Skip to main content

Advertisement

Log in

Application of GIS-based analytical hierarchy process for assessment and mapping of flood risk zone in the lower Ramganga River Basin, Western Gangetic Plain, India

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

The Indo-Ganga–Brahmaputra plain is one of the world’s most vulnerable areas to catastrophic flood events. The severity and frequency of floods in this region have grown dramatically during the last few decades. As a result, an authentic map providing detailed spatial information on floods is required for reducing future flood disasters. This sort of map can be an invaluable tool for displaying flood-prone areas and determining the magnitude of flood risk. The Ramganga river (~ 200 km length) flowing in the western Gangetic plain was chosen for this investigation. This river is well known for its channel movement and flood hazards. The analytical hierarchy process model in GIS ambiance was used in this work to quantify and map flood risk in the lower Ramganga river basin. Six hazard-forming factors, namely relief, distance from active channel, slope, geomorphology, rainfall, and vegetation, and seven vulnerability factors, namely population density, household density, female density, road density, land use/land cover, female literacy, and total literacy, were chosen to determine flood risk zone (FRZ). According to the findings, about 35.29 per cent of the basin’s total area is in a high to very high flood risk zone, where flooding occurs at one- to three-year recurring intervals. The flood risk map has been validated using ground truth data, and the Kappa index has been computed, indicating a high degree of accuracy for the FRZ thematic classes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abdullha, L., Jaafar, S., & Tai, I. (2013). Ranking of human capital indicators using analytic hierarchy process. Procedia - Social and Behavioural Sciences, 107, 22–28.

    Article  Google Scholar 

  • Ali, S. A., Khatun, R., Ahmad, A., & Ahmad, S. N. (2019). Application of GIS-based analytic hierarchy process and frequency ratio model to flood vulnerable mapping and risk area estimation at Sundarban region, India. Model Earth System Environment, 5, 1083–1102. https://doi.org/10.1007/s40808-019-00593-z

    Article  Google Scholar 

  • Aydin, M. C., & Sevgi Birincioğlu, E. (2022). Flood risk analysis using gis-based analytical hierarchy process: A case study of Bitlis Province. Applied Water Science, 12(6), 1–10.

    Article  Google Scholar 

  • Balica, S. F., Douben, N., & Wright, N. G. (2009). Flood vulnerability indices at varying spatial scales. Water Science and Technology, 60(10), 2571–2580.

    Article  CAS  PubMed  Google Scholar 

  • Carmone, F. J., Kara, A., & Zanakis, S. H. (1997). A Monte Carlo investigation of incomplete pairwise comparison matrices in AHP. European Journal of Operational Research, 102, 538–553.

    Article  Google Scholar 

  • Census of India. (2011). Primary census abstract. Govt. of India.

    Google Scholar 

  • Chakraborty, S., & Mukhopadhyay, S. (2019). Assessing food risk using analytical hierarchy process (AHP) and geographical information system (GIS): Application in Coochbehar district of West Bengal, India. Natural Hazards, 99, 247–274.

    Article  Google Scholar 

  • Chen, Y. R., Yeh, C. H., & Yu, B. (2011). Integrated application of the analytic hierarchy process and the geographic information system for flood risk assessment and flood plain management in Taiwan. Natural Hazards, 59, 1261–1276.

    Article  Google Scholar 

  • Dandapat, K., & Panda, G. K. (2017). Flood vulnerability analysis and risk assessment using analytical hierarchy process. Modeling Earth Systems and Environment, 3(4), 1627–1646. https://doi.org/10.1007/s40808-017-0388-7

    Article  Google Scholar 

  • Dang, N. M., Babel, M. S., & Luong, H. T. (2011). Evaluation of flood risk parameters in the day river flood diversion area, Red River Delta, Vietnam. Natural Hazards, 56, 169–194.

    Article  Google Scholar 

  • Danumah, J. H., Odai, S. N., Saley, B. M., Szarzynski, J., Thiel, M., Kwaku, A., Kouame, F. K., & Akpa, L. Y. (2016). Flood risk assessment and mapping in Abidjan District using multi-criteria analysis (AHP) model and geoinformation techniques (Cote d’ivoire). Geoenvironmental Disasters, 3(1), 10.

    Article  Google Scholar 

  • Das, S. (2020). Flood susceptibility mapping of the Western Ghat coastal belt using multi-source geospatial data and analytical hierarchy process (AHP). Remote Sensing Applications: Society and Environment, 20(November), 100379.

    Article  Google Scholar 

  • Dhar, O. N., & Nandargi, S. (1998). Floods in the Indian rivers and their meteorological aspects. In V. S. Kale (Ed.), Flood studies in India, Memoir 41 (pp. 1–25). Geological Survey of India.

