Skip to main content

Advertisement

Log in

Chemical upcycling of plastics as a solution to the plastic trash problem for an ideal, circular polymer economy and energy recovery

  • Review
  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

The fact that the majority of the presently utilized plastics are not 100% recyclable has engendered acute environmental issues, induced significant losses to the global economy, and exhausted finite natural resources. Encumbrances to recycling commodity polymers comprehend segregation, adulterants, and degradation of macromolecular structures, the whole of which can pessimistically influence the characteristics of recycled materials. Capturing the value back from plastic waste has been the holy grail of recyclers. A charismatic alternative is to recover high-valued monomers and purify them for polymerization. The burgeoning of chemical recycling processes could appreciably aid the gradation of the present-day linear model of plastic production and consumption—where finite resources are utilized to build products that have a limited lifespan and are then disposed of—to an ideal, sustainable, circular economy that curtails waste and aggrandize resource use. Herein, we proffer a holistic view for perceiving a circular polymer economy based on the chemical recycling approach for sustainability. We briefly review trailblazing techniques to chemically recycle commercial plastics. Accordingly, selected highlights on significant advancement and the technical and environmental benefits attained in the development of repurposing and depolymerization processes are presented. We conclude by discussing the main challenges concerning the current-day industrial reality that grounds it in relevant polymer science, delivering an academic angle as well as an applied one. This journey toward a new plastic future will optimize resource efficiency across chemical value chains and empower a closed-loop, waste-free chemical industry.

Graphical abstract

Illustration of an envisioned plastic value chain to realize our circular economy vision. The review article demonstrates the role of monomer recovery’s role in empowering-loop, waste-free chemical industry. The orange path represents the current situation of the plastic economy, whereas the green path shows how material circulation can be achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

Abbreviations

TRL:

Technology readiness level

LDPE:

Low-density polyethylene

TPA:

Terephthalic acid

HDPE:

High-density polyethylene

EG:

Ethylene glycol

PCL:

Polycaprolactone

PET:

Polyethylene terephthalate

BHET:

Bis(hydroxyethyl) terephthalate

ABS:

Acrylonitrile butadiene styrene

PVC:

Polyvinyl chloride

UV:

Ultraviolet

PLA:

Polylactic acid

DBU:

1,8-Diazabicyclo[5.4.0] undec-7-ene

PHB:

Polyhydroxybutyrate

HIPS:

High impact polystyrene

ABS:

Acrylonitrile butadiene styrene

ΔG p :

Gibbs free energy of polymerization

M:

Monomer

TBD:

Triazabicyclodecene

MSA:

Methanesulfonic acid

References

  • Abdeljaber, A., Zannerni, R., Masoud, W., Abdallah, M., & Rocha-Meneses, L. (2022). Eco-efficiency analysis of integrated waste management strategies based on gasification and mechanical biological treatment. Sustainability., 14(7), 3899.

    Article  CAS  Google Scholar 

  • Aguado, A., Martínez, L., Becerra, L., Arieta-Araunabeña, M., Arnaiz, S., Asueta, A., & Robertson, I. (2014). Chemical depolymerisation of PET complex waste: Hydrolysis vs glycolysis. Journal of Material Cycles and Waste Management, 16(2), 201–210.

    Article  CAS  Google Scholar 

  • Alberti, C., Kessler, J., Eckelt, S., Hofmann, M., Kindler, T. O., Santangelo, N., Fedorenko, E., & Enthaler, S. (2020). Hydrogenative depolymerization of end-of-life poly (bisphenol A carbonate) with in situ generated ruthenium catalysts. ChemistrySelect, 5(14), 4231–4234.

    Article  CAS  Google Scholar 

  • Almeida, B. C., Figueiredo, P., & Carvalho, A. T. (2019). Polycaprolactone enzymatic hydrolysis: A mechanistic study. ACS Omega, 4(4), 6769–6774.

    Article  CAS  Google Scholar 

  • áMc Ilrath, S. P. (2014). Controlled hydrogenative depolymerization of polyesters and polycarbonates catalyzed by ruthenium (II) PNN pincer complexes. Chemical Communications, 50(38), 4884–4887.

    Article  Google Scholar 

  • Amezcua-Allieri, M. A., Sánchez Durán, T., & Aburto, J. (2017). Study of chemical and enzymatic hydrolysis of cellulosic material to obtain fermentable sugars. Journal of Chemistry, 1, 2017.

    Google Scholar 

  • Aminu, I., Nahil, M. A., Williams, P. T. (2022). Hydrogen production by pyrolysis–nonthermal plasma/catalytic reforming of waste plastic over different catalyst support materials. Energy & Fuels.

  • Arturi, K. R., Sokoli, H. U., Søgaard, E. G., Vogel, F., & Bjelić, S. (2018). Recovery of value-added chemicals by solvolysis of unsaturated polyester resin. Journal of Cleaner Production, 1(170), 131–136.

    Article  Google Scholar 

  • Bäckström, E., Odelius, K., & Hakkarainen, M. (2017). Trash to treasure: Microwave-assisted conversion of polyethylene to functional chemicals. Industrial & Engineering Chemistry Research., 56(50), 14814–14821.

    Article  Google Scholar 

  • Bai, B., Jin, H., Zhu, S., Wu, P., Fan, C., & Sun, J. (2019). Experimental investigation on in-situ hydrogenation induced gasification characteristics of acrylonitrile butadiene styrene (ABS) microplastics in supercritical water. Fuel Processing Technology., 1(192), 170–178.

