Skip to main content

Advertisement

Log in

Environmental effects of behavior growth under green development

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

This paper introduces the vitality of science and technology innovation and the ability to coordinate science and technology strength of green development, builds green innovation knowledge system, studies the new endogenous growth law driven by green innovation knowledge system under the active, conscious and autonomous practice of green low-carbon behavior has become a common form. This paper constructs a green development equilibrium model of economic system from the aspects of production, household and government intervention and discusses the relationship between economic growth and environmental quality driven by green development behavior. In the production part, the green innovation knowledge system becomes endogenous factor of production under the stimulation of vitality of science and technology innovation and integrates into the production of green low-carbon behavior goods. In the consumption part, the household utility function is given from the aspects of environmental quality, carbon emission and consumption. Through empirical analysis and research, the environmental effects which are cognitive dissonance effect and loss aversion effect can be obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abbas, J., & Sağsan, M. (2019). Impact of knowledge management practices on green innovation and corporate sustainable development: a structural analysis. Journal of Cleaner Production, 229, 611–620.

    Article  Google Scholar 

  • Andreoni, V. (2019). Environmental taxes: Drivers behind the revenue collected. Journal of Cleaner Production, 221, 17–26.

    Article  Google Scholar 

  • Apak, S., & Atay, E. (2015). Global competitiveness in the EU through green innovation technologies and knowledge production. Procedia-Social and Behavioral Sciences, 181, 207–217.

    Article  Google Scholar 

  • Arfi, W. B., Hikkerova, L., & Sahut, J. (2017). External knowledge sources, green innovation and performance. Technological Forecasting and Social Change, 129, 210–220.

    Article  Google Scholar 

  • Bai, Y., Wang, J. Y., & Jiao, J. L. (2021). A framework for determining the impacts of a multiple relationship network on green innovation. Sustainable Production and Consumption, 27, 471–484.

    Article  Google Scholar 

  • Battistoni, G., Genco, M., Marsilio, M., Pancotti, C., Rossi, S., & Vignetti, S. (2016). Cost-benefit analysis of applied research infrastructure. Evidence from health care. Technological Forecasting and Social Change, 112, 79–91.

    Article  Google Scholar 

  • Bashir, M. F., Ma, B. J., Shahbaz, M., Shahzad, U., & Vo, X. V. (2021). Unveiling the heterogeneous impacts of environmental taxes on energy consumption and energy intensity: Empirical evidence from OECD countries. Energy, 226, 120366.

    Article  Google Scholar 

  • Belenzon, S. (2006). Basic Research and Sequential Innovation. CEP Discussion Papers.

  • Bi, K. X., & Shen, N. (2016). Transmission mechanism of knowledge spillover in manufacturing green innovation system. Academic Exchange, 4, 7.

    Google Scholar 

  • Cai, Y. F., Li, X. J., & Meng, D. H. (2019). Mechanism of basic research on technological innovation- demonsrtation from power battery. Management of Scientific Research, 40(6), 65–76.

    Google Scholar 

  • Carbonnier, C. (2014). The incidence of non-linear price-dependent consumption taxes. Journal of Public Economics, 118, 111–119.

    Article  Google Scholar 

  • Cassiman, B., Veugelers, R., & Arts, S. (2018). Mind the gap: Capturing value from basic research through combining mobile inventors and partnerships. Research Policy, 47, 1811–1824.

    Article  Google Scholar 

  • Chen, X. (2020). Research on the change of global science and technology innovation pattern and China’s potential. Macroeconomics, 9, 16.

    Google Scholar 

  • Chen, Z. L., Wang, G. H., & Niu, W. Y. (2013). Economic growth model and empirical analysis under the constraints of energy and environment. The Practice and Understanding of Mathematics, 43(18), 46–53.

    CAS  Google Scholar 

  • Chen, Y. X., & Guo, Z. (2020). Promoting the high-quality development of applied basic research in China. Theoretical Vision, 7, 5.