    Google Scholar 

  • Directive, E. U. (2007). 60/EC of the European parliament and of the council of 23 October 2007 on the assessment and management of flood risks. European Commission.

    Google Scholar 

  • Emmanouloudis, D., Myronidis, D., & Ioannou, K. (2008). Assessment of flood risk in Thasos Island with the combined use of multicriteria analysis AHP and geographical information system. Innov Appl Info Agric Environ, 2, 103–115.

    Google Scholar 

  • Fernandez, D. S., & Lutz, M. A. (2010). Urban flood hazard zoning in Tucumán Province, Argentina, using GIS and multicriteria decision analysis. Engineering Geology, 111, 90–98.

    Article  Google Scholar 

  • Ghosh, A., & Kar, S. K. (2018). Application of analytical hierarchy process (AHP) for food risk assessment: A case study in Malda district of West Bengal, India. Natural Hazards, 94, 349–368. https://doi.org/10.1007/s11069-018-3392-y

    Article  ADS  Google Scholar 

  • Hirabayashi, Y., Mahendran, R., Koirala, S., Konoshima, L., Yamazaki, D., Watanabe, S., Kim, H., & Kanae, S. (2013). Global flood risk under climate change. Nature Climate Change, 3, 816–821. https://doi.org/10.1038/nclimate1911

    Article  ADS  Google Scholar 

  • IPCC. (2007). Climate change 2007: Synthesis report Contribution of working groups I. II and III to the fourth assessment report of the intergovernmental panel on climate change (p. 104). IPCC.

    Google Scholar 

  • IPCC. (2012). Managing the risks of extreme events and disasters to advance climate change adaptation. Cambridge Univ Press.

    Google Scholar 

  • Kale, V. S. (1998). Monsoon floods in India: A hydro-geomorphic perspective. In V. S. Kale (Ed.), Flood studies in India, Memoir 41 (pp. 195–218). Geological Survey of India.

    Google Scholar 

  • Kale, V. S. (2008). Himalayan catastrophe that engulfed North Bihar. Journal Geological Society of India, 72, 713–719.

    Google Scholar 

  • Kale, V. S. (2012). On the link between extreme floods and excess monsoon epochs in South Asia. Climate Dynamics, 39, 1107–1122. https://doi.org/10.1007/s00382-011-1251-6

    Article  ADS  Google Scholar 

  • Kamp, U., Owen, L. A., Growley, B. J., & Khattak, G. A. (2010). Back analysis of landslide susceptibility zonation mapping for the 2005 Kashmir earthquake: An assessment of the reliability of susceptibility zoning maps. Natural Hazards, 54, 1–25.

    Article  Google Scholar 

  • Kasperson, J. X., Kasperson, R. E., & Turner, B. L. (2009). Vulnerability of coupled human-ecological systems to global environmental change. In A. Dieckmann, T. Dietz, & C. C. Jaeger (Eds.), Human footprints on the global environment (pp. 231–294). MIT Press.

    Chapter  Google Scholar 

  • Kazakis, N., Kougias, I., & Patsialis, T. (2015). Assessment of flood hazard areas at a regional scale using an index-based approach and Analytical Hierarchy Process: Application in Rhodope-Evros region, Greece. Science of the Total Environment, 538, 555–563. https://doi.org/10.1016/j.scitotenv.2015.08.055

    Article  ADS  CAS  PubMed  Google Scholar 

  • Khan, A. U., Rawat, B. P. (1992). Quaternary geology and geomorphology of a part of Ganga basin in parts of Bareilly, Badaun, Shahjahanpur and Pilibhit district, Uttar Pradesh. G.S.I.

  • Khan, M. Y. A., Daityari, S., & Chakrapani, G. J. (2016). Factors responsible for temporal and spatial variations in water and sediment discharge in Ramganga River, Ganga Basin, India. Environmental Earth Science, 75, 283.

    Article  ADS  Google Scholar 

  • Liu, J. G., & Mason, P. J. (2009). Essential image processing and GIS for remote sensing. Wiley.

    Book  Google Scholar 

  • Luu, C., Meding, J. V., & Kanjanabootra, S. (2018). Assessing flood hazard using flood marks and analytic hierarchy process approach: A case study for the 2013 flood event in Quang Nam, Vietnam. Natural Hazards, 90, 1031–1050. https://doi.org/10.1007/s11069-017-3083-0

    Article  Google Scholar 

  • Meyer, V., Scheuer, S., & Haase, D. (2008). A multicriteria approach for flood risk mapping exemplified at the Mulde river, Germany. Natural Hazards, 48, 17–39. https://doi.org/10.1007/s11069-008-9244-4

    Article  Google Scholar 

  • Mishra, K., & Sinha, R. (2020). Flood risk assessment in the Kosi megafan using multi-criteria decision analysis: A hydro-geomorphic approach. Geomorphology, 350, 106861.

