Skip to main content

Advertisement

Log in

Hybrid cooling-based lithium-ion battery thermal management for electric vehicles

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

The use of rechargeable lithium-ion batteries in electric vehicles is one among the most appealing and viable option for storing electrochemical energy to conciliate global energy challenges due to rising carbon emissions. However, a cost effective, efficient and compact cooling technique is needed to avoid excessive temperature build up during discharging of these batteries to maintain its performance and longevity. In this work, phase change material (PCM)-based hybrid cooling system is proposed for the battery thermal management system consisting of 25 commercial Sony-18650 cells arranged in a cubical battery pack. Air was chosen as an active cooling agent and PCM as a passive cooling agent. The coupling between the 1D electrochemical model and the 2D thermal-fluid model was developed using COMSOL Multiphysics solver for the discharging cycle of the cells. The combined effects of different air inflow velocities (U0 = 0–0.1 m/s) and PCM layer thickness over the cells (t = 0–3 mm) have been delineated at various discharge rates (1C, 3C and 5C). Extensive results have been reported in terms of discharge curve, temperature fields, average and maximum cell temperature and PCM melt fraction. Obviously, an increasing airflow is seen to lower the temperature of the cells up to ~ 25 K. In addition, the presence of a thin PCM layer over the cells shows a remarkable improvement in heat removal due to the latent heat energy storage in the melted (charged) PCM. However, beyond a certain thickness of PCM layer, the heat removal efficiency becomes constant. Lastly, comparing the thermal performance predictions by the three different cell spacing of 24 mm, 28 mm and 32 mm, we observed that an increased cell spacing shows a better heat removal only in the absence of any PCM layer on the cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

Abbreviations

a i :

Constant in electrolyte conductivity expression

A :

Specific interfacial area per unit volume (m−1)

c l :

Electrolyte concentration (mol m−3)

c l o :

Initial electrolyte concentration (mol m−3)

c s avg :

Average concentration of lithium in the active material (mol m−3)

c s max :

Maximum concentration of lithium in the active material (mol m−3)

c s surf :

Surface concentration of lithium in the active material (mol m−3)

c s o :

Initial concentration of lithium in the active material (mol m−3)

C p :

Specific heat capacity (J kg−1 K−1)

D l :

Diffusion coefficient of electrolyte (m2 s−1)

D s :

Diffusion coefficient of lithium in the active material (m2 s−1)

e x ,e y :

Coordinate vectors

E a :

Activation energy for a variable (J mol−1)

F :

Faraday’s constant (96,487 C mol−1)

h :

Heat transfer coefficient (W m−2 K−1)

i app :

Applied current density (A m−2)

i f :

Faradaic transfer current density (A m−2)

i o :

Exchange current density (A m−2)

i l :

Liquid phase current density (A m−2)

i s :

Solid phase current density (A m−2)

J :

Local charge transfer current per unit volume (A m−3)

k :

Effective thermal conductivity (W m−1 K−1)

K 0 :

Reaction rate constant (dimensionless)

l s :

Diffusion length (m)

N l :

Species flux (mol m−2 S−1)

p :

Pressure (Pa)

Q :

Volumetric heat generation (W m−3)

q :

Conductive heat flux (W m−2)

R :

Gas constant (J mol−1 K−1)

R s :

Radius of active material in electrodes (m)

t :

Thickness of PCM (mm)

t * :

Time (s)

t + o :

Transference number of cation

T :

Temperature (K)

T ref :

Reference temperature (K)

T o :

Initial temperature (K)

U o :

Air inlet velocity

U refi :

Open circuit potential of the electrode i (V)

w i :

Thickness of the functional layer i (m)

α a :

Anodic transfer coefficient

α c :

Cathodic transfer coefficient

γ :

Bruggemann constant

ε f :

Volume fraction of conductive filler additive

ε l :

Volume fraction of electrolyte

ε P :

Volume fraction of polymer phase

η :

Overpotential (V)

θ ne :

State of charge of negative electrode

θ ne o :

Initial state of charge of negative electrode

θ pe :

