Skip to main content

Advertisement

Log in

Assessment of indoor air quality and housing, household and health characteristics in densely populated urban slums

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

This study provides the first quantitative assessment of seasonal variation in indoor PM2.5 in the high-air pollution risk and densely populated slums in Mumbai, India and estimates the contributions of indoor and outdoor sources to it. Indoor and outdoor 24-h averaged gravimetric PM2.5 (nind = 20 homes, nout = 10 days) was measured during summer (May–June 2016) and winter (January–March 2017). During the summer, real-time PM2.5, Lung Deposited Surface Area and Black Carbon were also measured (nind = 8, nout = 8). Additionally, detailed questionnaire surveys on housing, household and health characteristics were conducted in ~ 500 homes of the seven Mumbai slums. More than 60% of the homes in slums had no separate kitchen or cross-ventilation, especially in low socioeconomic status homes. Respiratory and cardiovascular diseases were reported in 15% and 6% of the households, respectively, with a higher prevalence in homes burning mosquito coils. Significantly higher indoor PM2.5 was observed during winter (111 ± 30 µg/m3) than summer (36 ± 12 µg/m3). Although liquefied petroleum gas was the only indoor cooking fuel reported, the winter-time indoor levels were similar or higher than the concentrations observed in other urban slum homes using biomass fuels for cooking. This could be attributed to the alarmingly high winter-time ambient PM2.5 (192 ± 80 µg/m3) and its larger contribution to indoor PM2.5 (81%). On the other hand, the contribution of indoor and local outdoor sources was significantly higher for Lung Deposited Surface Area (33%) and Black Carbon (43%) compared to PM2.5 (19%), which are more fine and toxicity-relevant particle metrics.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

source contribution from real-time indoor PM2.5 in a slum home. a shows the real-time one-minute indoor PM2.5 profile. b shows the distribution of indoor PM2.5 values below median (considered as background concentration). c illustrates the filtering of concentrations influenced by indoor sources. Marked time period in figure (c) corresponds to dinner cooking

Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdullahi, K. L., Delgado-Saborit, J. M., & Harrison, R. M. (2013). Emissions and indoor concentrations of particulate matter and its specific chemical components from cooking: A review. Atmospheric Environment, 71, 260–294.

    Article  CAS  Google Scholar 

  • Anand, A., & Phuleria, H. C. (2020). Spatial and seasonal variation of outdoor BC and PM2.5 in densely populated urban slums. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-020-10564-y

    Article  Google Scholar 

  • Apte, J. S., Kirchstetter, T. W., Reich, A. H., Deshpande, S. J., Kaushik, G., Chel, A., & Nazaroff, W. W. (2011). Concentrations of fine, ultrafine, and black carbon particles in auto-rickshaws in New Delhi India. Atmospheric Environment, 45(26), 4470–4480.

    Article  CAS  Google Scholar 

  • Arnold, C. (2014). Disease burdens associated with PM2. 5 exposure: How a new model provided global estimates.

  • Balakrishnan, K., Ghosh, S., Ganguli, B., Sambandam, S., Bruce, N., Barnes, D. F., & Smith, K. R. (2013). State and national household concentrations of PM2.5 from solid cookfuel use: Results from measurements and modeling in India for estimation of the global burden of disease. Environmental Health, 12(1), 77.

    Article  CAS  Google Scholar 

  • Baxter, L. K., Clougherty, J. E., Laden, F., & Levy, J. I. (2007). Predictors of concentrations of nitrogen dioxide, fine particulate matter, and particle constituents inside of lower socioeconomic status urban homes. Journal of Exposure Science and Environmental Epidemiology, 17, 433–444.

    Article  CAS  Google Scholar 

  • Bell, M. L., O’Neill, M. S., Cifuentes, L. A., Braga, A. L., Green, C., Nweke, A., & Sibold, K. (2005). Challenges and recommendations for the study of socioeconomic factors and air pollution health effects. Environmental Science & Policy, 8(5), 525–533.

    Article  Google Scholar 

  • Both, A. F., Balakrishnan, A., Joseph, B., & Marshall, J. D. (2011). Spatiotemporal aspects of real-time PM2.5: low-and middle-income neighborhoods in Bangalore India. Environmental Science & Technology, 45(13), 5629–5636.