    Article  Google Scholar 

  • Bai, B., Liu, Y., Zhang, H., Zhou, F., Han, X., Wang, Q., & Jin, H. (2020). Experimental investigation on gasification characteristics of polyethylene terephthalate (PET) microplastics in supercritical water. Fuel, 15(262), 116630.

    Article  Google Scholar 

  • Bai, B., Wang, W., & Jin, H. (2020). Experimental study on gasification performance of polypropylene (PP) plastics in supercritical water. Energy, 15(191), 116527.

    Article  Google Scholar 

  • Banu, J. R., Sharmila, V. G., Ushani, U., Amudha, V., & Kumar, G. (2020). Impervious and influence in the liquid fuel production from municipal plastic waste through thermo-chemical biomass conversion technologies-A review. Science of the Total Environment, 20(718), 137287.

    Article  ADS  Google Scholar 

  • Bardhan, P., Deka, A., Bhattacharya, S. S., Mandal, M., & Kataki, R. (2022). Economical aspect in biomass to biofuel production. In: Value-Chain of Biofuels (pp. 395–427). Elsevier. https://doi.org/10.1016/B978-0-12-824388-6.00003-8

    Chapter  Google Scholar 

  • Berkowicz, G., Majka, T. M., & Żukowski, W. (2020). The pyrolysis and combustion of polyoxymethylene in a fluidised bed with the possibility of incorporating CO2. Energy Conversion and Management, 15(214), 112888.

    Article  Google Scholar 

  • Biswas, M. C., Jony, B., Nandy, P. K., Chowdhury, R. A., Halder, S., Kumar, D., Ramakrishna, S., Hassan, M., Ahsan, M. A., Hoque, M. E., & Imam, M. A. (2021). Recent Advancement of Biopolymers and Their Potential Biomedical Applications. Journal of Polymers and the Environment, 13(30), 51–74.

    Google Scholar 

  • Cao, Y., Chen, S. S., Tsang, D. C., Clark, J. H., Budarin, V. L., Hu, C., Wu, K. C., & Zhang, S. (2020). Microwave-assisted depolymerization of various types of waste lignins over two-dimensional CuO/BCN catalysts. Green Chemistry., 22(3), 725–736.

    Article  CAS  Google Scholar 

  • Češarek, U., Pahovnik, D., & Žagar, E. (2020). Chemical recycling of aliphatic polyamides by microwave-assisted hydrolysis for efficient monomer recovery. ACS Sustainable Chemistry & Engineering, 8(43), 16274–16282.

    Article  Google Scholar 

  • Chaabani, C., Weiss-Hortala, E., & Soudais, Y. (2017). Impact of solvolysis process on both depolymerization kinetics of nylon 6 and recycling carbon fibers from waste composite. Waste and Biomass Valorization, 8(8), 2853–2865.

    Article  CAS  Google Scholar 

  • Chamas, A., Moon, H., Zheng, J., Qiu, Y., Tabassum, T., Jang, J. H., Abu-Omar, M., Scott, S. L., & Suh, S. (2020). Degradation rates of plastics in the environment. ACS Sustainable Chemistry & Engineering., 8(9), 3494–3511.

    Article  CAS  Google Scholar 

  • Chandrasekaran, S. R., Avasarala, S., Murali, D., Rajagopalan, N., & Sharma, B. K. (2018). Materials and energy recovery from e-waste plastics. ACS Sustainable Chemistry & Engineering., 6(4), 4594–4602.

    Article  CAS  Google Scholar 

  • Chen, X., Hu, S., Li, L., & Torkelson, J. M. (2020). Dynamic covalent polyurethane networks with excellent property and cross-link density recovery after recycling and potential for monomer recovery. ACS Applied Polymer Materials., 2(5), 2093–2101.

    Article  CAS  Google Scholar 

  • Chinnapan, B. A., Krishnaswamy, M., Xu, H., & Hoque, M. E. (2022). Electrospinning of biomedical nanofibers/nanomembranes: Effects of process parameters. Polymers, 14(18), 3719.

    Article  Google Scholar 

  • Coates, G. W., & Getzler, Y. D. (2020). Chemical recycling to monomer for an ideal, circular polymer economy. Nature Reviews Materials, 5(7), 501–516.

    Article  ADS  CAS  Google Scholar 

  • Cowley, P. R., & Melville, H. W. (1952). The photo-degradation of polymethylmethacrylate I. The mechanism of degradation. In Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 210(1103), 461–481.

  • Czajczyńska, D., Nannou, T., Anguilano, L., Krzyżyńska, R., Ghazal, H., Spencer, N., & Jouhara, H. (2017). Potentials of pyrolysis processes in the waste management sector. Energy Procedia., 1(123), 387–394.

    Article  Google Scholar 

  • da Costa, J. P., Santos, P. S., Duarte, A. C., & Rocha-Santos, T. (2016). (Nano) plastics in the environment–sources, fates and effects. Science of the Total Environment., 1(566), 15–26.

    Article  Google Scholar 

  • Dai, L., Liu, R., & Si, C. (2018). A novel functional lignin-based filler for pyrolysis and feedstock recycling of poly (L-lactide). Green Chemistry, 20(8), 1777–1783.

    Article  CAS  Google Scholar 

  • Datta, J., & Kopczyńska, P. (2016). From polymer waste to potential main industrial products: Actual state of recycling and recovering. Critical Reviews in Environmental Science and Technology, 46(10), 905–946.