State of charge of positive electrode

θ pe o :

Initial state of charge of positive electrode

µ :

Dynamic viscosity (kg m−1 s−1)

ρ :

Effective density (kg m−3)

σ l :

Ionic conductivity of electrolyte (S m−1)

σ s :

Electronic conductivity of solid matrix (S m−1)

σ std :

Standard deviation

σ :

Total stress tensor (Pa)

φ l :

Liquid phase potential (V)

φ o l :

Initial liquid phase potential (V)

φ s :

Solid phase potential (V)

φ o s :

Initial solid phase potential (V

References

  • Azizi, Y., & Sadrameli, S. (2016). Thermal management of a LiFePO4 battery pack at high temperature environment using a composite of phase change materials and aluminum wire mesh plates. Energy Conversion and Management, 128, 294–302.

    Article  CAS  Google Scholar 

  • COMSOL Multiphysics Reference Manual (2017). Version 5.3, Stockholm, Sweden, 2017.

  • Choudhari, V. G., Dhoble, A. S., & Panchal, S. (2020). Numerical analysis of different fin structures in phase change material module for battery thermal management system and its optimization. International Journal of Heat and Mass Transfer, 163, 120434.

    Article  Google Scholar 

  • Doyle, M., & Newman, J. (1996). Comparison of modeling predictions with experimental data from plastic lithium-ion cells. Journal of Electrochemical Society, 143, 1890–1903.

    Article  Google Scholar 

  • Duan, X., & Naterer, G. F. (2010). Heat transfer in phase change materials for thermal management of electric vehicle battery modules. Journal of Heat and Mass Transfer, 53, 5176–5182.

    Article  CAS  Google Scholar 

  • Haque, T. S., Chakraborty, A., & Mondal, S. P. (2021a). New exponential operational law for measuring pollution attributes in mega-cities based on MCGDM problem with trapezoidal neutrosophic data. Journal of Ambient Intelligence Humanized Computing. https://doi.org/10.1007/s12652-021-03223-8

    Article  Google Scholar 

  • Haque, T. S., Chakraborty, A., & Mondal, S. P. (2021b). A novel logarithmic operational law and aggregation operators for trapezoidal neutrosophic number and MCGDM skill to determine most harmful virus. Applied Intelligence. https://doi.org/10.1007/s10489-021-02583-0

    Article  Google Scholar 

  • Huang, R., Li, Z., Hong, W., Wu, Q., & Yu, X. (2020). Experimental and numerical study of PCM thermophysical parameters on lithium-ion battery thermal management. Energy Reports, 6, 8–19.

    Article  Google Scholar 

  • Jarrett, A., & Kim, I. Y. (2014). Influence of operating conditions on the optimum design of electric vehicle battery cooling plates. Journal of Power Sources, 245, 644–655.

    Article  CAS  Google Scholar 

  • Jeon, D. H., & Baek, S. M. (2011). Thermal modeling of cylindrical lithium-ion battery during discharge cycle. Energy Conversion and Management, 52, 2973–2981.

    Article  CAS  Google Scholar 

  • Jilte, R., Afzal, A., & Panchal, S. (2021). A novel battery thermal management system using nano-enhanced phase change materials. Energy, 219, 119564.

    Article  CAS  Google Scholar 

  • Kant, K., Shukla, A., Sharma, A., & Biwole, P. H. (2018). Melting and solidification behaviour of phase change materials with cyclic heating and cooling. Journal of Energy Storage, 15, 274–282.

    Article  Google Scholar 

  • Kim, J., Oh, J., & Lee, H. (2019). Review on battery thermal management system for electric vehicles. Applied Thermal Engineering, 149, 192–212.

    Article  Google Scholar 

  • Liu, J., Li, H., Li, W., Shi, J., Wang, H., & Chen, J. (2019). Thermal characteristics of power battery pack with liquid-based thermal management. Applied Thermal Engineering, 164, 114421.

