Skip to main content

Advertisement

Log in

Estimating biomass production and carbon sequestration of poplar-based agroforestry systems in India

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

This study was conducted on 79 harvested poplar trees of eight-years-old planted at five spacing geometries (5 × 4 m, 10 × 2 m, 18 × 2 × 2 m, North–South and East–West boundary) to construct component-wise dry biomass (above + below ground) equations for estimating biomass & carbon sequestered. The complete data were randomly divided into two mutually exclusive and independent sets viz estimation-set (80%) to fit the model and validation-set (20%) to ascertain accuracy of the fitted model. DBH was found to be the most appropriate independent variate to construct best-fit biomass equations with growth attributes. Among various attempted functions (linear, allometric, logistic, Gompertz, Chapman and exponential), allometric function i.e., Total Biomass = 0.2575*DBH(2.191) (R2Adj = 0.97, RMS = 925.71 and AIC = 427.87) was found to be the best-fit. The total dry biomass production of poplar varied from 69.90 to 207.98 Mg ha−1 in aboveground and 13.46 to 36.69 Mg ha−1 in belowground in five planting geometries. Total carbon storage (above + below ground) under various spacings viz 5 × 4 m, 10 × 2 m, 18 × 2 × 2 m, North–South and East–West boundary poplar were 112.48, 101.80, 84.87, 77.28 and 38.84 Mg C ha−1, respectively. The carbon sequestration rate was observed to be higher in 5 × 4 m (14.09 Mg C ha−1 yr−1) closely followed by 10 × 2 m (12.61 Mg C ha−1 yr−1), 18 × 2 × 2 m (10.50 Mg C ha−1 yr−1),E–West (9.56 Mg C ha−1 yr−1) and North–South plantation (4.80 Mg C ha−1 yr−1). Keeping in view, regionally derived allometric equations contribute to limiting the uncertainty in the estimation of biomass and carbon sequestration, which may be helpful to monitoring, reporting and verification (MRV) needs in carbon management policies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Source Google earth Imagery pro, Date of image: 30/10/2015

Fig. 2
Fig. 3
Fig. 4

Modified from Picard et al., 2012)

Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • AGROFORESTRY NETWORK AND VI-SKOGEN (2018). Achieving the Global Goals through agroforestry. Agroforestry Sverige, Focali, NIRAS, SIANI, SLU Global, SwedBio at Stockholm Resilience Centre and Vi-skogen, 28p.

  • Ajit, Nighat J., 2008. Tree Growth Modelling: Indian Experiences; 2008. http://sscnars.icar.gov.in/Agro/1-Tree%20Growth%20Modelling-Statistical-Concepts.pdf. Accessed 30 June 2019.

  • Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 6, 716–723.

    Article  Google Scholar 

  • Anitha, K., Verchot, L. V., Joseph, S., Herold, M., Manuri, S., & Avitabile, V. (2015). A review of forest and tree plantation biomass equations in Indonesia. Annals of Forest Science, 72(8), 981–997.

    Article  Google Scholar 

  • Arora, G., Chaturvedi, S., Kaushal, R., Nain, A., Tewari, S., Alam, N. M., & Chaturvedi, O. P. (2013). Growth, biomass, carbon stocks, and sequestration in an age series of Populusdeltoides plantations in Tarai region of central Himalaya. Turkish Journal of Agriculture and Forestry, 38(4), 550–560.

    Google Scholar 

  • Bajželj, B., Richards, K. S., Allwood, J. M., Smith, P., John, S., Dennis, C. E., & Gilligan, C. A. (2014). Importance of food-demand management for climate mitigation. Nature Climate Change, 4, 924–929.

    Article  Google Scholar 

  • Basuki, T. M., van Laake, P. E., Skidmore, A. K., & Hussin, Y.A. (2009). Allometric equations for estimating the above–ground biomass in tropical lowland Dipterocarp forests. Forest Ecology and Management, 257, 1684–1694.

    Article  Google Scholar 

  • Brown, S. (1997). Estimating biomass and biomass change of tropical forests: a primer. For the Food and Agriculture Organization of the United Nations. Rome, 1997. FAO Forestry Paper – 134. ISBN 92-5-103955-0.

  • Brown, I. F., Martinelli, L. A., Thomas, W. W., Moreira, M. Z., Ferreira, C. C., & Victoria, R. A. (1995). Uncertainty in the biomass of Amazonian forests: An example from Rondonia, Brazil. Forest Ecology and Management, 75(1–3), 175–189.