    Article  CAS  Google Scholar 

  • Dauvergne, P. (2018). Why is the global governance of plastic failing the oceans? Global Environmental Change, 1(51), 22–31.

    Article  Google Scholar 

  • de Castro, A. M., Carniel, A., Stahelin, D., Junior, L. S., de Angeli, H. H., & de Menezes, S. M. (2019). High-fold improvement of assorted post-consumer poly (ethylene terephthalate)(PET) packages hydrolysis using Humicola insolens cutinase as a single biocatalyst. Process Biochemistry, 1(81), 85–91.

    Article  Google Scholar 

  • Demarteau, J., Olazabal, I., Jehanno, C., & Sardon, H. (2020). Aminolytic upcycling of poly (ethylene terephthalate) wastes using a thermally-stable organocatalyst. Polymer Chemistry., 11(30), 4875–4882.

    Article  CAS  Google Scholar 

  • Diaz Silvarrey, L. S. (2019). Advanced pyrolysis of plastic waste for chemicals, fuel and materials. Doctoral dissertation, Newcastle University.

  • Diaz-Silvarrey, L. S., McMahon, A., & Phan, A. N. (2018). Benzoic acid recovery via waste poly (ethylene terephthalate) (PET) catalytic pyrolysis using sulphated zirconia catalyst. Journal of Analytical and Applied Pyrolysis, 1(134), 621–631.

    Article  Google Scholar 

  • Diaz-Silvarrey, L. S., Zhang, K., & Phan, A. N. (2018). Monomer recovery through advanced pyrolysis of waste high density polyethylene (HDPE). Green Chemistry, 20(8), 1813–1823.

    Article  CAS  Google Scholar 

  • Do, T., Baral, E. R., & Kim, J. G. (2018). Chemical recycling of poly (bisphenol A carbonate): 1, 5, 7-Triazabicyclo [4.4. 0]-dec-5-ene catalyzed alcoholysis for highly efficient bisphenol A and organic carbonate recovery. Polymer, 143, 106–114.

    Article  CAS  Google Scholar 

  • Donaj, P. J., Kaminsky, W., Buzeto, F., & Yang, W. (2012). Pyrolysis of polyolefins for increasing the yield of monomers’ recovery. Waste Management, 32(5), 840–846.

    Article  CAS  PubMed  Google Scholar 

  • Esquer, R., & García, J. J. (2019). Metal-catalysed poly (Ethylene) terephthalate and polyurethane degradations by glycolysis. Journal of Organometallic Chemistry, 1(902), 120972.

    Article  Google Scholar 

  • Foley, E. A., Campanelli, J. R., & Anneaux, B. L. (2018). U.S. Patent Application No. 15/678,272.

  • Fu, L., & Gutekunst, W. R. (2020). Mixing physical organic chemistry with monomer design gives new recyclable materials. Chem., 6(7), 1510–1512.

    Article  CAS  Google Scholar 

  • Garcia, J. M., & Robertson, M. L. (2017). The future of plastics recycling. Science, 358(6365), 870–872.

    Article  ADS  CAS  PubMed  Google Scholar 

  • Geng, Y., Sarkis, J., & Bleischwitz, R. (2019). How to globalize the circular economy. Nature, 565(7738), 153–155.

  • George, N., & Kurian, T. (2014). Recent developments in the chemical recycling of postconsumer poly (ethylene terephthalate) waste. Industrial & Engineering Chemistry Research., 53(37), 14185–14198.

    Article  CAS  Google Scholar 

  • Geyer, R., Jambeck, J. R., & Law, K. L. (2017). Production, use, and the fate of all plastics ever made. Science Advances, 3(7), e1700782.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Gorre, R. C., Jr., & Tumolva, T. P. (2020). Solvent and non-solvent selection for the chemical recycling of waste Polyethylene (PE) and Polypropylene (PP) metallized film packaging materials. E&ES, 463(1), 012070.

    Google Scholar 

  • Guerre, M., Taplan, C., Winne, J. M., & Du Prez, F. E. (2020). Vitrimers: Directing chemical reactivity to control material properties. Chemical Science., 11(19), 4855–4870.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hahladakis, J. N., Velis, C. A., Weber, R., Iacovidou, E., & Purnell, P. (2018). An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling. Journal of Hazardous Materials., 15(344), 179–199.

    Article  Google Scholar 

  • Hasanzadeh, R., Mojaver, M., Azdast, T., & Park, C. B. (2022). A novel systematic multi-objective optimization to achieve high-efficiency and low-emission waste polymeric foam gasification using response surface methodology and TOPSIS method. Chemical Engineering Journal, 15(430), 132958.

    Article  Google Scholar 

  • Hassanzadeh, S., Aminlashgari, N., & Hakkarainen, M. (2014). Chemo-selective high yield microwave assisted reaction turns cellulose to green chemicals. Carbohydrate Polymers., 4(112), 448–457.

    Article  Google Scholar 

  • Hatti-Kaul, R., Nilsson, L. J., Zhang, B., Rehnberg, N., & Lundmark, S. (2020). Designing biobased recyclable polymers for plastics. Trends in Biotechnology, 38(1), 50–67.

    Article  CAS  PubMed  Google Scholar 

  • Hillmyer, M. A., Tessie, R. P., Marie, E. V., Deborah, K. S., Alexander, M. R. M., Derek, C. B., Christopher, W. M., Jay, Z. W., & Frank, S. B. (2018). Recovery of monomer from polyurethane materials by depolymerization. In U.S. Patent 10,160,741.