    Article  Google Scholar 

  • Lu, Z., Yu, X., Wei, L., Qiu, Y., Zhang, L., et al. (2019). Parametric study of forced air cooling strategy for lithium-ion battery pack with staggered arrangement. Applied Thermal Engineering, 136, 28–40.

    Article  Google Scholar 

  • Mohammadian, S. K., Rassoulinejad-Mousavi, S. M., & Zhang, Y. W. (2015). Thermal management improvement of an air-cooled high-power lithium-ion battery by embedding metal foam. Journal of Power Sources, 296, 305–313.

    Article  CAS  Google Scholar 

  • Ouyang, D., Weng, J., Hu, J., Liu, J., Chen, M., Huang, Q., & Wang, J. (2019). Effect of high temperature circumstance on lithium-ion battery and the application of phase change material. Journal of Electrochemical Society, 166, A559–A567.

    Article  CAS  Google Scholar 

  • Safdari, M., Ahmadi, R., & Sadeghzadeh, S. (2020). Numerical investigation on PCM encapsulation shape used in the passive-active battery thermal management. Energy, 193, 116840.

    Article  Google Scholar 

  • Singh, L. K., Mishra, G., Sharma, A. K., & Gupta, A. K. (2021). A numerical study on thermal management of a lithium-ion battery module via forced-convective air cooling. International Journal of Refrigeration, 131, 218–234.

    Article  Google Scholar 

  • Srinivasan, V., & Wang, C. Y. (2003). Analysis of electrochemical and thermal behavior of li-ion cells. Journal of Electrochemical Society, 150, A98–A106.

    Article  CAS  Google Scholar 

  • Subramanian, V. R., Boovaragavan, V., Ramadesigan, V., & Arabandi, M. (2009). Mathematical model reformulation for lithium-ion battery simulation: Galvanostatic boundary conditions. Journal of Electrochemical Society, 156, A260–A271.

    Article  CAS  Google Scholar 

  • Tong, W., Somasundaram, K., Birgersson, E., Mujumdar, A. S., & Yap, C. (2016). Thermo-electrochemical model for forced convection air cooling of a lithium-ion battery module. Applied Thermal Engineering, 99, 672–682.

    Article  CAS  Google Scholar 

  • Tousi, M., Sarchami, A., Kiani, M., Najafi, M., & Houshfar, E. (2021). Numerical study of novel liquid-cooled thermal management system for cylindrical Li-ion battery packs under high discharge rate based on AgO nanofluid and copper sheath. Journal of Energy Storage, 41, 102910.

    Article  Google Scholar 

  • Wang, S. N., Li, Y. H., Li, Y. Z., Mao, Y. F., Zhang, Y. N., et al. (2017). A forced gas cooling circle packaging with liquid cooling plate for the thermal management of Li-ion batteries under space environment. Applied Thermal Engineering, 123, 929–939.

    Article  CAS  Google Scholar 

  • Wang, T., Tseng, K. J., Zhao, J. Y., & Wei, Z. B. (2014). Thermal investigation of lithium-ion battery module with different cell arrangement structures and forced air cooling strategies. Applied Energy, 134, 229–238.

    Article  Google Scholar 

  • Ye, Y., Shi, Y., Cai, N., Lee, J., & He, X. (2012). Electro-thermal modeling and experimental validation for lithium ion battery. Journal of Power Sources, 199, 227–238.

    Article  CAS  Google Scholar 

  • Zhang, F., Lin, A., Wang, P., & Liu, P. (2021). Optimization design of a parallel air-cooled battery thermal management system with spoilers. Applied Thermal Engineering, 182, 116062.

    Article  Google Scholar 

  • Zhao, C., Cao, W., Dong, T., & Jiang, F. (2018). Thermal behavior study of discharging/charging cylindrical lithium-ion battery module cooled by channeled liquid flow. International Journal of Heat and Mass Transfer, 120, 751–762.