    Article  Google Scholar 

  • Cairns, M. A., Olmsted, I., Granados, J., & Argaez, J. (2003). Composition and aboveground tree biomass of a dry semi-evergreen forest on Mexico’s Yucatan Peninsula. Forest Ecology and Management, 186(1–3), 125–132.

    Article  Google Scholar 

  • Cardinael, R., Umulisa, V., Toudert, A., Olivier, A., Bockel, L., & Bernoux, M. (2018). Revisiting IPCC tier 1 coefficients for soil organic and biomass carbon storage in agroforestry systems. Environmental Research Letters, 13, 124020.

    Article  Google Scholar 

  • Chaturvedi, O. P., Handa, A. K., Kaushal, R., Uthappa, A. R., Sarvade, S., & Panwar, P. (2016). Biomass production and carbon sequestration through agroforestry. Range Management and Agroforestry, 37(2), 116–127.

    Google Scholar 

  • Chauhan, S. K. (2012). Performance of poplar (Populus deltoides bartr) and its effect on wheat yield under agroforestry system in irrigated agro-ecosystem, India. Caspian Journal of Environmental Sciences, 10(1), 53–60.

    Google Scholar 

  • Chauhan, S. K., Gupta, N., Walia, R., Yadav, S., Chauhan, R., & Mangat, P. S. (2011). Biomass and carbon sequestration potential of poplar-wheat inter-cropping system in irrigated agro-ecosystem in India. Journal of Agricultural Science and Technology A, 1, 575–586.

    Google Scholar 

  • Chauhan, S. K., Sharma, R., Singh, B., & Sharma, S. C. (2015). Biomass production, carbon sequestration and economics of on-farm poplar plantations in Punjab, India. Journal of Applied and Natural Science, 7(1), 452–458.

    Article  Google Scholar 

  • Chauhan, S. K., Sharma, S. C., Beri, V., Yadav, S., & Gupta, N. (2010). Yield and carbon sequestration potential of wheat (Triticum aestivum)-poplar (Populus deltoides) based agri-silvicultural system. Indian Journal of Agricultural Sciences, 80(2), 129–135.

    Google Scholar 

  • Chavan, S. B., & Dhillion, R. S. (2019). Doubling farmers’ income through populusdeltoides-based agroforestry systems in north-western India: An economic analysis. Current Science, 117(2), 219–227.

    Article  Google Scholar 

  • Chavan, S. B., Keerthika, A., Bhat, S. S., Handa, A. K., Rajarajan, K., & Ahmad, S. (2020). Poplar (Populus deltoides) in Jammu and Kashmir, India: Facts and fiction. Current Science, 119(6), 910–911.

    Google Scholar 

  • Chavan, S. B., Keerthika, A., Dhyani, S. K., Handa, A. K., Newaj, R., & Rajarajan, K. (2015). National agroforestry policy in India: A low hanging fruit. Current Science, 108, 1826–1834.

    Google Scholar 

  • Chavan, S. B., Newaj, R., Rizvi, R. H., et al. (2021). Reduction of global warming potential vis-à-vis greenhouse gases through traditional agroforestry systems in Rajasthan, India. Environment, Development and Sustainability, 23, 4573–4593. https://doi.org/10.1007/s10668-020-00788-w

    Article  Google Scholar 

  • Chave, J., Andalo, C., Brown, S., Cairns, M. A., Chambers, J. Q., Eamus, D., et al. (2005). Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia, 145(1), 87–99.

    Article  CAS  Google Scholar 

  • Chave, J., Réjou-Méchain, M., Búrquez, A., Chidumayo, E., Colgan, M. S., Delitti, W. B., Duque, A., & Eid, T. (2014). Improved allometric models to estimate the aboveground biomass of tropical trees. Global Change Biology, 20(10), 3177–3190.

    Article  Google Scholar 

  • Dar, J. A., & Sundarapandian, S. (2015). Variation of biomass and carbon pools with forest type in temperate forests of Kashmir Himalaya, India. Environmental Monitoring and Assessment, 187, 55.

    Article  Google Scholar 

  • Das, D. K., Chaturvedi, O. P., Jabeen, N., & Dhyani, S. K. (2011). Predictive models for dry weight estimation of above and below ground biomass components of Populus deltoides in India: Development and comparative diagnosis. Biomass and Bioenergy, 35(3), 1145–1152.