    CAS  Google Scholar 

  • Chiroleu-Assouline, M., & Fodha, M. (2014). From regressive pollution taxes to progressive environmental tax reforms. European Economic Review, 69, 126–142.

    Article  Google Scholar 

  • Chu, H., & Lai, C. C. (2014). Abatement R&D, market imperfections, and environmental policy in an endogenous growth model. Journal of Economic Dynamics and Control, 41, 20–37.

    Article  Google Scholar 

  • Czarnitzki, D., & Thorwarth, S. (2012). Productivity effects of basic research in low-tech and high-tech industries. Research Policy, 41, 1555–1564.

    Article  Google Scholar 

  • Ding, K. (2009). On the structure and function of green innovation system. Scientific and Technological Progress and Countermeasures, 26(15), 4.

    Google Scholar 

  • Eichner, T., & Pethig, R. (2015). Unilateral consumption-based carbon taxes and negative leakage. Resource and Energy Economics, 40, 127–142.

    Article  Google Scholar 

  • Emami, I. T., Mollahassani, P. M., Kalhori, M. R. N., & Deilami, M. (2021). Short-run economic–environmental impacts of carbon tax on bulk electric systems. Sustainable Energy, Grids and Networks, 26, 100480.

    Article  Google Scholar 

  • Evans, G. (1998). Growth cycles. America Economic Review, 88(3), 495–515.

    Google Scholar 

  • Fukuda, K. (2018). Effects of trade liberalization on growth and welfare through basic and applied researches. Journal of Macroeconomics. https://doi.org/10.1016/j.jmacro.2018.08.011

    Article  Google Scholar 

  • Foulds, G. A. (1963). A theory of cognitive dissonance. The British Journal of Psychiatry, 109(458), 164–165.

    Article  Google Scholar 

  • Gersbach, H., Sorger, G., & Amon, C. (2018). Hierarchical growth: Basic and applied research. Journal of Economic Dynamics and Control, 90, 434–459.

    Article  Google Scholar 

  • Gersbach, H., & Schneider, M. (2015). On the global supply of basic research. Journal of Monetary Economics, 75, 123–137.

    Article  Google Scholar 

  • Harmon-Jones, E. (2012). Cognitive Dissonance Theory. Encyclopedia of Human Behavior (Second Edition), 207(4), 543–549. https://doi.org/10.1007/978-3-319-28099-8_1121-1

  • Higón, D. A. (2016). In-house versus external basic research and first-to-market innovations. Research Policy, 45, 816–829.

    Article  Google Scholar 

  • Hong, Y. X. (2011). Scientific and technological innovation and innovative economy. Management World, 7, 1–8.

    Google Scholar 

  • Hsu, C. C., Zhang, Y. Q., Ch, P., Aqdas, R., Chupradit, S., & Nawaz, A. (2021). A step towards sustainable environment in China: The role of eco-innovation renewable energy and environmental taxes. Journal of Environmental Management, 299, 113609.

    Article  CAS  Google Scholar 

  • Hu, H. S., Dong, W. H., & Zhou, Q. (2021). A comparative study on the environmental and economic effects of a resource tax and carbon tax in China: Analysis based on the computable general equilibrium model. Energy Policy, 156, 112460.

    Article  CAS  Google Scholar 

  • Hu, X. H., Liu, Y., Yang, L., Shi, Q., Zhang, W., & Chao, Z. (2018). SO2 emission reduction decomposition of environmental tax based on different consumption tax refunds. Journal of Cleaner Production, 186(10), 997–1010.

    Article  Google Scholar 

  • Jin, P. Z., Peng, C., & Song, M. L. (2019). Macroeconomic uncertainty, high-level innovation, and urban green development performance in China. China Economic Review, 55, 1–18.

    Article  Google Scholar 

  • Khan, S. A. R., Ponce, P., & Yu, Z. (2021). Technological innovation and environmental taxes toward a carbon-free economy: An empirical study in the context of COP-21. Journal of Environmental Management, 298, 113418.

