Skip to main content

Advertisement

Log in

Prediction of crop yield using climate variables in the south-western province of India: a functional artificial neural network modeling (FLANN) approach

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

To meet the demand of the growing population, there exists pressure on food production. In this context, appropriate prediction of crop yield helps in agricultural production planning. Given the inability of the traditional linear models to provide satisfactory prediction performance, there is a need to develop a crop yield prediction model that is simple in complexity, accurate in prediction, and less time-consuming during training and validation phases. Keeping these objectives in view, the present paper focuses on building an adaptive, low complexity, and accurate nonlinear model for the prediction of crop yield. A time series dataset for the period 1991–2012 of Karnataka, a southwestern state of India, is used for yield prediction. An empirical nonlinear relation between crop yield and the four independent attributes has been obtained from the proposed ANN model. The independent attributes employed are total rainfall, the cumulative distribution of temperature, the proportion of irrigated land, and the average amount of fertilizer used. It is demonstrated that the developed model exhibits better prediction accuracy, less root mean square error in the range of 0.07–0.14, less mean square error in the range of 0.01–0.04, and mean absolute error in the range of 0.07–0.15 compared to its corresponding linear regression model. It is recommended that the proposed ANN model can also be applied to predict other agricultural products of the same or other geographical regions of the globe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data used in this study can be available upon request.

References

  • Abrougui, K., Gabsi, K., Mercatoris, B., Khemis, C., Amami, R., & Chehaibi, S. (2019). Prediction of organic potato yield using tillage systems and soil properties by artificial neural network (ANN) and multiple linear regressions (MLR). Soil and Tillage Research, 190, 202–208.

    Article  Google Scholar 

  • Adisa, O. M., Botai, J. O., Adeola, A. M., Hassen, A., Botai, C. M., Darkey, D., & Tesfamariam, E. (2019). Application of artificial neural network for predicting maize production in South Africa. Sustainability, 11(4), 1145.

    Article  Google Scholar 

  • Akbar, A., Kuanar, A., Patnaik, J., Mishra, A., & Nayak, S. (2018). Application of artificial neural network modeling for optimization and prediction of essential oil yield in turmeric (Curcuma longa L.). Computers and Electronics in Agriculture, 148, 160–178.

    Article  Google Scholar 

  • Alvarez, R. (2009). Predicting average regional yield and production of wheat in the Argentine Pampas by an artificial neural network approach. European Journal of Agronomy, 30(2), 70–77.

    Article  Google Scholar 

  • Amaratunga, V., Wickramasinghe, L., Perera, A., Jayasinghe, J., & Rathnayake, U. (2020). Artificial neural network to estimate the paddy yield prediction using climatic data. Mathematical Problems in Engineering, 2020, 1–11.

    Article  Google Scholar 

  • Arshad, M., Amjath-Babu, T. S., Krupnik, T. J., Aravindakshan, S., Abbas, A., Kachele, H., & Müller, K. (2017). Climate variability and yield risk in South Asia’s rice–wheat systems: Emerging evidence from Pakistan. Paddy and Water Environment, 15(2), 249–261.

    Article  Google Scholar 

  • Bhende, M. J. (2013). Agricultural profile of Karnataka state. Agricultural Development and Rural Transformation Centre Institute for Social and Economic Change, Bangalore.

  • Blagojević, M., Blagojević, M., & Ličina, V. (2016). Web-based intelligent system for predicting apricot yields using artificial neural networks. Scientia Horticulturae., 213, 125–131.

    Article  Google Scholar 

  • Carleton, T. A. (2017). Crop-damaging temperatures increase suicide rates in India. Proceedings of the National Academy of Sciences., 114(33), 8746–8751.

    Article  CAS  Google Scholar 

  • Crane-Droesch, A. (2018). Machine learning methods for crop yield prediction and climate change impact assessment in agriculture. Environmental Research Letters, 13(11), 114003.

    Article  Google Scholar 

  • Dang, C. Liu, Y. Yue, H. Qian, J. and Zhu, R. 2020. Autumn Crop Yield Prediction using Data-Driven Approaches:-Support Vector Machines, Random Forest, and Deep Neural Network Methods. Canadian Journal of Remote Sensing. 1–20.

  • Drummond, S. T., Sudduth, K. A., Joshi, A., Birrell, S. J., & Kitchen, N. R. (2003). Statistical and neural methods for site–specific yield prediction. Transactions of the ASAE, 46(1), 5.

    Article  Google Scholar 

  • Fisher, A. C., Hanemann, W. M., Roberts, M. J., & Schlenker, W. (2012). The economic impacts of climate change: Evidence from agricultural output and random fluctuations in weather: Comment. American Economic Review, 102(7), 3749–3760.