    Article  CAS  Google Scholar 

  • Zhao, R., Gu, J. J., & Liu, J. (2017). Optimization of a phase change material based internal cooling system for cylindrical Li-ion battery pack and a hybrid cooling design. Energy, 135, 811–822.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the DST INSPIRE Faculty Research Grant (IFA18-ENG248) awarded to Anoop K. Gupta for the period 2018-2023.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anoop K. Gupta.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest here.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1:

Governing equations for the 1D electrochemical model (Doyle & Newman, 1996; Srinivasan & Wang, 2003).

Macroscale

$$ {\text{Charge}}\,{\text{ in}}\,{\text{solid }}\,{\text{phase}}\quad \quad \nabla .i_{s} = - J({\text{ne, pe, cc}}) $$
$$ {\text{Charge}}\,{\text{in}}\,{\text{liquid}}\,{\text{phase}}\quad \quad \quad \nabla .i_{l} = J\left( {\text{ne, pe, cc}} \right) $$
$$ {\text{Species }}\,{\text{in}}\,{\text{ liquid}}\,{\text{phase}}\quad \quad \quad \varepsilon_{l} \frac{{\partial c_{l} }}{\partial t} + \nabla .N_{l} = \frac{J}{F}\left( {\text{ne, pe, el}} \right) $$
$$ {\text{Energy}}\quad \quad \quad \left( {\rho C_{P} } \right)^{eff} \frac{\partial T}{{\partial t}} + \nabla .q \, = \, Q \, \left( {{\text{all}}\,{\text{ layers}}} \right) $$

Microscale

$$ {\text{Species}}\,{\text{in}}\,{\text{solid }}\,{\text{phase}}\quad \quad \left\{ \begin{gathered} \frac{Ds}{{ls}}(Cs^{{{\text{surf}}}} - \, Cs^{{{\text{surf}}}} ) = - \frac{{i_{{{\text{fara}}}} }}{F} \hfill \\ \frac{{{\text{d}}cs^{{{\text{avg}}}} }}{{{\text{d}}t}} = - \frac{{i_{{{\text{fara}}}} }}{FRs} \hfill \\ \end{gathered} \right.\left( {\text{ne, pe}} \right) $$

Flux

$$ i_{s} = - \sigma_{s}^{{{\text{eff}}}} \nabla \phi_{s} $$
$$ i_{l} = - \sigma_{s}^{{{\text{eff}}}} \nabla \phi_{l} + \frac{{2RT\sigma_{l}^{{{\text{eff}}}} }}{F}(1 - t_{0}^{ + } )\nabla \left( {{\text{ln}}c_{l} } \right) $$
$$ Nl = - D_{l}^{{{\text{eff}}}} \nabla c_{l} \, + \, \frac{{i_{l} t_{0}^{ + } }}{F} $$
$$ q = - k^{{{\text{eff}}}} \nabla T $$

Boundary conditions

$$ {\text{At}}\,{\text{the}}\,{\text{negative}}\,{\text{end}}\quad \quad \phi_{s} = 0, \, q_{x} = \, 0 $$
$$ {\text{Collector/electrode}}\,{\text{interface}}:i_{{\left. {sx} \right| + }} = \, i_{{\left. {sx} \right| - }} , \, q_{\left. x \right| + } = \, q_{\left. x \right| - } , \, i_{lx} = N_{lx} = \, 0 $$
$$ {\text{Electrode}}/{\text{separator}}\,{\text{ interface}}:i_{sx} = 0, \, q_{\left. x \right| + } = q_{\left. x \right| - } , \, i_{{\left. {lx} \right| + }} = i_{{\left. {lx} \right| - }} ,N_{{\left. {lx} \right| + }} = N_{{\left. {lx} \right| - }} $$
$$ {\text{At}}\,{\text{the}}\,{\text{positive}}\,{\text{end}}:i_{sx} = - i_{{{\text{app}}}} ,\, \, q_{x} = 0 $$

Initial conditions

$$ c_{s} = c_{s}^{avg} = c_{s}^{0} ,\quad c_{l} = c_{l}^{0} $$
$$ \phi_{s} = \left\{ \begin{gathered} 0,{\text{ (ne)}} \hfill \\ \phi_{s}^{0} ,{\text{ (pe)}} \hfill \\ \end{gathered} \right.,\quad \quad \phi_{l} = \phi_{l}^{0} {\text{, (ne, pe, el)}} $$
$$ T = T_{0} $$