    Article  CAS  Google Scholar 

  • Li, F. S., Xu, X. L., Li, Z. W., Du, P. C., & Ye, J. F. (2021). Can low-carbon technological innovation truly improve enterprise performance? The case of Chinese manufacturing companies. Journal of Cleaner Production., 293, 125949.

    Article  Google Scholar 

  • Li, J. H. (2017). Research on the synergy of green development and innovative development. China Market, 10, 14–17.

    Google Scholar 

  • Li, G., & Masui, T. (2019). Assessing the impacts of China’s environmental tax using a dynamic computable general equilibrium model. Journal of Cleaner Production, 208, 316–324.

    Article  Google Scholar 

  • Li, Z., & Wang, S. N. (2021). Industrial innovation effect of basic research and applied research. Journal of Wuhan University, 74(5), 91–104.

    Google Scholar 

  • Li, L. X., Zhang, S., Cao, X. L., & Zhang, Y. Q. (2021). Assessing economic and environmental performance of multi-energy sharing communities considering different carbon emission responsibilities under carbon tax policy. Journal of Cleaner Production, 328, 129466.

    Article  Google Scholar 

  • Mehleb, R. I., Kallis, G., & Zografos, C. (2021). A discourse analysis of yellow-vest resistance against carbon taxes. Environmental Innovation and Societal Transitions, 40, 382–394.

    Article  Google Scholar 

  • Meyer, J. (2014). Chapter 3: The Theory of Risk and Risk Aversion. Handbook of the Economics of Risk and Uncertainty. 1, 99–133.

  • National Bureau of Statistics of the People’s Republic of China. (2021). China Statistical Yearbook. China Statistics Press.

  • Niu, T., Yao, X., Shao, S., Li, D., & Wang, W. (2018). Environmental tax shocks and carbon emissions: An estimated DSGE model. Structural Change and Economic Dynamics, 47, 9–17.

    Article  Google Scholar 

  • Ouyang, X. L., Li, Q., & Du, K. R. (2020). How does environmental regulation promote technological innovations in the industrial sector? Evidence from Chinese provincial panel data. Energy Policy, 139, 111310.

    Article  Google Scholar 

  • Prettner, K., & Werner, K. (2016). Why it pays off to pay us well: The impact of basic research on economic growth and welfare. Research Policy, 45, 1075–1090.

    Article  Google Scholar 

  • Pfister, C., Koomen, M., Harhoff, D., & Backes-Gellner, U. (2021). Regional innovation effects of applied research institutions. Research Policy, 50(4), 104197.

    Article  Google Scholar 

  • Ren, J., Chen, X., & Hu, J. (2020). The effect of production-versus consumption-based emission tax under demand uncertainty. International Journal of Production Economics, 219, 82–98.

    Article  Google Scholar 

  • Roh, T., Lee, K., & Yang, J. Y. (2021). How do intellectual property rights and government support drive a firm’s green innovation? The mediating role of open innovation. Journal of Cleaner Production, 317, 128422.

    Article  Google Scholar 

  • Salter, A. J., & Martin, B. R. (2001). The economic benefits of publicly funded basic research: A critical review. Research Policy, 30, 509–532.

    Article  Google Scholar 

  • Safi, A., Chen, Y. Y., Wahab, S., Zheng, L., & Rjoub, H. (2021). Does environmental taxes achieve the carbon neutrality target of G7 economies? Evaluating the importance of environmental R&D. Journal of Environmental Management, 293, 112908.

    Article  Google Scholar 

  • Sun, Z., & Xu, X. L. (2017). Frontier technology gap and innovation effect of scientific research-who plays a more important role in basic research and applied research. China Industrial Economics, 3, 5–23.

    Google Scholar 

  • Tan, Z., Wu, Y. F., Gu, Y. F., Liu, T. T., Wang, W., & Liu, X. M. (2021). An overview on implementation of environmental tax and related economic instruments in typical countries. Journal of Cleaner Production, 17, 129688.