    Article  Google Scholar 

  • de Foresta. H., Somarriba, E., Temu, A., Boulanger, D., Feuilly, H., Gauthier, M. (2013). Towards the assessment of trees outside forests. In: Resources assessment working paper. Food and Agriculture Organization of the United Nations (FAO), Rome.

  • de Gier, A. (2003). A new approach to woody biomass assessment in woodlands and shrublands. In P. Roy, B. Singh, & M. S. Singh (Eds.), Geo informatics for Tropical Ecosystems (pp. 161–198). Dehra Dun.

  • Deo, R. K. (2008). Modelling and mapping of above-ground biomass and carbon sequestration in the cool temperate forest of north-east China. Enschede, The Netherlands: ITC.

    Google Scholar 

  • Dhanda, R.S. and Verma, R.K. (1995). Growth performance of Populus deltoides Bartr. in agroforestry plantations in Punjab. In Poplars in India: Recent research trends. Proceedings of the Consultative Meetings held at Dr. YS Parmar University of Horticulture and forestry, Nauni (Solan) on Poplar culture and improvement in India. IDRC, New Delhi-UHF, Nauni solan (pp. 41–56).

  • Dhanda, R. S., & Verma, R. K. (2001). Timber volume and weight tables of farm-grown poplar (Populus deltoides Bartr Ex Marsh) in Punjab (India). Indian Forester., 127(1), 115–130.

    Google Scholar 

  • Dhillon, G. P. S., Dhanda, R. S., Gill, R. I. S., & Singh, P. (2011). Estimation of over and under–size merchantable timber volume of Populus deltoides Bartr. Indian Forester, 137(3), 356–362.

    Google Scholar 

  • Dhillon, R. S., Bangarwa, K. S., Beniwal, R. S., Bhardwaj, K. K., Handa, A. K., Kumari, S., Chavan, S. B., Rizvi, R. H., Sirohi, C., & Sheokand, R. N. (2017). Effect of spacing on crop yield and soil nutrient status under poplar based agroforestry system in semi-arid ecosystem. Indian Journal of Agroforestry, 19(1), 42–47.

    Google Scholar 

  • Dhiman, R. C. (2012). Status of poplar culture in India. Forestry Bulletin, 12(1), 15–32.

    Google Scholar 

  • Dhyani, S. K., Handa, A. K., et al. (2017). Estimating carbon sequestration potential of existing agroforestry systems in India. Agroforestry Systems, 91, 1101–1118. https://doi.org/10.1007/s10457-016-9986-z

    Article  Google Scholar 

  • Dhyani, S., Murthy, I. K., Kadaverugu, R., Dasgupta, R., Kumar, M., & Gadpayle, K. A. (2021). Agroforestry to achieve global climate adaptation and mitigation targets: Are South Asian countries sufficiently prepared? Forests, 12(3), 303.

    Article  Google Scholar 

  • Duguma, L. A., Nzyoka, J., Minang, P.A., Bernard, F. (2017). How Agroforestry Propels Achievement of Nationally Determined Contributions. ICRAF, Policy Brief no. 34. World Agroforestry Centre, Nairobi, Kenya.

  • Duncanson, L., Rourke, O., & Dubayah, R. (2015). Small sample sizes yield biased allometric equations in temperate forests. Scientific Reports, 5, 17153.

    Article  CAS  Google Scholar 

  • Fang, J. Y., Guo, Z. D., Piao, S. L., & Chen, A. P. (2007). Terrestrial vegetation carbon sinks in China, 1981–2000. Science in China (series D), 50, 1341–1350.

    Article  CAS  Google Scholar 

  • FAO (2017). The future of food and agriculture – Trends and challenges, Rome.

  • Fortier, J., Truax, B., Gagnon, D., & Lambert, F. (2017). Allometric equations for estimating compartment biomass and stem volume in mature hybrid poplars: General or site-specific? Forests, 8(9), 309.

    Article  Google Scholar 

  • Gujarati, D. N. (1995). Basic econometrics (hird). McGraw-Hill.

  • Handa, A. K., Sirohi, C., Chavan, S. B., Dhillon, R. S., Ahlawat, K. S., & Rizvi, R. H. (2020). Agroforestry in Haryana: Status and way forward. Indian Journal of Agroforestry, 22, 1–10.

