWR (2005). National water quality monitoring programme. Water Quality Report 2003–2004.

  • Pham, Q. B., Mohammadpour, R., Linh, N. T. T., Mohajane, M., Pourjasem, A., Sammen, S. S., Anh, D. T., & Nam, V. T. (2021). Application of soft computing to predict water quality in wetland. Environmental Science and Pollution Research, 28(1), 185–200.

    CAS  Google Scholar 

  • Pishro-Nik, H. (2016). Introduction to probability, statistics, and random processes.

  • Pramanik, A. K., Majumdar, D., & Chatterjee, A. (2020). Factors affecting lean, wet-season water quality of Tilaiya reservoir in Koderma district, India during 2013–2017. Water Science, 34(1), 85–97.

    Google Scholar 

  • Prasad, D. V. V., Venkataramana, L. Y., Kumar, P. S., Prasannamedha, G., Harshana, S., Srividya, S. J., Harrinei, K., & Indraganti, S. (2022). Analysis and prediction of water quality using deep learning and auto deep learning techniques. Science of the Total Environment, 821, 153311.

    CAS  Google Scholar 

  • Ramamohana Rao, N., Rao, N., Surya Prakash Rao, K., & Schuiling, R. (1993). Fluorine distribution in waters of Nalgonda district, Andhra Pradesh, India. Environmental Geology, 21(1), 84–89.

    Google Scholar 

  • Reddy, B. M., Sunitha, V., Prasad, M., Reddy, Y. S., & Reddy, M. R. (2019). Evaluation of groundwater suitability for domestic and agricultural utility in semi-arid region of Anantapur, Andhra Pradesh state, south India. Groundwater for Sustainable Development, 9, 100262.

    Google Scholar 

  • Rhodes, A. L., Newton, R. M., & Pufall, A. (2001). Influences of land use on water quality of a diverse New England watershed. Environmental Science & Technology, 35(18), 3640–3645.

    CAS  Google Scholar 

  • Rumelhart, D., & Hinton, G. (1986). A general framework for parallel distributed processing. In D. E. Rumelhart & J. L. McClelland (Eds.), Parallel distributed processing: Explorations in the microstructure of cognition. (Vol. 1). MIT Press.

    Google Scholar 

  • Saeedi, M., Abessi, O., Sharifi, F., & Meraji, H. (2010). Development of groundwater quality index. Environmental Monitoring and Assessment, 163(1), 327–335.

    CAS  Google Scholar 

  • Salami, E., Salari, M., Ehteshami, M., Bidokhti, N., & Ghadimi, H. (2016). Application of artificial neural networks and mathematical modeling for the prediction of water quality variables (case study: Southwest of Iran). Desalination and Water Treatment, 57(56), 27073–27084.

    CAS  Google Scholar 

  • Salari, M., Teymouri, E., & Nassaj, Z. (2021). Application of an artificial neural network model for estimating of water quality parameters in the Karun river, Iran. Journal of Environmental Treatment Techniques, 9(4), 720–727.

    Google Scholar 

  • Sargaonkar, A., & Deshpande, V. (2003). Development of an overall index of pollution for surface water based on a general classification scheme in Indian context. Environmental Monitoring and Assessment, 89(1), 43–67.

    CAS  Google Scholar 

  • Sarkar, C., & Abbasi, S. (2006). Qualidex: A virtual instrument for continuous monitoring of water quality indices. Environmental Monitoring and Assessment, 119, 201–231.

    CAS  Google Scholar 

  • See, L., & Openshaw, S. (1999). Applying soft computing approaches to river level forecasting. Hydrological Sciences Journal, 44(5), 763–778.

    Google Scholar 

  • Selvam, S., Venkatramanan, S., & Chung, S. (2016). Identification of groundwater contamination sources in Dindugal district of Tamil Nadu, India using GIS and multivariate statistical analyses. Arabian Journal of Geosciences, 9(5), 1–14.

    CAS  Google Scholar 

  • Sharma, A., Ganguly, R., & Kumar Gupta, A. (2020). Impact assessment of leachate pollution potential on groundwater: An indexing method. Journal of Environmental Engineering, 146(3), 05019007.