    Google Scholar 

  • Teng, T. W., Sun, R., & Hu, S. L. (2019). Coupling coordination and spatial correlation between scientific and technological innovation and green development in Yangtze river economic belt. Resources and Environment in the Yangtze Basin, 28(11), 38–49.

    Google Scholar 

  • Thompson, M. (2008). Complementarities and costly investment in a growth model. Journal of Economic, 94(3), 231–240.

    Article  Google Scholar 

  • Thompson, M. (2018). Social capital, innovation and economic growth. Journal of Behavioral and Experimental Economics, 73, 46–52.

    Article  Google Scholar 

  • Wan, B. Y., Tian, L. X., Zhu, N. P., Gu, L. Q., & Zhang, G. Y. (2018). A new endogenous growth model for green low-carbon behavior and its comprehensive effects. Applied Energy, 230, 1332–1346.

    Article  Google Scholar 

  • Wang, K. H., Umar, M., Akram, R., & Caglar, E. (2020). Is technological innovation making world “Greener”? An evidence from changing growth story of China. Technological Forecasting and Social Change, 165, 120516.

    Article  Google Scholar 

  • Wang, J. R., Xue, Y. J., Sun, X. L., & Yang, J. (2020). Green learning orientation, green knowledge acquisition and ambidextrous green innovation. Journal of Cleaner Production, 250, 119475.

    Article  Google Scholar 

  • Wang, M. Y., Li, Y. M., Li, J. Q., & Wang, Z. T. (2021). Green process innovation, green product innovation and its economic performance improvement paths: A survey and structural model. Journal of Environmental Management, 297, 113282.

    Article  Google Scholar 

  • Yan, Z. M., Zou, B. L., Du, K. R., & Li, K. (2020). Do renewable energy technology innovations promote China’s green productivity growth? Fresh evidence from partially linear functional-coefficient models. Energy Economics, 90, 104842.

    Article  Google Scholar 

  • Yang, L. Y., & Pan, H. F. (2003). The mechanism of basic research influencing economic growth. Economic Review, 2, 13–18.

    Google Scholar 

  • Yang, H., & Bi, Y. T. (2019). The thinking of strengthen the basic research of firm application. China Petroleum Daily, 6, 1–2.

    Google Scholar 

  • Yu, M., Cruz, J. M., & Li, D. M. (2018). The sustainable supply chain network competition with environmental tax policies. International Journal of Production Economics, 217, 218–231.

    Article  Google Scholar 

  • Zhang, X. Y., Liu, J. J., & Xie, P. (2019). Whether basic government research can contribute to economic growth-an extension of endogenous growth model. Inquiry into Economic Issues, 1, 1–10.

    Google Scholar 

  • Zhao, L. T., He, L. Y., Cheng, L., Zeng, G. R., & Huang, Z. (2018). The effect of gasoline consumption tax on consumption and carbon emissions during a period of low oil prices. Journal of Cleaner Production, 171(10), 1429–1436.

    Article  Google Scholar 

  • Zhou, M., Govindan, K., & Xie, X. B. (2020). How fairness perceptions, embeddedness, and knowledge sharing drive green innovation in sustainable supply chains: An equity theory and network perspective to achieve sustainable development goal. Journal of Cleaner Production, 260, 120950.

    Article  Google Scholar 

  • Zellner, C. (2003). The economic effects of basic research: Evidence for embodied knowledge transfer via scientists’ migration. Research Policy, 32, 1881–1895.

    Article  Google Scholar 

Download references

Acknowledgements

This paper is supported by National Key R and D Program of China (Grant No. 2020YFA0608601) and the National Natural Science Foundation of China (Grant Nos. 72174091, 71690242 and 51976085).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lixin Tian.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

Appendix 1

According to \(K = \int_{0}^{{D_{1} }} {x_{i} di}\) in Eq. (1) and according to symmetrical characteristic that \(x_{i} = x,i \in [0,D_{1} ]\), then

$$K = D_{1} x$$
(60)