    Article  Google Scholar 

  • Mukherjee, R. (2022). Quantitative assessment of channel planform dynamics and meander bend evolution of the Ramganga River, Ganga Basin, India. In P. K. Shit, B. Bera, A. Islam, S. Ghosh, & G. S. Bhunia (Eds.), Drainage basin dynamics (pp. 89–113). Springer.

    Chapter  Google Scholar 

  • Mukherjee, R., & Bilas, R. (2019). Flood frequency analysis of Ramganga River Basin in Western Gangetic Plain, India. National Geographical Journal of India, 35(3), 286–299.

    Google Scholar 

  • Mukherjee, R., Bilas, R., Biswas, S. S., & Pal, R. (2017). Bank erosion and accretion dynamics explored by GIS techniques in lower Ramganga river, Uttar Pradesh, India. Spatial Information Research. https://doi.org/10.1007/s41324-016-0074-2

    Article  Google Scholar 

  • Mukolwe, M. M. (2016). Flood hazard mapping: Uncertainty and its value in the decision-making process (p. 134). CRC Press/Balkema.

    Google Scholar 

  • Ogatoa, G. S., Bantiderb, A., Abebec, K., & Genelettid, D. (2020). Geographic information system (GIS)-Based multicriteria analysis of flooding hazard and risk in Ambo Town and its watershed, West shoa zone, oromia regional State. Ethiopia Journal of Hydrology: Regional Studies, 27, 100659.

    Google Scholar 

  • Ouma, Y. O., & Tateishi, R. (2014). Urban flood vulnerability and risk mapping using integrated multi-parametric AHP and GIS: Methodological overview and case study assessment. Water, 6, 1515–1545.

    Article  Google Scholar 

  • Papaioannou, G., Vasiliades, L., & Loukas, A. (2014). Multi-criteria analysis framework for potential flood prone areas mapping. Water Resour Manag, 29, 399–418. https://doi.org/10.1007/s11269-014-0817-6

    Article  Google Scholar 

  • Pathan, A. I., Girish Agnihotri, P., Said, S., & Patel, D. (2022). AHP and TOPSIS based flood risk assessment- a case study of the Navsari City, Gujarat, India. Environmental Monitoring and Assessment, 194, 509.

    Article  PubMed  Google Scholar 

  • Penki, R., Basina, S. S., Tanniru, S. R. (2022). Application of geographical information system-based analytical hierarchy process modeling for flood susceptibility mapping of Krishna District in Andhra Pradesh.https://doi.org/10.21203/rs.3.rs-1399020/v1.PPR:PPR470200

  • Radwan, F., Alazba, A. A., & Mossad, A. (2018). Flood risk assessment and mapping using AHP in arid and semiarid regions. Acta Geophysica, 67, 215–229. https://doi.org/10.1007/s11600-018-0233-z

    Article  ADS  Google Scholar 

  • Rahmati, O., Zeinivand, H., & Besharat, M. (2016). Flood hazard zoning in Yasooj region, Iran, using GIS and multi-criteria decision analysis. Geomatics, Natural Hazards and Risk, 7(3), 1000–1017.

    Article  Google Scholar 

  • Rao, D. P., Bhanumurty, V., Rao, G. S., & Manjusri, P. (1998). Remote sensing and GIS in flood management in India. In V. S. Kale (Ed.), Flood studies in India, Memoir 41 (pp. 195–218). Geological Survey of India.

    Google Scholar 

  • Rimba, A. B., Setiawati, M. D., Sambah, A. B., & Miura, F. (2017). Physical flood vulnerability mapping applying geospatial techniques in Okazaki City, Aichi Prefecture, Japan. Urban Science, 1(7), 1–22.

    Google Scholar 

  • Roy, N. (2009). Morphodynamics and late quaternary valley-interfluve statigraphy of the western Ganga Plains: Rhythmic sequences and monsoon forcing. Unpublished PhD thesis, Dept. of Civil Engineering, IIT Kanpur.

  • Roy, N., & Sinha, R. (2007). Understanding confluence dynamics in the alluvial Ganga– Ramganga valley, India: An integrated approach using geomorphology and hydrology. Geomorphology, 92, 182–197.

    Article  ADS  Google Scholar 

  • Saaty, T. (1977). A scaling method for priorities in hierarchical structures. Journal of Mathematical Psychology, 15, 234–281.

    Article  MathSciNet  Google Scholar 

  • Saaty, T. L. (1980). The analytic hierarchy process. McGraw-Hill.