    Google Scholar 

  • Harja, D., Vincent, G., Mulia, R., & van Noordwijk, M. (2012). Tree shape plasticity in relation to crown exposure. Trees, 26(4), 1275–1285.

    Article  Google Scholar 

  • Hunter, M. O., Keller, M., Vitoria, D., & Morton, D. C. (2013). Tree height and tropical forest biomass estimation. Biogeosciences, 10, 8385–8399.

    Article  Google Scholar 

  • IPCC. Climate Change (2014): Synthesis Report. Contribution of Working Groups I, II and III to the Fifth assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland; 2014. p. 151.

  • IPCC. Summary for Policymakers (2019). In Climate Change and Land: An IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems; Shukla, P.R., Skea, J., Calvo Buendia, E., Masson-Delmotte, V., Pörtner, H.-O., Roberts, D.C., Zhai, P., Slade, R., Connors, S., van Diemen, R., et al., Eds.; IPCC Press Office: Geneva, Switzerland; p. 36.

  • Jansons, A., Rieksts-Riekstiņš, J., Senhofa, S., Katrevics, J., Lazdina, D., & Sisenis, L. (2017). Above-ground biomass equations of Populus hybrids in Latvia. Baltic Forestry, 23(2), 507–514.

    Google Scholar 

  • Kanime, N., Kaushal, R., Tewari, S. K., Raverkar, K. P., Chaturvedi, S., & Chaturvedi, O. P. (2013). Biomass production and carbon sequestration in different tree-based systems of Central Himalayan Tarai region. Forests, Trees and Livelihoods, 22(1), 38–50.

    Article  Google Scholar 

  • Kaushal, R., Subbulakshmi, V., Tomar, J. M. S., Alam, N. M., Jayaparkash, J., Mehta, H., & Chaturvedi, O. P. (2016). Predictive models for biomass and carbon stock estimation in male bamboo (Dendrocalamus strictus L) in Doon valley. India. Acta Ecologica Sinica., 36(6), 469–476.

    Article  Google Scholar 

  • Kaushal, R., Verma, K. S., Chaturvedi, O. P., & Alam, N. M. (2012). Leaf litter decomposition and nutrient dynamics in four important multiple tree species. Range Management and Agroforestry, 33, 20–27.

    Google Scholar 

  • Ketterings, Q. M., Coe, R., van Noordwijk, M., & Palm, C. A. (2001). Reducing uncertainty in the use of allometric biomass equations for predicting above-ground tree biomass in mixed secondary forests. Forest Ecology and Management, 146(1–3), 199–209.

    Article  Google Scholar 

  • Khan, G. S., & Chaudhry, A. K. (2007). Effect of spacing and plant density on the growth of poplar (Populus deltoides) trees under agro-forestry system. Pak. J. Agri. Sci, 44(2), 321–327.

    Google Scholar 

  • Kumar, P., Mishra, A. K., Chaudhari, S. K., Singh, R., Singh, K., Rai, P., Pandey, C. B., & Sharma, D. K. (2016b). Biomass estimation and carbon sequestration in Populus deltoides plantations in India. Journal of Soil Salinity and Water Quality, 8(1), 25–29.

    Google Scholar 

  • Kumar, P., Mishra, A. K., Choudhary, S. K., Singh, R., Singh, K., Rai, P., Pandey, C. B., & Sharma, D. K. (2016a). Biomass estimation and carbon sequestration in Populus deltoides plantation in India. Journal of Soil Salinity and Water Quality., 1, 25–29.

    Google Scholar 

  • Kuyah, S., Dietz, J., Muthuri, C., Jamnadass, R., Mwangi, P., Coe, R., & Neufeldt, H. (2012). Allometric equations for estimating biomass in agricultural landscapes: II. Belowground biomass. Agriculture, Ecosystems & Environment, 158, 225–234.

    Article  Google Scholar 

  • Kuyah, S., Dietz, J., Muthuri, C., van Noordwijk, M., & Neufeldt, H. (2013). Allometry and partitioning of above– and below–ground biomass in farmed eucalypts species dominant in Western Kenyan agricultural landscapes. Biomass and Bioenergy, 55, 276–284.

    Article  Google Scholar 

  • Kuyah, S., Mbow, C., Sileshi, G. W., van Noordwijk, M., Tully, K. L., & Rosenstock, T. S. (2016). Quantifying tree biomass carbon stocks and fluxes in agricultural landscapes. Methods for measuring greenhouse gas balances and evaluating mitigation options in smallholder agriculture (pp. 119–134). Cham: Springer.