Substituting Eq. (60) into Eq. (1), this study can get

$$Y = A(N)L_{Y}^{\beta } e^{1 - \alpha - \beta } K^{\phi } x^{\alpha - \phi }$$
(61)

Substituting Eqs. (60) - (61) into Eq. (5), this study can get

$$w_{Y} = \beta (1 - \tau_{T} )(1 - \tau )({Y \mathord{\left/ {\vphantom {Y {L_{Y} )}}} \right. \kern-\nulldelimiterspace} {L_{Y} )}}$$
(62)

Substituting Eqs. (60) - (61) into Eq. (6), this study can get

$$p = \alpha (1 - \tau_{T} )(1 - \tau )({Y \mathord{\left/ {\vphantom {Y K}} \right. \kern-\nulldelimiterspace} K})$$
(63)

Substituting Eqs. (60 - 61) into Eq. (10), this study can get

$$r = \alpha^{2} (1 - \tau_{T} )(1 - \tau )({Y \mathord{\left/ {\vphantom {Y K}} \right. \kern-\nulldelimiterspace} K})$$
(64)

Substituting Eqs. (60 - 61) into Eq. (11), this study can get

$$\pi = (\alpha - \alpha^{2} )(1 - \tau_{T} )(1 - \tau )x({Y \mathord{\left/ {\vphantom {Y {K)}}} \right. \kern-\nulldelimiterspace} {K)}}$$
(65)

In addition, it can be proved that consumption, output, capital and technological innovation grow at the same speed in the balanced growth path (BGP).

$${{\dot{C}} \mathord{\left/ {\vphantom {{\dot{C}} C}} \right. \kern-\nulldelimiterspace} C} = {{\dot{K}} \mathord{\left/ {\vphantom {{\dot{K}} K}} \right. \kern-\nulldelimiterspace} K} = {{\dot{D}_{1} } \mathord{\left/ {\vphantom {{\dot{D}_{1} } {D_{1} }}} \right. \kern-\nulldelimiterspace} {D_{1} }} = {{\dot{Y}} \mathord{\left/ {\vphantom {{\dot{Y}} Y}} \right. \kern-\nulldelimiterspace} Y} = g$$
(66)

Equation (66) here is Eq. (30).

Appendix 2

According to Eq. (15), this study can get

$$(1 + s)p_{{D_{1} }} D_{1} ({{\dot{D}_{1} } \mathord{\left/ {\vphantom {{\dot{D}_{1} } {D_{1} )}}} \right. \kern-\nulldelimiterspace} {D_{1} )}} = w_{H} H_{1}$$
(67)

From Eq. (17) and the definition of balanced growth path, this study can get

$$r = {\pi \mathord{\left/ {\vphantom {\pi {[p_{{D_{1} }} (D_{1}^{\xi } + p_{h} )}}} \right. \kern-\nulldelimiterspace} {[p_{{D_{1} }} (D_{1}^{\xi } + p_{h} )}}]$$
(68)

Therefore,

$$p_{{D_{1} }} = {\pi \mathord{\left/ {\vphantom {\pi {[r(D_{1}^{\xi } + p_{h} )]}}} \right. \kern-\nulldelimiterspace} {[r(D_{1}^{\xi } + p_{h} )]}}$$
(69)

Substituting Eq. (69) into Eq. (67), this study can get

$$(1 + s)\frac{{\pi D_{1} }}{{r(D_{1}^{\xi } + p_{h} )}}g = w_{H} H_{1}$$
(70)

Combining Eq. (65) and Eq. (70), this study can get

$$\frac{{(1 + s)(\alpha - \alpha^{2} )(1 - \tau_{T} )(1 - \tau )YKg}}{{r(D_{1}^{\xi } + p_{h} )}} = w_{H} H_{1}$$
(71)

Equation (71) here is Eq. (31).