  • Hofmann, M., Sundermeier, J., Alberti, C., & Enthaler, S. (2020). Zinc (II) acetate catalyzed depolymerization of poly (ethylene terephthalate). ChemistrySelect, 5(32), 10010–10014.

    Article  CAS  Google Scholar 

  • Hong, M., & Chen, E. Y. (2017). Chemically recyclable polymers: A circular economy approach to sustainability. Green Chemistry., 19(16), 3692–3706.

    Article  CAS  Google Scholar 

  • Honma, T., & Sato, T. (2020). Hydrolysis kinetics of PMDA/ODA polyimide for monomer recovery using sodium hydroxide in high-temperature water. The Journal of Supercritical Fluids., 1(166), 105037.

    Article  Google Scholar 

  • Hopewell, J., Dvorak, R., & Kosior, E. (2009). Plastics recycling: Challenges and opportunities. Philosophical Transactions of the Royal Society B: Biological Sciences., 364(1526), 2115–2126.

    Article  CAS  Google Scholar 

  • Hosen, M. S., Hoque, M. E., Rahman, M. Z., & Sagadevan, S. (2022). Aging effects on mechanical properties of biocomposites with recycled polymers. Composites Science and Technology., 31, 317–333.

    Article  Google Scholar 

  • Hossain, R., Islam, M. T., Shanker, R., Khan, D., Locock, K. E., Ghose, A., Schandl, H., Dhodapkar, R., & Sahajwalla, V. (2022). Plastic waste management in india: challenges, opportunities, and roadmap for circular economy. Sustainability., 14(8), 4425.

    Article  CAS  Google Scholar 

  • Iannone, F., Casiello, M., Monopoli, A., Cotugno, P., Sportelli, M. C., Picca, R. A., Cioffi, N., Dell’Anna, M. M., & Nacci, A. (2017). Ionic liquids/ZnO nanoparticles as recyclable catalyst for polycarbonate depolymerization. Journal of Molecular Catalysis a: Chemical, 1(426), 107–116.

    Article  Google Scholar 

  • Islam, H., Hoque, M. E., & Santulli, C. (2022a). Polymer nanocomposites for biomedical applications. In Advanced polymer nanocomposites: Science, technology and Applications (pp. 171–204). Elsevier.

  • Islam, H., Hoque, M. E., & Hasan, M. H. (2022b). Biodegradability of polyolefins: Processes and procedures. In Biodegradability of conventional plastics: Opportunities, challenges, and misconceptions (pp. 121–154). Elsevier.

  • Jeya, G., Rajalakshmi, S., Gayathri, K. V., Priya, P., Sakthivel, P., & Sivamurugan, V. (2022). A bird’s eye view on sustainable management solutions for non-degradable plastic wastes. In Organic Pollutants (pp. 503–534). Springer.

  • Kamimura, A., Shiramatsu, Y., & Kawamoto, T. (2019). Depolymerization of polyamide 6 in hydrophilic ionic liquids. Green Energy & Environment., 4(2), 166–170.

    Article  Google Scholar 

  • Karl, V. H., Escasa, R. I. I. C., Alindayu, G. M., Riña, G., Marlon, L., Jr., & Mopon, T. T. (2020). Performance of D-Limonene/Ethanol in the Selective Recovery of PE from LDPE/VMPET/PET Laminates. Key Engineering Materials, 833, 134–138. https://doi.org/10.4028/www.scientific.net/KEM.833.134

    Article  Google Scholar 

  • Keijer, T., Bakker, V., & Slootweg, J. C. (2019). Circular chemistry to enable a circular economy. Nature Chemistry, 11(3), 190–195.

    Article  ADS  CAS  PubMed  Google Scholar 

  • Kijo-Kleczkowska, A., & Gnatowski, A. (2022). Recycling of plastic waste, with particular emphasis on thermal methods. Energies, 15(6), 2114.

    Article  CAS  Google Scholar 

  • Knappich, F., Klotz, M., Schlummer, M., Wölling, J., & Mäurer, A. (2019). Recycling process for carbon fiber reinforced plastics with polyamide 6, polyurethane and epoxy matrix by gentle solvent treatment. Waste Management., 15(85), 73–81.

    Article  Google Scholar 

  • Knez, Ž, Pantić, M., Cör, D., Novak, Z., & Hrnčič, M. K. (2019). Are supercritical fluids solvents for the future? Chemical Engineering and Processing-Process Intensification., 1(141), 107532.

    Article  Google Scholar 

  • Krishnakumar, B., Sanka, R. P., Binder, W. H., Parthasarthy, V., Rana, S., & Karak, N. (2020). Vitrimers: Associative dynamic covalent adaptive networks in thermoset polymers. Chemical Engineering Journal., 1(385), 123820.

    Article  Google Scholar 

  • Kumagai, S., Hosaka, T., Kameda, T., & Yoshioka, T. (2016). Pyrolysis and hydrolysis behaviors during steam pyrolysis of polyimide. Journal of Analytical and Applied Pyrolysis., 1(120), 75–81.

    Article  Google Scholar 

  • Larrain, M., Van Passel, S., Thomassen, G., Kresovic, U., Alderweireldt, N., Moerman, E., & Billen, P. (2020). Economic performance of pyrolysis of mixed plastic waste: Open-loop versus closed-loop recycling. Journal of Cleaner Production., 10(270), 122442.