    Google Scholar 

  • Saaty, T. L. (1990). How to make a decision: The analytic hierarchy process. European Journal of Operational Research, 48(1), 9–26.

    Article  Google Scholar 

  • Saaty, T. L. (2008). Decision making with the analytic hierarchy process. International Journal of Services Sciences, 1, 83–98.

    Article  Google Scholar 

  • Sanyal, J., & Lu, X. X. (2006). Remote sensing and GIS-based flood vulnerability assessment of human settlements: A case study of Gangetic West Bengal, India. Hydrological Processes, 19, 3699–3716. https://doi.org/10.1002/hyp.5852

    Article  ADS  Google Scholar 

  • Sar, N., Chatterjee, S., & Adhikari, M. D. (2015). Integrated remote sensing and GIS based spatial modelling through analytical hierarchy process (AHP) for water logging hazard, vulnerability and risk assessment in Keleghai river basin, India. Modeling Earth Systems and Environment, 1, 31. https://doi.org/10.1007/s40808-015-0039-9

    Article  Google Scholar 

  • Seejata, K., Yodying, A., Wongthadam, T., Mahavik, N., & Tantanee, S. (2018). Assessment of flood hazard areas using analytical hierarchy process over the lower Yom Basin, Sukhothai Province. Procedia Engineering, 212, 340–347.

    Article  Google Scholar 

  • Sharma, S., & Mahajan, A. K. (2019). A comparative assessment of information value, frequency ratio and analytical hierarchy process models for landslide susceptibility mapping of a Himalayan watershed, India. Bulletin of Engineering Geology and the Environment, 78(4), 2431–2448.

    Article  Google Scholar 

  • Sharma, S. V. S., Roy, P. S., Chakravarthi, V., & Srinivasa Rao, G. (2018). Flood risk assessment using multi-criteria analysis: A case study from Kopili river basin, Assam, India. Geomatics, Natural Hazards and Risk, 9(1), 79–93. https://doi.org/10.1080/19475705.2017.1408705

    Article  Google Scholar 

  • Sinha, R. (2009). The Great avulsion of Kosi on 18 August 2008. Current Science, 97(3), 429–433.

    Google Scholar 

  • Sinha, R., Bapalu, G. V., Singh, L. K., & Rath, B. (2008). Flood risk analysis in the Kosi river basin, using multiparametric approach of analytical hierarchy process (AHP). Journal of the Indian Society of Remote Sensing, 36, 335–349.

    Article  Google Scholar 

  • Souissi, D., Zouhri, L., Hammami, S., Msaddek, M. H., Zghibi, A., & Dlala, M. (2020). GIS-based MCDM–AHP modeling for flood susceptibility mapping of arid areas, southeastern Tunisia. Geocarto International, 35(9), 991–1017.

    Article  ADS  Google Scholar 

  • Stefanidis, S., & Stathis, D. (2013). Assessment of flood hazard based on natural and anthropogenic factors using analytic hierarchy process (AHP). Natural Hazards, 68, 569–585.

    Article  Google Scholar 

  • Tang, Z., Zhang, H., Yi, S., & Xiao, Y. (2018). Assessment of flood susceptible areas using spatially explicit, probabilistic multi-criteria decision analysis. Journal of Hydrology, 558, 144–158. https://doi.org/10.1016/j.jhydrol.2018.01.033

    Article  ADS  Google Scholar 

  • Tiwari, R. C. (2007). Geography of India (p. 840). Prayag Pustak Bhawan.

    Google Scholar 

  • UNISDR. (2009). Terminology on disaster risk reduction. Geneva, Switzerland. Retrieved February 26, 2021, from http://ww.unisdr.org/files/7817_UNISDRTerminilogyEnglish.pdf

  • United Nations, Department of Humanitarian Affairs. (1992). Internationally agreed glossary of basic terms related to disaster management (DNA/93/36). United Nations.

    Google Scholar 

  • Wang, Q., & Li, W. (2017). A GIS-based comparative evaluation of analytical hierarchy process and frequency ratio models for landslide susceptibility mapping. Physical Geography, 38(4), 318–337.

    Article  Google Scholar 

  • Wang, Y., Li, Z., Tang, Z., & Zeng, G. (2011). A GIS-based spatial multi-criteria approach for flood risk assessment in the Dongting Lake Region, Hunan, central China. Water Resources Management, 25, 3465–3484.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rameswar Mukherjee.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, R., Deb, P. Application of GIS-based analytical hierarchy process for assessment and mapping of flood risk zone in the lower Ramganga River Basin, Western Gangetic Plain, India. Environ Dev Sustain 26, 6163–6193 (2024). https://doi.org/10.1007/s10668-023-02957-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-023-02957-z

Keywords

Navigation