    Article  Google Scholar 

  • Fortin, J. G., Anctil, F., Parent, L., & Bolinder, M. A. (2011). Site specific early season potato yield forecast by neural network in Eastern Canada. Precision Agriculture, 12(6), 905–923.

    Article  Google Scholar 

  • Godfray, H. C. J., Beddington, J. R., Crute, I. R., Haddad, L., Lawrence, D., Muir, J. F., & Toulmin, C. (2010). Food security: The challenge of feeding 9 billion people. Science, 327(5967), 812–818.

    Article  CAS  Google Scholar 

  • Gonzalez-Sanchez, A., Frausto-Solis, J., & Ojeda-Bustamante, W. (2014). Attribute selection impact on linear and nonlinear regression models for crop yield prediction. The Scientific World Journal, 2014, 1–10.

    Article  Google Scholar 

  • Gopal, P. M., & Bhargavi, R. (2019). A novel approach for efficient crop yield prediction. Computers and Electronics in Agriculture., 165, 104968.

    Article  Google Scholar 

  • Gregory, P. J., & George, T. S. (2011). Feeding nine billion: The challenge to sustainable crop production. Journal of Experimental Botany, 62, 5233–5239.

    Article  CAS  Google Scholar 

  • Guhathakurta, P., Rajeevan, M., Sikka, D. R., & Tyagi, A. (2015). Observed changes in southwest monsoon rainfall over India during 1901–2011. International Journal of Climatology, 35(8), 1881–1898.

    Article  Google Scholar 

  • Gupta, R., Somanathan, E., & Dey, S. (2017). Global warming and local air pollution have reduced wheat yields in India. Climatic Change, 140(3), 593–604.

    Article  Google Scholar 

  • Irmak, A., Jones, J. W., Batchelor, W. D., Irmak, S., Boote, K. J., & Paz, J. O. (2006). Artificial neural network model as a data analysis tool in precision farming. T ASABE, 49(6), 2027–2037.

    Article  Google Scholar 

  • Jena, P. R., & Majhi, R. (2021). An application of artificial neural network classifier to analyze the behavioral traits of smallholder farmers in Kenya. Evolutionary Intelligence, 14(2), 281–291.

    Article  Google Scholar 

  • Ji, B., Sun, Y., Yang, S., & Wan, J. (2007). Artificial neural networks for rice yield prediction in mountainous regions. The Journal of Agricultural Science, 145(3), 249–261.

    Article  Google Scholar 

  • Kalli, R., & Jena, P. R. (2020). Impact of climate change on crop yields: Evidence from irrigated and dry land cultivation in semi-arid region of India. Journal of Environmental Accounting and Management., 8(1), 19–30.

    Article  Google Scholar 

  • Kalli, R., & Jena, P. R. (2021). Combining agriculture, social and climate indicators to classify vulnerable regions in the Indian semi-arid regions. Journal of Water and Climate Change, 13(2), 542–556.

    Article  Google Scholar 

  • Kalli, R., & Jena, P. R. (2022). How large is the farm income loss due to climate change? Evidence from India. China Agricultural Economic Review, 14(2), 331–348.

    Article  Google Scholar 

  • Khaki, S., & Wang, L. (2019). Crop yield prediction using deep neural networks. Frontiers in Plant Science, 10, 621.

    Article  Google Scholar 

  • Lobell, D. B., & Burke, M. B. (2010). On the use of statistical models to predict crop yield responses to climate change. Agricultural and Forest Meteorology, 150(11), 1443–1452.

    Article  Google Scholar 

  • Majhi, R., Panda, G., & Sahoo, G. (2009). Development and performance evaluation of FLANN based model for forecasting of stock markets. Expert Systems with Applications, 36(3), 6800–6808.

    Article  Google Scholar 

  • Mendelsohn, R. (2008). The impact of climate change on agriculture in developing countries. Journal of Natural Resources Policy Research, 1(1), 5–19.

    Article  Google Scholar 

  • Mendelsohn, R. (2014). The impact of climate change on agriculture in Asia. Journal of Integrative Agriculture, 13(4), 660–665.

    Article  Google Scholar 

  • Mendelsohn, R., Nordhaus, W. D., & Shaw, D. (1994). The Impact of global warming on agriculture: A Ricardian analysis. The American Economic Review, 84(4), 753–771.

    Google Scholar 

  • Pai, D. S., Sridhar, L., Badwaik, M. R., & Rajeevan, M. (2015). Analysis of the daily rainfall events over India using a new long period (1901–2010) high resolution (0.25× 0.25) gridded rainfall data set. Climate Dynamics, 45(3–4), 755–776.

    Article  Google Scholar 

  • Pao, Y. 1989. Adaptive pattern recognition and neural networks.