    CAS  Google Scholar 

  • Sharrab, Y. O., Al-shboul, S., Alsmira, M., Khalifeh, A., Dwekat, Z., Alsmadi, I., Al-Khasawneh, A. (2021). Performance comparison of several deep learning-based object detection algorithms utilizing thermal images. In 2021 second international conference on intelligent data science technologies and applications (IDSTA) (pp. 16–22). IEEE.

  • Shigut, D. A., Liknew, G., Irge, D. D., & Ahmad, T. (2017). Assessment of physicochemical quality of borehole and spring water sources supplied to Robe Town, Oromia region, Ethiopia. Applied Water Science, 7(1), 155–164.

    CAS  Google Scholar 

  • Shrestha, S., & Kazama, F. (2007). Assessment of surface water quality using multivariate statistical techniques: A case study of the Fuji River Basin, Japan. Environmental Modelling & Software, 22(4), 464–475.

    Google Scholar 

  • Simpson, B., Dutil, F., Bengio, Y., & Cohen, J. P. (2019). Gradmask: Reduce overfitting by regularizing saliency. arXiv preprint arXiv:1904.07478

  • Singha, S., Pasupuleti, S., Singha, S. S., Singh, R., & Kumar, S. (2021). Prediction of groundwater quality using efficient machine learning technique. Chemosphere, 276, 130265.

    CAS  Google Scholar 

  • Srinivasamoorthy, K., Nanthakumar, C., Vasanthavigar, M., Vijayaraghavan, K., Rajivgandhi, R., Chidambaram, S., Anandhan, P., Manivannan, R., & Vasudevan, S. (2011). Groundwater quality assessment from a hard rock terrain, Salem district of Tamilnadu, India. Arabian Journal of Geosciences, 4(1), 91–102.

    CAS  Google Scholar 

  • Ŝtambuk-Giljanović, N. (2003). Comparison of Dalmatian water evaluation indices. Water Environment Research, 75(5), 388–405.

    Google Scholar 

  • Steinhart, C. E., Schierow, L.-J., & Sonzogni, W. C. (1982). An environmental quality index for the Great Lakes 1. JAWRA Journal of the American Water Resources Association, 18(6), 1025–1031.

    CAS  Google Scholar 

  • Subba Rao, N. (2018). Groundwater quality from a part of Prakasam district, Andhra Pradesh, India. Applied Water Science, 8(1), 1–18.

    CAS  Google Scholar 

  • Subba Rao, N., Marghade, D., Dinakar, A., Chandana, I., Sunitha, B., Ravindra, B., & Balaji, T. (2017). Geochemical characteristics and controlling factors of chemical composition of groundwater in a part of Guntur district, Andhra Pradesh, India. Environmental Earth Sciences, 76(21), 1–22.

    CAS  Google Scholar 

  • Swamee, P. K., & Tyagi, A. (2007). Improved method for aggregation of water quality subindices. Journal of Environmental Engineering, 133(2), 220–225.

    CAS  Google Scholar 

  • Talwar, A., & Kumar, Y. (2013). Machine learning: An artificial intelligence methodology. International Journal of Engineering and Computer Science, 2(12), 3400–3404.

    Google Scholar 

  • Toma, J. J., Ahmed, R. S., & Abdulla, Z. K. (2013). Application of water quality index for assessment water quality in some bottled water Erbil City, Kurdistan Region, Iraq. Journal of Advanced Laboratory Research in Biology, 4(4), 128–134.

    Google Scholar 

  • Tripathi, M., & Singal, S. K. (2019). Use of principal component analysis for parameter selection for development of a novel water quality index: A case study of river Ganga India. Ecological Indicators, 96, 430–436.

    CAS  Google Scholar 

  • USEPA (1999) Health effects from exposure to high levels of sulfate in drinking water study. US Environmental Protection Agency, Office of Water Washington, DC.

  • Ustaoğlu, F., Tepe, Y., & Taş, B. (2020). Assessment of stream quality and health risk in a subtropical Turkey river system: A combined approach using statistical analysis and water quality index. Ecological Indicators, 113, 105815.