    Article  Google Scholar 

  • Li, B., Xue, F., Wang, J., Ding, E., & Li, Z. (2017). Process analysis of controllable polycarbonate depolymerization in ethylene glycol. Progress in Rubber Plastics and Recycling Technology., 33(1), 39–50.

    Article  Google Scholar 

  • Li, Q., Ma, S., Wang, S., Yuan, W., Xu, X., Wang, B., Huang, K., & Zhu, J. (2019). Facile catalyst-free synthesis, exchanging, and hydrolysis of an acetal motif for dynamic covalent networks. Journal of Materials Chemistry a., 7(30), 18039–18049.

    Article  CAS  Google Scholar 

  • Liguori, F., Moreno-Marrodán, C., & Barbaro, P. (2021). Valorisation of plastic waste via metal-catalysed depolymerisation. Beilstein Journal of Organic Chemistry, 17(1), 589–621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, F., Guo, J., Zhao, P., Gu, Y., Gao, J., & Liu, M. (2019). Facile synthesis of DBU-based protic ionic liquid for efficient alcoholysis of waste poly (lactic acid) to lactate esters. Polymer Degradation and Stability, 1(167), 124–129.

    Article  Google Scholar 

  • Liu, M., Guo, J., Gu, Y., Gao, J., & Liu, F. (2018). Versatile imidazole-anion-derived ionic liquids with unparalleled activity for alcoholysis of polyester wastes under mild and green conditions. ACS Sustainable Chemistry & Engineering, 6(11), 15127–15134.

    Article  CAS  Google Scholar 

  • Liu, X., Bouxin, F. P., Fan, J., Budarin, V. L., Hu, C., & Clark, J. H. (2021). Microwave-assisted catalytic depolymerization of lignin from birch sawdust to produce phenolic monomers utilizing a hydrogen-free strategy. Journal of Hazardous Materials, 15(402), 123490.

    Article  Google Scholar 

  • Liu, X., de Vries, J. G., & Werner, T. (2019). Transfer hydrogenation of cyclic carbonates and polycarbonate to methanol and diols by iron pincer catalysts. Green Chemistry., 21(19), 5248–5255.

    Article  CAS  Google Scholar 

  • Lu, L., Zhong, H., Wang, T., Wu, J., Jin, F., & Yoshioka, T. (2020). A new strategy for CO2 utilization with waste plastics: Conversion of hydrogen carbonate into formate using polyvinyl chloride in water. Green Chemistry., 22(2), 352–358.

    Article  CAS  Google Scholar 

  • Ma, N., Song, Y., Han, F., Waterhouse, G. I., Li, Y., & Ai, S. (2020). Highly selective hydrogenation of 5-hydroxymethylfurfural to 2, 5-dimethylfuran at low temperature over a Co–N–C/NiAl-MMO catalyst. Catalysis Science & Technology., 10(12), 4010–4018.

    Article  CAS  Google Scholar 

  • Marimuthu, A., & Madras, G. (2008). Continuous distribution kinetics for microwave-assisted oxidative degradation of poly (alkyl methacrylates). AIChE Journal., 54(8), 2164–2173.

    Article  ADS  CAS  Google Scholar 

  • Mastellone, M. L. (2019). A feasibility assessment of an integrated plastic waste system adopting mechanical and thermochemical conversion processes. Resources, Conservation & Recycling: X., 1(4), 100017.

    Google Scholar 

  • Matuszewska, A., Hańderek, A., Biernat, K., & Bukrejewski, P. (2019). Thermolytic conversion of waste polyolefins into fuels fraction with the use of reactive distillation and hydrogenation with the syngas under atmospheric pressure. Energy & Fuels, 33(2), 1363–1371.

    Article  CAS  Google Scholar 

  • Merrington, A. (2017). Recycling of plastics. In Applied Plastics Engineering Handbook.

  • Motasemi, F., & Afzal, M. T. (2013). A review on the microwave-assisted pyrolysis technique. Renewable and Sustainable Energy Reviews., 1(28), 317–330.

    Article  Google Scholar 

  • Nim, B., Opaprakasit, M., Petchsuk, A., & Opaprakasit, P. (2020). Microwave-assisted chemical recycling of polylactide (PLA) by alcoholysis with various diols. Polymer Degradation and Stability, 1(181), 109363.

    Article  Google Scholar 

  • Norouzi, O., Mazhkoo, S., Haddadi, S. A., Arjmand, M., Dutta, A. (2022). Hydrothermal liquefaction of green macroalgae cladophora glomerata: effect of functional groups on the catalytic performance of graphene oxide/polyurethane composite. Catalysis Today.

  • Nunes, C. S., da Silva, M. J., da Silva, D. C., dos Reis, F. A., Rosa, F. A., Rubira, A. F., & Muniz, E. C. (2014). PET depolymerisation in supercritical ethanol catalysed by [Bmim][BF 4]. Rsc Advances., 4(39), 20308–20316.

    Article  ADS  CAS  Google Scholar 

  • Oliveira, M., Ramos, A., Ismail, T. M., Monteiro, E., & Rouboa, A. (2022). A review on plasma gasification of solid residues: Recent advances and developments. Energies, 15(4), 1475.

    Article  CAS  Google Scholar 

  • Onwudili, J. A., Insura, N., & Williams, P. T. (2009). Composition of products from the pyrolysis of polyethylene and polystyrene in a closed batch reactor: Effects of temperature and residence time. Journal of Analytical and Applied Pyrolysis, 86(2), 293–303.