    Chapter  Google Scholar 

  • Lodhiyal, L. S., Rana, B. S., & Singh, R. P. (1995). Dry matter production in a poplar (Populus deltoides Marsh) plantation of Central Himalayan Tarai. Indian Forester, 121(5), 383–389.

    Google Scholar 

  • Lodhiyal, L. S., Singh, R. P., & Rana, B. S. (1992). Biomass and productivity in an age series of short rotation Populus deltoides plantations. Tropical Ecology, 33(2), 214–222.

    Google Scholar 

  • Mac Dicken KG. (1997). A quick guide to monitoring carbon storage in forestry and agroforestry projects (Winrock International Institute for Agricultural Development, Forest Carbon Monitoring Program, Arlington, Va.). Electronic access: http://www.winrock.org/REEP/forest_carbon_monitoring_program; 1997.

  • Minang, P.A., Bernard, F., Noordwijk, M.V. and Kahurani, E. (2011). Agroforestry in REDD+: Opportunities and Challenges. ASB Policy Brief 26.

  • Mittal, S. P., & Singh, P. (1989). Intercropping field crops between rows of Leucaena leucocephala under rainfed conditions in northern India. Agroforestry System, 8(2), 165–172.

    Article  Google Scholar 

  • Montagu, K., Duttmer, K., Barton, C. V., & Cowie, A. (2005). Developing general allometric relationships for regional estimates of carbon sequestration – an example using Eucalyptus pilularis from seven contrasting sites. Forest Ecology and Management, 204, 113–127.

    Article  Google Scholar 

  • Montgomery, D. C., Peck, E. A., & Vining, G. G. (2012). Introduction to linear regression analysis. Wiley.

  • Mukuralinda, A., Kuyah, S., Ruzibiza, M., Ndoli, A., Nabahungu, N. L., & Muthuri, C. (2021). Allometric equations, wood density and partitioning of aboveground biomass in the arboretum of Ruhande, Rwanda. Trees, Forests and People., 3, 100050.

    Article  Google Scholar 

  • Nair, P.R., Nair, V.D., Kumar, B.M. and Showalter, J.M. (2010). Carbon sequestration in agroforestry systems. In Advances in agronomy (Vol. 108, pp. 237–307). Academic Press.

  • Nair, P. K. R. (2012). Climate Change Mitigation: A Low-Hanging Fruit of Agroforestry. In: P. Nair & D. Garrity (Eds.), Agroforestry - The Future of Global Land Use. Advances in Agroforestry (Vol. 9). Dordrecht: Springer. https://doi.org/10.1007/978-94-007-4676-3_7.

  • Nair, P. K. R., Mohan Kumar, B., & Nair, V. D. (2009). Agroforestry as a strategy for carbon sequestration. Journal of Plant Nutrition and Soil Science, 172(1), 10–23.

    Article  CAS  Google Scholar 

  • Narisetty, N. N. (2020). Bayesian model selection for high-dimensional data. Principles and Methods for Data Science, 43, 207.

    Article  Google Scholar 

  • Newaj, R., Dhyani, S.K., Chavan, S.B., Rizvi, R.H. and Prasad, R. (2014). Methodologies for assessing biomass, carbon stock and carbon sequestration in agroforestry systems. National Research Centre for Agroforestry, Jhansi;2014. p. 45.

  • Newaj, R., Chaturvedi, O. P., Kumar, D., Chavan, S. B., Rajawat, B. S., & Yadav, D. K. (2020). Carbon sequestration potential of agroforestry systems for rehabilitating degraded lands of India. In: J. C. Dagar, S. R. Gupta & D. Teketay (Eds.), Agroforestry for degraded landscapes. Singapore: Springer. https://doi.org/10.1007/978-981-15-6807-7_11.

  • Newaj, R., Chavan, S. B., Alam, B., & Dhyani, S. K. (2016). Biomass and carbon storage in trees grown under different agroforestry systems in semi arid region of central India. Indian Forester, 142(7), 642–648.

    Google Scholar 

  • Online Document India's, I.N.D.C., (2019). India’s Intended Nationally Determined Contribution: working towards climate justice. Retrieved on July, 29, p.2019.

  • Ounban, W., Puangchit, L., & Diloksumpun, S. (2016). Development of general biomass allometric equations for Tectona grandis Linn f and Eucalyptus camaldulensis Dehnh Plantations in Thailand. Agriculture and Natural Resources, 50(1), 48–53.