    Google Scholar 

  • Vasanthavigar, M., Srinivasamoorthy, K., Vijayaragavan, K., Rajiv Ganthi, R., Chidambaram, S., Anandhan, P., Manivannan, R., & Vasudevan, S. (2010). Application of water quality index for groundwater quality assessment: Thirumanimuttar sub-basin, Tamilnadu, India. Environmental Monitoring and Assessment, 171(1), 595–609.

    CAS  Google Scholar 

  • Vega, M., Pardo, R., Barrado, E., & Debán, L. (1998). Assessment of seasonal and polluting effects on the quality of river water by exploratory data analysis. Water Research, 32(12), 3581–3592.

    CAS  Google Scholar 

  • Vialle, C., Sablayrolles, C., Lovera, M., Jacob, S., Huau, M.-C., & Montrejaud-Vignoles, M. (2011). Monitoring of water quality from roof runoff: Interpretation using multivariate analysis. Water Research, 45(12), 3765–3775.

    CAS  Google Scholar 

  • Vilane, B. R. T., & Dlamini, J. (2016). An assessment of the Mhlambanyoni spring water quality at Sigombeni, Swaziland. Journal of Agricultural Science and Engineering, 2, 40–45.

    Google Scholar 

  • Ward, J. H., Jr. (1963). Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association, 58(301), 236–244.

    Google Scholar 

  • Waterman, M. S., & Smith, T. F. (1978). On the similarity of dendrograms. Journal of Theoretical Biology, 73(4), 789–800.

    CAS  Google Scholar 

  • Watson, S. B., & Lawrence, J. (2003). Overview-drinking water quality and sustainability. Water Quality Research Journal, 38(1), 3–13.

    CAS  Google Scholar 

  • WHO. (2011). Guidelines for drinking-water quality. World Health Organization, 216, 303–304.

    Google Scholar 

  • Wilson, M. B., Zhang, C., & Gandhi, J. (2011). Analysis of inorganic nitrogen and related anions in high salinity water using ion chromatography with tandem UV and conductivity detectors. Journal of Chromatographic Science, 49(8), 596–602.

    CAS  Google Scholar 

  • World Health Organization, WHO. (2004). Guidelines for drinking-water quality (Vol. 1). World Health Organization.

    Google Scholar 

  • Yang, Y.-H., Zhou, F., Guo, H.-C., Sheng, H., Liu, H., Dao, X., & He, C.-J. (2010). Analysis of spatial and temporal water pollution patterns in Lake Dianchi using multivariate statistical methods. Environmental Monitoring and Assessment, 170(1), 407–416.

    CAS  Google Scholar 

  • Zeinalzadeh, K., & Rezaei, E. (2017). Determining spatial and temporal changes of surface water quality using principal component analysis. Journal of Hydrology: Regional Studies, 13, 1–10.

    Google Scholar 

  • Zhang, N., Shen, S.-L., Zhou, A., & Xu, Y.-S. (2019). Investigation on performance of neural networks using quadratic relative error cost function. IEEE Access, 7, 106642–106652.

    Google Scholar 

Download references

Funding

This work is not funded.

Author information

Authors and Affiliations

Authors

Contributions

ME-S is the main author, she provided the data, initialize the writing, and she has implemented the experiments and collaborated to finish the writing. Dr. YS built the model, experiment design, and implementation, and he has finalized the writing. Dr. DA helped in the writing and collaborated to finish the writing.

Corresponding author

Correspondence to Marwa El-Shebli.

Ethics declarations

Conflict of interest

There is any conflict of interest in this work Ethics approval and consent to participate.

Consent for publication

All authors are informed about this submission.

Informed consent

All authors are informed about this submission.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Shebli, M., Sharrab, Y. & Al-Fraihat, D. Prediction and modeling of water quality using deep neural networks. Environ Dev Sustain 26, 11397–11430 (2024). https://doi.org/10.1007/s10668-023-03335-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-023-03335-5

Keywords

Navigation