    Article  CAS  Google Scholar 

  • Onwudili, J. A., & Williams, P. T. (2016). Catalytic supercritical water gasification of plastics with supported RuO2: A potential solution to hydrocarbons–water pollution problem. Process Safety and Environmental Protection., 1(102), 140–149.

    Article  Google Scholar 

  • Othman, R., Ramya, R., Latif, N. H., Sulaiman, W. S., Hatta, F. A., Ali, Q. A., & Jusoh, N. H. (2022). Mitigation of the micro-and nanoplastic using phycoremediation technology. In Impact of plastic waste on the marine biota (pp. 183–208). Springer

  • Padhan, R. K. (2018). Chemical Depolymerization of polyurethane foams via combined chemolysis methods. In Recycling of polyurethane foams (pp. 89–96). William Andrew Publishing.

  • Park, K. B., Jeong, Y. S., & Kim, J. S. (2019). Activator-assisted pyrolysis of polypropylene. Applied Energy, 1(253), 113558.

    Article  Google Scholar 

  • Park, R., Sridhar, V., & Park, H. (2020). Taguchi method for optimization of reaction conditions in microwave glycolysis of waste PET. Journal of Material Cycles and Waste Management., 22(3), 664–672.

    Article  CAS  Google Scholar 

  • Parrott, M. (2019). U.S. Patent No. 10,508,186. U.S. Patent and Trademark Office.

  • Payne, J., McKeown, P., & Jones, M. D. (2019). A circular economy approach to plastic waste. Polymer Degradation and Stability, 1(165), 170–181.

    Article  Google Scholar 

  • Pohjakallio, M., Vuorinen, T., & Oasmaa, A. (2020). Chemical routes for recycling—dissolving, catalytic, and thermochemical technologies. In Plastic Waste and Recycling (pp. 359–384). Elsevier. https://doi.org/10.1016/B978-0-12-817880-5.00013-X

    Chapter  Google Scholar 

  • Quaranta, E., Minischetti, C. C., & Tartaro, G. (2018). Chemical recycling of poly (bisphenol A carbonate) by glycolysis under 1, 8-diazabicyclo [5.4. 0] undec-7-ene catalysis. ACS Omega, 3(7), 7261–7268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quartinello, F., Vajnhandl, S., Volmajer Valh, J., Farmer, T. J., Vončina, B., Lobnik, A., Herrero Acero, E., Pellis, A., & Guebitz, G. M. (2017). Synergistic chemo-enzymatic hydrolysis of poly (ethylene terephthalate) from textile waste. Microbial Biotechnology., 10(6), 1376–1383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raheem, A. B., Noor, Z. Z., Hassan, A., Abd Hamid, M. K., Samsudin, S. A., & Sabeen, A. H. (2019). Current developments in chemical recycling of post-consumer polyethylene terephthalate wastes for new materials production: A review. Journal of Cleaner Production., 10(225), 1052–1064.

    Article  Google Scholar 

  • Rahimi, A., & García, J. M. (2017). Chemical recycling of waste plastics for new materials production. Nature Reviews Chemistry., 1(6), 1–1.

    Article  Google Scholar 

  • Rajendran, K., Lin, R., Wall, D. M., & Murphy, J. D. (2019). Influential aspects in waste management practices. In Sustainable resource recovery and zero waste approaches (pp. 65–78). Elsevier.

  • Reznichenko, A., & Harlin, A. (2022). Next generation of polyolefin plastics: Improving sustainability with existing and novel feedstock base. SN Applied Sciences, 4(4), 1–5.

    Article  Google Scholar 

  • Royte E. (2019). Is burning plastic waste a good idea. National Geographic, viewed.

  • Santos, E., Rijo, B., Lemos, F., & Lemos, M. A. (2019). A catalytic reactive distillation approach to high density polyethylene pyrolysis–Part 1–Light olefin production. Chemical Engineering Journal, 15(378), 122077.

    Article  Google Scholar 

  • Sasse, F., & Emig, G. (1998). Chemical recycling of polymer materials. Chemical Engineering & Technology: Industrial Chemistry-Plant Equipment-Process Engineering-Biotechnology, 21(10), 777–789.

    Article  CAS  Google Scholar 

  • Scé, F., Cano, I., Martin, C., Beobide, G., Castillo, O., & de Pedro, I. (2019). Comparing conventional and microwave-assisted heating in PET degradation mediated by imidazolium-based halometallate complexes. New Journal of Chemistry., 43(8), 3476–3485.

    Article  Google Scholar 

  • Schmidt, J., Wei, R., Oeser, T., Belisário-Ferrari, M. R., Barth, M., Then, J., & Zimmermann, W. (2016). Effect of Tris, MOPS, and phosphate buffers on the hydrolysis of polyethylene terephthalate films by polyester hydrolases. FEBS Open Bio, 6(9), 919–927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schneiderman, D. K., & Hillmyer, M. A. (2017). 50th anniversary perspective: There is a great future in sustainable polymers. Macromolecules, 50(10), 3733–3749.

    Article  ADS  CAS  Google Scholar 

  • Sharuddin, S. D., Abnisa, F., Daud, W. M., & Aroua, M. K. (2016). A review on pyrolysis of plastic wastes. Energy Conversion and Management., 1(115), 308–326.