    Article  CAS  Google Scholar 

  • Brunekreef, B., & Holgate, S. T. (2002). Air Pollution and Health. The Lancet, 360(9341), 1233–1242.

    Article  CAS  Google Scholar 

  • Burgos, S., Ruiz, P., & Koifman, R. (2013). Changes to indoor air quality as a result of relocating families from slums to public housing. Atmospheric Environment, 70, 179–185.

    Article  CAS  Google Scholar 

  • Census, 2011 Registrar General and Census Commissioner of India, Government of India

  • Chaney, R. A., Sloan, C. D., Cooper, V. C., Robinson, D. R., Hendrickson, N. R., McCord, T. A., & Johnston, J. D. (2017). Personal exposure to fine particulate air pollution while commuting: An examination of six transport modes on an urban arterial roadway. PLoS ONE, 12(11), e0188053.

    Article  CAS  Google Scholar 

  • Chen, C., & Zhao, B. (2011). Review of relationship between indoor and outdoor particles: I/O ratio, infiltration factor and penetration factor. Atmospheric Environment, 45(2), 275–288.

    Article  CAS  Google Scholar 

  • Chen, Y., Wild, O., Conibear, L., Ran, L., He, J., Wang, L., & Wang, Y. (2020). Local characteristics of and exposure to fine particulate matter (PM25) in four Indian megacities. Atmospheric Environment X, 5, 100052.

    Article  CAS  Google Scholar 

  • Devi, J., Gupta, T., Tripathi, S. N., & Ujinwal, K. K. (2009). Assessment of personal exposure to inhalable indoor and outdoor particulate matter for student residents of an academic campus (IIT-Kanpur). Inhalation Toxicology, 21(14), 1208–1222.

    Article  CAS  Google Scholar 

  • Dovi, K., & Tomlinson, R. (2012). Dharavi: Informal settlements and slum upgrading. University of Melbourne.

    Google Scholar 

  • Drago, G., Perrino, C., Canepari, S., Ruggieri, S., L’Abbate, L., Longo, V., Colombo, P., Frasca, D., Balzan, M., Cuttitta, G., & Scaccianoce, G. (2018). Relationship between domestic smoking and metals and rare earth elements concentration in indoor PM2.5. Environmental Research, 165, 71–80.

    Article  CAS  Google Scholar 

  • Drewnick, F., Böttger, T., Von Der Weiden-Reinmüller, S. L., Zorn, S. R., Klimach, T., Schneider, J., & Borrmann, S. (2012). Design of a mobile aerosol research laboratory and data processing tools for effective stationary and mobile field measurements. Atmospheric Measurement Techniques, 5(6), 1443–1457.

    Article  CAS  Google Scholar 

  • Escobedo, L. E., Champion, W. M., Li, N., & Montoya, L. D. (2014). Indoor air quality in Latino homes in Boulder, Colorado. Atmospheric Environment, 92, 69–75.

    Article  CAS  Google Scholar 

  • Elf, J. L., Kinikar, A., Khadse, S., Mave, V., Suryavanshi, N., Gupte, N., Kulkarni, V., Patekar, S., Raichur, P., Breysse, P. N., & Gupta, A. (2018). Sources of household air pollution and their association with fine particulate matter in low-income urban homes in India. Journal of Exposure Science & Environmental Epidemiology, 28(4), 400.

    Article  Google Scholar 

  • Eneh, O. C. (2020). Abuja slums: development, causes, waste-related health challenges, government response and way-forward. Environment, Development and Sustainability, 1–18.

  • Fierz, M., Meier, D., Steigmeier, P., & Burtscher, H. (2014). Aerosol measurement by induced currents. Aerosol Science and Technology, 48(4), 350–357.

    Article  CAS  Google Scholar 

  • Geiss, O., Bianchi, I., & Barrero-Moreno, J. (2016). Lung-deposited surface area concentration measurements in selected occupational and non-occupational environments. Journal of Aerosol Science, 96, 24–37.