    Article  Google Scholar 

  • Panse, V. G., & Sukhatme, P. V. (1989). Statistical methods for agricultural workers (4th ed.). ICAR Publication.

  • Picard, N., Saint-André, L. and Henry, M. (2012). Manual for building tree volume and biomass allometric equations: from field measurement to prediction. FAO/CIRAD.

  • Pingale, B., Bana, O. P. S., Banga, A., Chaturvedi, S., Kaushal, R., Tewari, S., & Neema, S. (2014). Accounting biomass and carbon dynamics in Populus deltoides plantation under varying density in tarai of central Himalaya. Journal of Tree Sciences, 33(2), 1–6.

    Google Scholar 

  • Prajneshu, C. K. P. (2015). Computation of compound growth rates in agriculture: Revisited. Agricultural Economics Research Review, 18, 317.

    Google Scholar 

  • Prasad, J. V. N. S., Korwar, G. R., Rao, K. V., Mandal, U. K., Rao, C. A. R., & Rao, G. R. (2010). Tree row spacing affected agronomic and economic performance of Eucalyptus-based agroforestry in Andhra Pradesh, Southern India. Agroforestry Systems, 78(3), 253–267.

    Article  Google Scholar 

  • Puri, S., Singh, V., Bhushan, B., & Singh, S. (1994). Biomass production and distribution of roots in three stands of Populus deltoides. Forest Ecology and Management, 65(2–3), 135–147.

    Article  Google Scholar 

  • Ramananantoandro, T., Ramanakoto, M. F., Rajoelison, G. L., Randriamboavonjy, J. C., & Rafidimanantsoa, H. P. (2016). Influence of tree species, tree diameter and soil types on wood density and its radial variation in a mid-altitude rainforest in Madagascar. Annals of Forest Science, 73(4), 1113–1124.

    Article  Google Scholar 

  • Rizvi, R. H., Dhyani, S. K., Yadav, R. S., & Singh, R. (2011). Biomass production and carbon stock of poplar agroforestry systems in Yamunanagar and Saharanpur districts of northwestern India. Current Science, 100(5), 736–742.

    CAS  Google Scholar 

  • Rizvi, R. H., Handa, A. K., Dhillon, R. S., & Tewari, S. (2018). Development and validation of generalized biomass models for estimation of carbon stock in important agroforestry species. Indian Journal of Agroforestry, 20, 68–72.

    Google Scholar 

  • Rizvi, R. H., & Khare, D. (2006). Prediction models for timber weight of Populus deltoides planted on farmlands in Haryana. Indian Journal of Agroforestry, 8(1), 77–85.

    Google Scholar 

  • Rizvi, R. H., Khare, D., & Dhillon, R. S. (2008). Statistical models for aboveground biomass of Populus deltoides planted in agroforestry in Haryana. Tropical Ecology, 49(1), 35–42.

    Google Scholar 

  • Rizvi, R. H., Newaj, R., Chaturvedi, O. P., Prasad, R., Handa, A. K., & Alam, B. (2019). Carbon sequestration and CO2 absorption by agroforestry systems: An assessment for Central Plateau and Hill region of India. Journal of Earth System Science, 128(3), 1–9.

    Article  CAS  Google Scholar 

  • Sarangle, S., Rajasekaran, A., Benbi, D. K., & Chauhan, S. (2018). Biomass and carbon stock, carbon sequestration potential under selected land use systems in Punjab. Forestry Research and Engineering: International Journal, 9, 75–80.

    Google Scholar 

  • Schmitt, M. D., & Grigal, D. F. (1981). Generalized biomass estimation equations for Betulapapyrifera Marsh. Canadian Journal of Forest Research, 11(4), 837–840.

    Article  Google Scholar 

  • Sileshi, G. W. (2014). A critical review of forest biomass estimation models, common mistakes and corrective measures. Forest Ecology and Management, 329, 237–254.

    Article  Google Scholar 

  • Singh, B., & Mishra, P. N. (1995). Biomass, energy content and fuel-wood properties of Populus deltoides clones raised in North Indian plains. Indian Journal of Forestry, 18(4), 278–284.

    Google Scholar 

  • Singh, P., & Lodhiyal, L. S. (2009). Biomass and carbon allocation in 8-year-old poplar (Populus deltoides Marsh) plantation in Tarai agroforestry systems of central Himalaya, India. New York Science Journal, 2(6), 49–53.