    Article  Google Scholar 

  • Shen, M., Cao, H., & Robertson, M. L. (2020). Hydrolysis and solvolysis as benign routes for the end-of-life management of thermoset polymer waste. Annual Review of Chemical and Biomolecular Engineering, 11, 183–201.

    Article  CAS  PubMed  Google Scholar 

  • Shi, K., Jing, J., Song, L., Su, T., & Wang, Z. (2020). Enzymatic hydrolysis of polyester: Degradation of poly (ε-caprolactone) by Candida antarctica lipase and Fusarium solani cutinase. International Journal of Biological Macromolecules, 1(144), 183–189.

    Article  Google Scholar 

  • Shie, J. L., Chen, Y. H., Chang, C. Y., Lin, J. P., Lee, D. J., & Wu, C. H. (2002). Thermal pyrolysis of poly (vinyl alcohol) and its major products. Energy & Fuels, 16(1), 109–118.

    Article  CAS  Google Scholar 

  • Shin, S. R., Kim, H. N., Liang, J. Y., Lee, S. H., & Lee, D. S. (2019). Sustainable rigid polyurethane foams based on recycled polyols from chemical recycling of waste polyurethane foams. Journal of Applied Polymer Science., 136(35), 47916.

    Article  Google Scholar 

  • Siddiqui, M. N., Kolokotsiou, L., Vouvoudi, E., Redhwi, H. H., Al-Arfaj, A. A., & Achilias, D. S. (2020). Depolymerization of PLA by phase transfer catalysed alkaline hydrolysis in a microwave reactor. Journal of Polymers and the Environment., 28(6), 1664–1672.

    Article  CAS  Google Scholar 

  • Sikarwar, V. S., Hrabovský, M., Van Oost, G., Pohořelý, M., & Jeremiáš, M. (2020). Progress in waste utilization via thermal plasma. Progress in Energy and Combustion Science., 1(81), 100873.

    Article  Google Scholar 

  • Sokoli, H. U., Simonsen, M. E., Nielsen, R. P., Henriksen, J., Madsen, M. L., Pedersen, N. H., & Søgaard, E. G. (2016). Characterization of the liquid products from hydrolyzed epoxy and polyester resin composites using solid-phase microextraction and recovery of the monomer phthalic acid. Industrial & Engineering Chemistry Research, 55(34), 9118–9128.

    Article  CAS  Google Scholar 

  • Solis, M. (2018). Potential of chemical recycling to improve the recycling of plastic waste.

  • Somoza-Tornos, A., Gonzalez-Garay, A., Pozo, C., Graells, M., Espuña, A., & Guillén-Gosálbez, G. (2020). Realizing the potential high benefits of circular economy in the chemical industry: Ethylene monomer recovery via polyethylene pyrolysis. ACS Sustainable Chemistry & Engineering, 8(9), 3561–3572.

    Article  CAS  Google Scholar 

  • Soong, Y. H., Sobkowicz, M. J., & Xie, D. (2022). Recent advances in biological recycling of polyethylene terephthalate (PET) plastic wastes. Bioengineering, 9, 3.

    Article  Google Scholar 

  • Stadler, B. M., Hinze, S., Tin, S., & de Vries, J. G. (2019). Hydrogenation of polyesters to polyether polyols. Chemsuschem, 12(17), 4082–4087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stanislaus, A., Bhotla, V. R. G., Sreenivasan, P. S., & BELL, P. W. (2016). U.S. Patent Application No. 15/049,370.

  • Tana, T., Zhang, Z., Beltramini, J., Zhu, H., Ostrikov, K. K., Bartley, J., & Doherty, W. (2019). Valorization of native sugarcane bagasse lignin to bio-aromatic esters/monomers via a one pot oxidation–hydrogenation process. Green Chemistry, 21(4), 861–873.

    Article  CAS  Google Scholar 

  • Teotia, M., Chauhan, M., Khan, A., & Soni, R. K. (2020). Facile synthesis, characterization, and ab-initio DFT simulations of energy efficient NN′ dialkyl 1, 4 benzene dicarboxamide monomers recovered from PET bottle waste. Journal of Applied Polymer Science, 137(43), 49321.

    Article  CAS  Google Scholar 

  • Thunman, H., Vilches, T. B., Seemann, M., Maric, J., Vela, I. C., Pissot, S., & Nguyen, H. N. (2019). Circular use of plastics-transformation of existing petrochemical clusters into thermochemical recycling plants with 100% plastics recovery. Sustainable Materials and Technologies., 1(22), e00124.

    Article  Google Scholar 

  • Tsintzou, G. P., & Achilias, D. S. (2013). Chemical recycling of polycarbonate based wastes using alkaline hydrolysis under microwave irradiation. Waste and Biomass Valorization, 4(1), 3–7.

    Article  CAS  Google Scholar 

  • Ügdüler, S., Van Geem, K. M., Roosen, M., Delbeke, E. I., & De Meester, S. (2020). Challenges and opportunities of solvent-based additive extraction methods for plastic recycling. Waste Management., 1(104), 148–182.

    Article  Google Scholar 

  • Van Zee, N. J., & Nicolaÿ, R. (2020). Vitrimers: Permanently crosslinked polymers with dynamic network topology. Progress in Polymer Science., 1(104), 101233.

