Skip to main content

Advertisement

Log in

Assessing the combined effect of PV panels’ shading and cool materials on building energy loads in different climates

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

PV panels are vastly used for sustainable electricity generation, while they can also help the environment by improving buildings’ energy consumption. The best placement for PV panels installation in buildings with flat roofs is the roof. When placed on a building's roof, PV panels affect the building's energy loads by shading the roof surface. However, the shading effect of PV panels could be different depending on the roof's thermal properties and surface materials. The combined effect of shading caused by PV panels and cool materials could significantly change the roof surface temperature, and the building energy demand. In light of the lack of studies considering this combined effect, the present study aims to evaluate the energy-saving effects of different roof materials covered with solar PV panels for a typical residential building in four cities with different climate conditions in Iran. Applying a simulation tool, Ladybug Tools have been utilized for determining the building energy loads and PV panels' power generation. The obtained results indicate that PV panels significantly affect the cooling load of the building, especially during peak times. The hottest city, Bandar-Abbas, benefits the most, with a maximum saved energy ratio (SER) of 3.4%, while the coldest city, Ardabil, has the least SER, 0.5%. Additionally, in cold and moderate climates, the highest SER occurs for the lowest R-value and solar absorption roof, while for hot climates, the highest SER occurs for the roofs with the highest R-value and the lowest solar absorption. Overall, the shading effect of PV panels becomes more significant when solar absorption is high, and the roof R-value is low. Despite the decrease in cooling energy load, PV panels might increase the heating load. Depending on the climate, this contradictory effect of the roof's thermal properties and PV panels shading should be considered in the design process of buildings.

Highlights

  • Cities with hot-humid and cold climates have the highest and the lowest SER, respectively.

  • PV shading is more significant on roofs with high solar absorption and low R-value.

  • The effect of PV panels on heating load varies based on climate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and analyzed during the current study are available from the corresponding author upon reasonable request.

Abbreviations

BIPV:

Building Integrated Photo Voltaic

PV:

Photovoltaic

R- value:

Thermal resistance

S :

Solar absorption

SER:

Saved Energy Ratio

References

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Navid Ziaee.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vakilinezhad, R., Ziaee, N. Assessing the combined effect of PV panels’ shading and cool materials on building energy loads in different climates. Environ Dev Sustain 26, 16201–16221 (2024). https://doi.org/10.1007/s10668-023-03293-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-023-03293-y

Keywords

Navigation