Appendix 2:

Constitutive relations: (Doyle & Newman, 1996; Srinivasan & Wang, 2003) (Table 2 )

Table 2 Parameters of battery cells (Ye et al., 2012; Tong et al., 2016)
$$ J = \left\{ {\begin{array}{*{20}l} {A_{s} i_{{{\text{fara}}}} } \hfill & {\text{(ne, pe)}} \hfill \\ 0 \hfill & {\text{(cc)}} \hfill \\ \end{array} } \right. $$
$$ i_{{0,{\text{fara}}}} = Fk_{o} c_{l}^{{\alpha_{a} }} \left( {c_{s}^{\max } - c_{s}^{{{\text{surf}}}} } \right)^{{\alpha_{a} }} \left( {c_{s}^{{{\text{surf}}}} } \right)^{{\alpha_{c} }} {\text{ (ne, pe)}} $$
$$ i_{{{\text{fara}}}} = i_{{0,{\text{fara}}}} \left\{ {\exp \left( {\frac{\alpha a\eta F}{{RT}}} \right) - \exp \left( { - \frac{{\alpha_{c} \eta F}}{RT}} \right)} \right\}\,{\text{(ne,}}\,{\text{ pe)}} $$
$$ \eta = \phi_{s} - \phi_{l} - U_{{{\text{ref}},i}}^{{{\text{eff}}}} \, (i = {\text{ne, pe}}) $$
$$ A_{s} = \frac{{3(1 - \varepsilon_{l} - \varepsilon_{f} - \varepsilon_{p} )}}{{R_{s} }} \, ({\text{ne, pe}}) $$
$$ U_{{{\text{ref}},i}}^{{{\text{eff}}}} = U_{{{\text{ref}},i \, }} + \, (T - T_{{{\text{ref}}}} )\frac{{\partial U_{{{\text{ref}},i}} }}{\partial T} \, (i \, = {\text{ne,pe}}) $$
$$ U_{{{\text{ref}},i}} = \left\{ \begin{gathered} - 0.16 + 1.32\exp ( - 3\theta_{{{\text{ne}}}} ) + 10\exp ( - 2000\theta_{{{\text{ne}}}} ) \hfill \\ 4.1983 + 0.0565\,\tanh ( - 14.554\theta_{{{\text{pe}}}} + 8.6094) - 0.0275\left( {\frac{1}{{(0.9984 - \theta_{{{\text{pe}}}} )^{0.4924} }} - 1.9011} \right) \hfill \\ - 0.1571\exp ( - 0.0474\theta_{{{\text{pe}}}}^{8} ) + 0.8102\exp ( - 40(\theta_{{{\text{pe}}}} - 0.1339) \hfill \\ \end{gathered} \right. $$
$$ \theta_{i} = \frac{{c_{s}^{{{\text{surf}}}} }}{{c_{s}^{\max } }} \, (i \, = {\text{ ne, pe}}) $$
$$ Q = \left\{ \begin{gathered} J\eta + JT\frac{{\partial U_{{{\text{ref}},i}} }}{\partial T} + \sigma_{{\text{s}}}^{{{\text{eff}}}} (\nabla \phi_{l} )^{2} + \frac{{2RT\sigma_{{\text{l}}}^{{{\text{eff}}}} }}{F}\left( {1 - t_{ + }^{0} } \right)\nabla (\ln c_{{\text{l}}} ).\nabla \phi_{{\text{l}}} \, ({\text{ne,}}\,{\text{ pe}}) \hfill \\ \sigma_{{\text{l}}}^{{{\text{eff}}}} (\nabla \phi_{l} )^{2} + (1 - t_{ + }^{0} )\nabla (\ln \,c_{l} ).\nabla \phi_{l} \, (el) \hfill \\ \sigma_{s}^{{{\text{eff}}}} (\nabla \phi_{s} )^{2} \, (cc) \hfill \\ \end{gathered} \right. $$