    Article  CAS  Google Scholar 

  • Ghergu, C., Sushama, P., Vermeulen, J., Krumeich, A., Blankvoort, N., van Schayck, O. C., & de Witte, L. P. (2016). Dealing with indoor air pollution: An ethnographic tale from urban slums in Bangalore. International Journal of Health Science and Research, 6, 348–361.

    Google Scholar 

  • Goel, R., Gani, S., Guttikunda, S. K., Wilson, D., & Tiwari, G. (2015). On-road PM2.5 pollution exposure in multiple transport microenvironments in Delhi. Atmospheric Environment, 123, 129–138.

    Article  CAS  Google Scholar 

  • Gupta, K., Arnold, F., & Lhungdim, H. (2009). Health and Living Conditions in Eight Indian Cities. National Family Health Survey (NFHS-3), India, 2005–06. Mumbai: International Institute for Population Sciences.

  • Gurley, E. S., Salje, H., Homaira, N., Ram, P. K., Haque, R., Petri, W. A., Jr., & Azziz-Baumgartner, E. (2013). Seasonal concentrations and determinants of indoor particulate matter in a low-income community in Dhaka, Bangladesh. Environmental Research, 121, 11–16.

    Article  CAS  Google Scholar 

  • Habre, R., Coull, B., Moshier, E., Godbold, J., Grunin, A., Nath, A., Castro, W., Schachter, N., Rohr, A., Kattan, M., Spengler, J., & Koutrakis, P. (2014). Sources of indoor air pollution in New York City residences of asthmatic children. Journal of Exposure Science & Environmental Epidemiology, 24(3), 269–278.

    Article  CAS  Google Scholar 

  • Hagler, G. S., Yelverton, T. L., Vedantham, R., Hansen, A. D., & Turner, J. R. (2011). Post-processing method to reduce noise while preserving high time resolution in aethalometer real-time black carbon data. Aerosol and Air Quality Research, 11(5), 539–546.

    Article  CAS  Google Scholar 

  • Hansen, A. D. A., Rosen, H., & Novakov, T. (1984). The aethalometer - an instrument for the real-time measurement of optical absorption by aerosol particles. Science of the Total Environment, 36, 191–196.

    Article  CAS  Google Scholar 

  • Helen, G. S., Aguilar-Villalobos, M., Adetona, O., Cassidy, B., Bayer, C. W., Hendry, R., & Naeher, L. P. (2015). Exposure of pregnant women to cookstove-related household air pollution in urban and periurban Trujillo, Peru. Archives of Environmental & Occupational Health, 70(1), 10–18.

    Article  CAS  Google Scholar 

  • Huang, G., Zhou, W., Qian, Y., & Fisher, B. (2019). Breathing the same air? Socioeconomic disparities in PM2.5 exposure and the potential benefits from air filtration. Science of the Total Environment, 657, 619–626.

    Article  CAS  Google Scholar 

  • Kothai, P., Saradhi, I. V., Pandit, G. G., Markwitz, A., & Puranik, V. D. (2011). Chemical characterization and source identification of particulate matter at an urban site of Navi Mumbai India. Aerosol and Air Quality Research, 11(5), 560–569.

    Article  CAS  Google Scholar 

  • Kulshreshtha, P., Khare, M., & Seetharaman, P. J. I. A. (2008). Indoor air quality assessment in and around urban slums of Delhi city India. Indoor Air, 18(6), 488–498.

    Article  CAS  Google Scholar 

  • Kuuluvainen, H., Rönkkö, T., Järvinen, A., Saari, S., Karjalainen, P., Lähde, T., & Keskinen, J. (2016). Lung deposited surface area size distributions of particulate matter in different urban areas. Atmospheric Environment, 136, 105–113.

    Article  CAS  Google Scholar 

  • Lachenmyer, C. (2000). Urban measurements of outdoor-indoor PM2.5 concentrations and personal exposure in the deep south. Part I. Pilot study of mass concentrations for nonsmoking subjects. Aerosol Science & Technology, 32(1), 34–51.

    Article  CAS  Google Scholar 

  • Lawrence, A., & Fatima, N. (2014). Urban air pollution & its assessment in Lucknow City - the second largest city of North India. Science of the Total Environment, 488, 447–455.