Appendix 3

According to Eq. (12), this study can get:

Per unit of the marginal productivity of human capital invested in emission reduction R & D and technological innovation is

$${{\partial \dot{D}_{1} } \mathord{\left/ {\vphantom {{\partial \dot{D}_{1} } {\partial H_{1} }}} \right. \kern-\nulldelimiterspace} {\partial H_{1} }} = {{\lambda_{1} \dot{D}_{1} } \mathord{\left/ {\vphantom {{\lambda_{1} \dot{D}_{1} } {H_{1} }}} \right. \kern-\nulldelimiterspace} {H_{1} }}$$
(72)

Per unit of the marginal productivity of basic scientific knowledge invested in the basic research sector is

$${{\partial \dot{D}_{1} } \mathord{\left/ {\vphantom {{\partial \dot{D}_{1} } {\partial D_{2} }}} \right. \kern-\nulldelimiterspace} {\partial D_{2} }} = {{\theta_{1} \dot{D}_{1} } \mathord{\left/ {\vphantom {{\theta_{1} \dot{D}_{1} } {D_{2} }}} \right. \kern-\nulldelimiterspace} {D_{2} }}$$
(73)

Per unit of the marginal productivity of applied scientific knowledge invested in the applied research sector is

$${{\partial \dot{D}_{1} } \mathord{\left/ {\vphantom {{\partial \dot{D}_{1} } {\partial D_{3} }}} \right. \kern-\nulldelimiterspace} {\partial D_{3} }} = {{\psi_{1} \dot{D}_{1} } \mathord{\left/ {\vphantom {{\psi_{1} \dot{D}_{1} } {D_{3} }}} \right. \kern-\nulldelimiterspace} {D_{3} }}$$
(74)

According to Eq. (18), this study can get:

Per unit of the marginal productivity of human capital invested in basic research sector is

$${{\partial \dot{D}_{2} } \mathord{\left/ {\vphantom {{\partial \dot{D}_{2} } {\partial H_{2} }}} \right. \kern-\nulldelimiterspace} {\partial H_{2} }} = {{\lambda_{2} \dot{D}_{2} } \mathord{\left/ {\vphantom {{\lambda_{2} \dot{D}_{2} } {H_{2} }}} \right. \kern-\nulldelimiterspace} {H_{2} }}$$
(75)

According to Eq. (19), this study can get:

Per unit of the marginal productivity of human capital invested in applied research sector is

$${{\partial \dot{D}_{3} } \mathord{\left/ {\vphantom {{\partial \dot{D}_{3} } {\partial H_{3} }}} \right. \kern-\nulldelimiterspace} {\partial H_{3} }} = {{\lambda_{3} \dot{D}_{3} } \mathord{\left/ {\vphantom {{\lambda_{3} \dot{D}_{3} } {H_{3} }}} \right. \kern-\nulldelimiterspace} {H_{3} }}$$
(76)

Per unit of the marginal productivity of basic scientific knowledge invested in the applied research sector is

$${{\partial \dot{D}_{3} } \mathord{\left/ {\vphantom {{\partial \dot{D}_{3} } {\partial D_{2} }}} \right. \kern-\nulldelimiterspace} {\partial D_{2} }} = {{\theta_{3} \dot{D}_{3} } \mathord{\left/ {\vphantom {{\theta_{3} \dot{D}_{3} } {D_{2} }}} \right. \kern-\nulldelimiterspace} {D_{2} }}$$
(77)

When the market is balanced, the marginal productivity of basic research sector, applied research sector, G-behavior R&D should be equal. Combining Eqs. (7277), this study can get

$$\frac{{\lambda_{1} }}{{H_{1} }} = \frac{{\theta_{1} \lambda_{2} }}{{H_{2} }}\frac{{\dot{D}_{2} }}{{D_{2} }} = \frac{{\lambda_{3} \psi_{1} }}{{H_{3} }}\frac{{\dot{D}_{3} }}{{D_{3} }}$$
(78)

Eq. (78) here is Eq. (35).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, B., Tian, L., Zhang, W. et al. Environmental effects of behavior growth under green development. Environ Dev Sustain 25, 10821–10855 (2023). https://doi.org/10.1007/s10668-022-02508-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-022-02508-y

Keywords

Navigation