    Google Scholar 

  • Stankova, T., Gyuleva, V., Kalmukov, K., Dimitrova, P., Velizarova, E., & Dimitrov, D. N. (2016). Biometric models for the above ground biomass of juvenile black locust trees. Silva Balcanica, 17(1), 21–30.

    Google Scholar 

  • Su, H., Shen, W., Wang, J., et al. (2020). Machine learning and geostatistical approaches for estimating aboveground biomass in Chinese subtropical forests. Forest Ecosystem, 7, 64. https://doi.org/10.1186/s40663-020-00276-7

    Article  Google Scholar 

  • Subramanian, K. (2019, 21 octomber). Is India on track to meet its Paris commitments. Retrived from https://www.downtoearth.org.in/blog/climate-change/is-india-on-track-to-meet-its-paris-commitments-67345

  • Takimoto, A., Nair, P. K. R., & Nair, V. D. (2008). Carbon stock and sequestration potential of traditional and improved agroforestry systems in the West African Sahel. Agriculture, Ecosystems & Environment, 125(1–4), 159–166.

    Article  CAS  Google Scholar 

  • Tashi, S., Keitel, C., Singh, B., & Adams, M. (2017). Allometric equations for biomass and carbon stocks of forests along an altitudinal gradient in the eastern Himalayas. Forestry: an International Journal of Forest Research., 90(3), 445–454.

    Article  Google Scholar 

  • Truax, B., Gagnon, D., Fortier, J., & Lambert, F. (2014). Biomass and volume yield in mature hybrid poplar plantations on temperate abandoned farmland. Forests, 5(12), 3107–3130.

    Article  Google Scholar 

  • UNFCCC (2015). Adoption of the Paris Agreement, https://sustainabledevelopment.un.org/content/documents/17853paris_agreement.pdf

  • United Nations General Assembly. (2015). Transforming our world: The 2030 agenda for sustainable development, A/ RES/70/1. Retrieved from http://www.refworld.org/docid/57b6e3e44.html.

  • Uthappa, A. R., Chavan, S. B., Dhyani, S. K., Handa, A. K., & Newaj, R. (2015). Trees for soil health and sustainable agriculture. Indian Farming, 65, 2–5.

    Google Scholar 

  • WRI (2018) Synthesis report: Creating a sustainable food future: A menu of solutions to feed nearly 10 Billion People by 2050, World Resource Institute; p. 96.

  • Yadava, A. K. (2010). Biomass production and carbon sequestration in different agroforestry systems in Tarai region of Central Himalaya. Indian Forester, 136(2), 234–244.

    Google Scholar 

  • Yadava, A. K. (2011). Potential of agroforestry systems in carbon sequestration for mitigating climate changes in Tarai region of Central Himalaya. Nature and Science., 9(6), 72–80.

    Google Scholar 

  • Zhang, Z., Zhong, Q., Niklas, K. J., Cai, L., Yang, Y., & Cheng, D. (2016). A predictive non destructive model for the covariation of tree height, diameter, and stem volume scaling relationships. Scientific Reports, 6, 31008.

    Article  CAS  Google Scholar 

  • Zomer, R. J., Neufeldt, H., Xu, J., Ahrends, A., Bossio, D., Trabucco, A., Van Noordwijk, M., & Wang, M. (2016). Global tree cover and biomass carbon on agricultural land: The contribution of agroforestry to global and national carbon budgets. Scientific Reports, 6(1), 1–12.

    Article  Google Scholar 

Download references

Acknowledgements

Aurthors acknowledges the CCS Haryayana Agricultural University, Hisar & Indian Council of Agricultural Research, New Dehli for help to carry out this work. We sincerely thank Dr. Aliza Pradhan, Scientist (Agronomy), ICAR-NIASM, Baramati; Dr. A.R Uthappa, Scientist (Agroforestry), ICAR-CCARI, Goa & Dr. Keerthika A, Scientist (Agroforestry), ICAR-CAZRI, Jodhpur for the valuable correction and improvement in the manuscripts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. B. Chavan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chavan, S.B., Dhillon, R.S., Ajit et al. Estimating biomass production and carbon sequestration of poplar-based agroforestry systems in India. Environ Dev Sustain 24, 13493–13521 (2022). https://doi.org/10.1007/s10668-021-01996-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-021-01996-8

Keywords

Navigation