    Google Scholar 

  • Vasudeo, R. A., Abitha, V. K., Vinayak, K., Jayaja, P., & Gaikwad, S. (2016). Sustainable development through feedstock recycling of plastic wastes. Macromolecular Symposia, 362(1), 39–51. https://doi.org/10.1002/masy.201500107

    Article  CAS  Google Scholar 

  • Vela, F. J., Palos, R., Bilbao, J., Arandes, J. M., & Gutiérrez, A. (2020). Effect of co-feeding HDPE on the product distribution in the hydrocracking of VGO. Catalysis Today, 15(353), 197–203.

    Article  Google Scholar 

  • Vollmer, I., Jenks, M. J., Roelands, M. C., White, R. J., van Harmelen, T., de Wild, P., van Der Laan, G. P., Meirer, F., Keurentjes, J. T., & Weckhuysen, B. M. (2020). Beyond mechanical recycling: Giving new life to plastic waste. Angewandte Chemie International Edition, 59(36), 15402–15423.

    Article  CAS  PubMed  Google Scholar 

  • Voss, R., Lee, R. P., & Fröhling, M. (2022). Chemical recycling of plastic waste: comparative evaluation of environmental and economic performances of gasification-and incineration-based treatment for lightweight packaging waste. Circular Economy and Sustainability., 23, 1–30.

    Google Scholar 

  • Wang, Z., Yang, R., Xu, G., Liu, T., & Wang, Q. (2022). Chemical upcycling of poly (bisphenol A carbonate) plastic catalyzed by ZnX2 via an amino-alcoholysis strategy. ACS Sustainable Chemistry & Engineering, 10(14), 4529–4537.

  • Wang, L., Nelson, G. A., Toland, J., & Holbrey, J. D. (2020). Glycolysis of PET using 1, 3-dimethylimidazolium-2-carboxylate as an organocatalyst. ACS Sustainable Chemistry & Engineering., 8(35), 13362–13368.

    Article  CAS  Google Scholar 

  • Wang, Q., Lu, X., Zhou, X., Zhu, M., He, H., & Zhang, X. (2013). 1-Allyl-3-methylimidazolium halometallate ionic liquids as efficient catalysts for the glycolysis of poly (ethylene terephthalate). Journal of Applied Polymer Science, 129(6), 3574–3581.

    Article  CAS  Google Scholar 

  • Wang, W., Meng, L., & Huang, Y. (2014). Hydrolytic degradation of monomer casting nylon in subcritical water. Polymer Degradation and Stability., 1(110), 312–317.

    Article  Google Scholar 

  • Wu, D., & Hakkarainen, M. (2014). A closed-loop process from microwave-assisted hydrothermal degradation of starch to utilization of the obtained degradation products as starch plasticizers. ACS Sustainable Chemistry & Engineering., 2(9), 2172–2181.

    Article  CAS  Google Scholar 

  • Yang, X., Odelius, K., & Hakkarainen, M. (2014). Microwave-assisted reaction in green solvents recycles PHB to functional chemicals. ACS Sustainable Chemistry & Engineering., 2(9), 2198–2203.

    Article  CAS  Google Scholar 

  • Yao, Y., Chau, E., & Azimi, G. (2019). Supercritical fluid extraction for purification of waxes derived from polyethylene and polypropylene plastics. Waste Management., 1(97), 131–139.

    Article  Google Scholar 

  • Yardley, R. E., Kenaree, A. R., & Gillies, E. R. (2019). Triggering depolymerization: Progress and opportunities for self-immolative polymers. Macromolecules, 52(17), 6342–6360.

    Article  ADS  CAS  Google Scholar 

  • Yasuda, N., Wang, Y., Tsukegi, T., Shirai, Y., & Nishida, H. (2010). Quantitative evaluation of photodegradation and racemization of poly (l-lactic acid) under UV-C irradiation. Polymer Degradation and Stability., 95(7), 1238–1243.

    Article  CAS  Google Scholar 

  • Yu, Y. X., Ying, X. U., Wang, T. J., Zhang, Q., Zhang, X. H., & Zhang, X. (2013). In-situ hydrogenation of lignin depolymerization model compounds to cyclohexanol. Journal of Fuel Chemistry and Technology., 41(4), 443–447.

    Article  CAS  Google Scholar 

  • Yunita, I., Putisompon, S., Chumkaeo, P., Poonsawat, T., & Somsook, E. (2019). Effective catalysts derived from waste ostrich eggshells for glycolysis of post-consumer PET bottles. Chemical Papers, 73(6), 1547–1560.

    Article  CAS  Google Scholar 

  • Zhu, J. B., Watson, E. M., Tang, J., & Chen, E. Y. (2018). A synthetic polymer system with repeatable chemical recyclability. Science, 360(6387), 398–403.

    Article  ADS  CAS  PubMed  Google Scholar 

  • Zhu, Y., Romain, C., & Williams, C. K. (2016). Sustainable polymers from renewable resources. Nature, 540(7633), 354–362.

    Article  ADS  CAS  PubMed  Google Scholar 

  • Zou, W., Dong, J., Luo, Y., Zhao, Q., & Xie, T. (2017). Dynamic covalent polymer networks: From old chemistry to modern day innovations. Advanced Materials., 29(14), 1606100.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Department of Chemistry, Netaji Subhas University of Technology, Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhasha Sharma.

Ethics declarations

Conflict of interest

There is no conflict to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shekhar, S., Hoque, M.E., Bajpai, P.K. et al. Chemical upcycling of plastics as a solution to the plastic trash problem for an ideal, circular polymer economy and energy recovery. Environ Dev Sustain 26, 5629–5664 (2024). https://doi.org/10.1007/s10668-023-03003-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-023-03003-8

Keywords

Navigation