    Article  CAS  Google Scholar 

  • Lee, S. C., & Wang, B. (2006). Characteristics of emissions of air pollutants from mosquito coils and candles burning in a large environmental chamber. Atmospheric Environment, 40(12), 2128–2138.

    Article  CAS  Google Scholar 

  • Li, T., Cao, S., Fan, D., Zhang, Y., Wang, B., Zhao, X., & Duan, X. (2016). Household concentrations and personal exposure of PM2.5 among urban residents using different cooking fuels. Science of the Total Environment, 548, 6–12.

    Article  CAS  Google Scholar 

  • Liang, L., Gong, P., Cong, N., Li, Z., Zhao, Y., & Chen, Y. (2019). Assessment of personal exposure to particulate air pollution: The first result of City Health Outlook (CHO) project. BMC Public Health, 19(1), 711.

    Article  Google Scholar 

  • Lin, H., Ratnapradipa, K., Wang, X., Zhang, Y., Xu, Y., Yao, Z., Yao, Z., Dong, G., Liu, T., Clark, J., Dick, R., Xiao, J., Zeng, W., Li, X., Qian, Z., & Ma, W. (2017). Hourly peak concentration measuring the PM2. 5-mortality association: Results from six cities in the Pearl River Delta study. Atmospheric Environment, 161, 27–33.

    Article  CAS  Google Scholar 

  • Liu, W., Zhang, J., Hashim, J. H., Jalaludin, J., Hashim, Z., & Goldstein, B. D. (2003). Mosquito coil emissions and health implications. Environmental Health Perspectives, 111(12), 1454–1460.

    Article  CAS  Google Scholar 

  • Lueker, J., Bardhan, R., Sarkar, A., & Norford, L. (2020). Indoor air quality among Mumbai’s resettled populations: Comparing Dharavi slum to nearby rehabilitation sites. Building and Environment, 167, 106419.

    Article  Google Scholar 

  • Marjovi, A., Arfire, A., & Martinoli, A. (2015). High resolution air pollution maps in urban environments using mobile sensor networks. In 2015 International Conference on Distributed Computing in Sensor Systems (pp. 11–20). IEEE.

  • Martins, N. R., & da Graça, G. C. (2018). Impact of PM2.5 in indoor urban environments: A review. Sustainable Cities and Society, 42, 259–275.

    Article  Google Scholar 

  • Meier, R., Schindler, C., Eeftens, M., Aguilera, I., Ducret-Stich, R. E., Ineichen, A., Davey, M., Phuleria, H. C., Probst-Hensch, N., Tsai, M., & Künzli, N. (2015). Modeling indoor air pollution of outdoor origin in homes of SAPALDIA subjects in Switzerland. Environment International, 82, 85–91.

    Article  CAS  Google Scholar 

  • Miranda, R. F., Grottera, C., & Giampietro, M. (2016). Understanding slums: Analysis of the metabolic pattern of the Vidigal favela in Rio de Janeiro, Brazil. Environment, Development and Sustainability, 18(5), 1297–1322.

    Article  Google Scholar 

  • Muindi, K., Kimani-Murage, E., Egondi, T., Rocklov, J., & Ng, N. (2016). Household air pollution: Sources and exposure levels to fine particulate matter in Nairobi slums. Toxics, 4(3), 12.

    Article  Google Scholar 

  • Nasir, Z. A., & Colbeck, I. (2013). Particulate pollution in different housing types in a UK suburban location. Science of the Total Environment, 445, 165–176.

    Article  CAS  Google Scholar 

  • Ntziachristos, L., Polidori, A., Phuleria, H., Geller, M. D., & Sioutas, C. (2007). Application of a diffusion charger for the measurement of particle surface concentration in different environments. Aerosol Science and Technology, 41(6), 571–580.

    Article  CAS  Google Scholar 

  • Ostad-Ali-Askari, K., Shayannejad, M., & Ghorbanizadeh-Kharazi, H. (2017). Artificial neural network for modeling nitrate pollution of groundwater in marginal area of Zayandeh-rood River, Isfahan Iran. KSCE Journal of Civil Engineering, 21(1), 134–140.