$$ \frac{{\partial U_{{{\text{ref}},i}} }}{\partial T} = \left\{ \begin{gathered} \frac{{344.1347\exp (8.3167 - 32.9633\theta_{{{\text{ne}}}} )}}{{1 + 749.0756\exp (8.8871 - 34.7909\theta_{{{\text{ne}}}} )}} - 0.852\theta_{{{\text{ne}}}} + 0.3622\theta_{{{\text{ne}}}}^{2} + 0.2698 \hfill \\ - 4.1453 + 8.147\theta_{{{\text{pe}}}} - 26.0645\theta_{{{\text{pe}}}}^{2} + 12.766\theta_{{{\text{pe}}}}^{3} + 4.3127\exp (0.5715\theta_{{{\text{pe}}}} ) - 0.1842\exp \left( { - \frac{{\theta_{{{\text{pe}}}} - 0.5169}}{0.0462}} \right)^{2} \hfill \\ + 1.2816\,\sin ( - 4.9916\theta_{{{\text{pe}}}} ) - 0.0904\,\sin ( - 20.9669\theta_{{{\text{pe}}}} - 12.5788) + 0.0313\,\sin (31.7663\theta_{{{\text{pe}}}} - 22.4295) \hfill \\ \end{gathered} \right. $$
$$ D_{l}^{{{\text{eff}}}} = D_{l} \varepsilon_{l}^{\gamma } $$
$$ \sigma_{l}^{{{\text{eff}}}} = \sigma_{l} \varepsilon_{l}^{\gamma } $$
$$ \left. {\sigma_{l} } \right|_{{T_{{{\text{ref}}}} }} = - 1.172 \times 10^{ - 14} c_{l}^{4} + 1.3605 \times 10^{ - 10} c_{l}^{3} - 5.2245 \times 10^{ - 7} c_{l}^{2} + 6.7461 \times 10^{ - 10} c_{l} + 1.0793 \times 10^{ - 2} $$
$$ \sigma_{s}^{{{\text{eff}}}} = \sigma_{s} (1 - \varepsilon_{l} - \varepsilon_{f} - \varepsilon_{p} ){\text{ (ne,}}\,{\text{pe)}} $$
$$ k^{{{\text{eff}}}} = k(1 - \varepsilon_{l} ) + k\varepsilon_{l} \, ({\text{ne, }}\,{\text{pe,}}\,{\text{ sp}}) $$
$$ (\rho C_{{\text{p}}} )^{{{\text{eff}}}} = (\rho C_{{\text{p}}} )(1 - \varepsilon_{{\text{l}}} ) + (\rho C_{{\text{p}}} )\varepsilon_{l} \, ({\text{ne, }}\,{\text{pe,}}\,{\text{ sp}}) $$
$$ \Theta (T) = \left. \Theta \right|_{{T_{{{\text{ref}}}} }} \exp \left[ {\frac{{E_{a,\Theta } }}{R}\left( {\frac{1}{{T_{{{\text{ref}}}} }} - \frac{1}{T}} \right)} \right](\Theta = D_{{\text{s}}} ,D_{{\text{l}}} ,\sigma_{{\text{l}}} ) $$
$$ l_{{\text{s}}} = \frac{{R_{{\text{s}}} }}{5}{\text{ (ne,pe)}} $$
$$ \phi_{s}^{0} = U_{{\text{ref,pe}}} (\theta_{{{\text{pe}}}}^{{0}} ) - U_{{\text{ref,ne}}} (\theta_{{{\text{ne}}}}^{{0}} ) $$
$$ \phi_{l}^{0} = - U_{{\text{ref,ne}}} (\theta_{{{\text{ne}}}}^{0} ) $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, L.K., Gupta, A.K. Hybrid cooling-based lithium-ion battery thermal management for electric vehicles. Environ Dev Sustain 25, 3627–3648 (2023). https://doi.org/10.1007/s10668-022-02197-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-022-02197-7

Keywords

Navigation