  • Patra, J. C., Pal, R. N., Chatterji, B. N., & Panda, G. (1999). Identification of nonlinear dynamic systems using functional link artificial neural networks. IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), 29(2), 254–262.

    Article  CAS  Google Scholar 

  • Roel, A., & Plant, R. E. (2004). Factors underlying yield variability in two California rice fields. Agronomy Journal, 96, 1481–1494.

    Article  Google Scholar 

  • Safa, M., & Samarasinghe, S. (2011). Determination and modelling of energy consumption in wheat production using neural networks: “A case study in Canterbury province, New Zealand.” Energy, 36(8), 5140–5147.

    Article  Google Scholar 

  • Sanghi, A., & Mendelsohn, R. (2008). The impacts of global warming on farmers in Brazil and India. Global Environmental Change, 18(4), 655–665.

    Article  Google Scholar 

  • Saxena, R., Vanga, S. K., Wang, J., Orsat, V., & Raghavan, V. (2018). Millets for food security in the context of climate change: A review. Sustainability, 10(7), 2228.

    Article  Google Scholar 

  • Schlenker, W., & Roberts, M. J. (2006). Nonlinear effects of weather on corn yields. Review of Agricultural Economics, 28(3), 391–398.

    Article  Google Scholar 

  • Schlenker, W., & Roberts, M. J. (2009). Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate change. Proceedings of the National Academy of Sciences, 106(37), 15594–15598.

    Article  CAS  Google Scholar 

  • Schlenker, W., Hanemann, W. M., & Fisher, A. C. (2005). Will U.S. agriculture really benefit from global warming? Accounting for irrigation in the hedonic approach. American Economic Review, 95(1), 395–406.

    Article  Google Scholar 

  • Schlenker, W., Hanemann, W. M., & Fisher, A. C. (2006). The impact of global warming on US agriculture: An econometric analysis of optimal growing conditions. Review of Economics and Statistics, 88(1), 113–125.

    Article  Google Scholar 

  • Shook, J., Gangopadhyay, T., Wu, L., Ganapathysubramanian, B., Sarkar, S., & Singh, A. K. (2021). Crop yield prediction integrating genotype and weather variables using deep learning. PLoS ONE, 16(6), e0252402.

    Article  CAS  Google Scholar 

  • Srivastava, A. K., Rajeevan, M., & Kshirsagar, S. R. (2009). Development of a high resolution daily gridded temperature data set (1969–2005) for the Indian region. Atmospheric Science Letters., 10(4), 249–254.

    Google Scholar 

  • Sultan, B., Guan, K., Kouressy, M., Biasutti, M., Piani, C. H., & GL. and Lobell, DB. (2014). Robust features of future climate change impacts on sorghum yields in West Africa. Environmental Research Letters, 9(10), 104006.

    Article  Google Scholar 

  • Taheri-Rad, A., Khojastehpour, M., Rohani, A., Khoramdel, S., & Nikkhah, A. (2017). Energy flow modeling and predicting the yield of Iranian paddy cultivars using artificial neural networks. Energy, 135, 405–412.

    Article  CAS  Google Scholar 

  • Tantalaki, N., Souravlas, S., & Roumeliotis, M. (2019). Data-driven decision making in precision agriculture: The rise of big data in agricultural systems. Journal of Agricultural & Food Information, 20(4), 344–380.

    Article  Google Scholar 

  • Traore, S., Zhang, L., Guven, A., & Fipps, G. (2020). Rice yield response forecasting tool (YIELDCAST) for supporting climate change adaptation decision in Sahel. Agricultural Water Management, 239, 106242.

    Article  Google Scholar 

  • Tian, X., Engel, B. A., Qian, H., Hua, E., Sun, S., & Wang, Y. (2021). Will reaching the maximum achievable yield potential meet future global food demand? Journal of Cleaner Production, 294, 126285.

    Article  Google Scholar 

  • Wang, P., Zhang, Z., Song, X., Chen, Y., Wei, X., Shi, P., & Tao, F. (2014). Temperature variations and rice yields in China: Historical contributions and future trends. Climatic Change, 124(4), 777–789.

    Article  Google Scholar 

  • Widrow, B., & Stearns, S. (2002). Adaptive signal processing (p. 2002). Pearson Education.

    Google Scholar 

Download references

Funding

This study is funded by Scheme for Promotion of Academic Research and Collaboration (SPARC) project, Ministry of Education, Government of India (Grant No. P-302).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pradyot Ranjan Jena.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Ethical approval

Not Applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jena, P.R., Majhi, B., Kalli, R. et al. Prediction of crop yield using climate variables in the south-western province of India: a functional artificial neural network modeling (FLANN) approach. Environ Dev Sustain 25, 11033–11056 (2023). https://doi.org/10.1007/s10668-022-02517-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-022-02517-x

Keywords

Navigation