    Article  Google Scholar 

  • Ostad-Ali-Askari, K., & Shayannejad, M. (2021). Quantity and quality modelling of groundwater to manage water resources in Isfahan-Borkhar Aquifer. Environment, Development and Sustainability, 1–17.

  • Ostad-Ali-Askar, K., Su, R., & Liu, L. (2018). Water resources and climate change. Journal of Water and Climate Change, 9(2), 239.

    Article  Google Scholar 

  • Panjwani, A. K., Ghazal, S., Mahat, R., Malik, M., & Rizvi, N. (2013). Assessment of risk factors against severity of COPD in non-smokers. Journal of Nepal Medical Association52(191).

  • Pant, P., Guttikunda, S. K., & Peltier, R. E. (2016). Exposure to particulate matter in India: A synthesis of findings and future directions. Environmental Research, 147, 480–496.

    Article  CAS  Google Scholar 

  • Poddar, M., & Chakrabarti, S. (2016). Indoor air pollution and women’s health in India: An exploratory analysis. Environment, Development and Sustainability, 18(3), 669–677.

    Article  Google Scholar 

  • Poole, J. A., Barnes, C. S., Demain, J. G., Bernstein, J. A., Padukudru, M. A., Sheehan, W. J., Fogelbach, G. G., Wedner, J., Codina, R., Levetin, E., Cohn, J. R., Kagen, S., Portnoy, J. M., & Nel, A. E. (2019). Impact of weather and climate change with indoor and outdoor air quality in asthma: A Work Group Report of the AAAAI Environmental Exposure and Respiratory Health Committee. Journal of Allergy and Clinical Immunology, 143(5), 1702–1710.

    Article  Google Scholar 

  • Pope, C. A., Burnett, R. T., Thun, M. J., Calle, E. E., Krewski, D., Ito, K., & Thurston, G. D. (2002). Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA, 287(9), 1132–1141.

    Article  CAS  Google Scholar 

  • Pope, C. A., Burnett, R. T., Thurston, G. D., Thun, M. J., Calle, E. E., Krewski, D., & Godleski, J. J. (2004). Cardiovascular mortality and long-term exposure to particulate air pollution: Epidemiological evidence of general pathophysiological pathways of disease. Circulation, 109(1), 71–77.

    Article  Google Scholar 

  • Reche, C., Viana, M., Brines, M., Pérez, N., Beddows, D., Alastuey, A., & Querol, X. (2015). Determinants of aerosol lung-deposited surface area variation in an urban environment. Science of the Total Environment, 517, 38–47.

    Article  CAS  Google Scholar 

  • Rolph, G., Stein, A., & Stunder, B. (2017). Real-time environmental applications and display system: READY. Environmental Modelling & Software, 95, 210–228.

    Article  Google Scholar 

  • Romagnoli, P., Balducci, C., Perilli, M., Gherardi, M., Gordiani, A., Gariazzo, C., Gatto, M. P., & Cecinato, A. (2014). Indoor PAHs at schools, homes and offices in Rome, Italy. Atmospheric Environment, 92, 51–59.

    Article  CAS  Google Scholar 

  • Rumchev, K., Win, T., Bertolatti, D., & Dhaliwal, S. (2016). Prevalence of respiratory symptoms among children in rural Myanmar-disease burden assessment attributable to household biomass smoke. Indoor and Built Environment, 25(5), 728–736.

    Article  CAS  Google Scholar 

  • Salehi-Hafshejani, S., Shayannejad, M., Samadi-Broujeni, H., Zarraty, A. R., Soltani, B., Mohri-Esfahani, E., Haeiri-Hamedani, M., Eslamian, S., & Ostad-Ali-Askari, K. (2019). Determination of the height of the vertical filter for heterogeneous Earth dams with vertical clay core. International Journal of Hydrology Science and Technology, 9(3), 221–235.

    Article  Google Scholar 

  • Salvi, D., Limaye, S., Muralidharan, V., Londhe, J., Madas, S., Juvekar, S., Biswal, S., & Salvi, S. (2016). Indoor particulate matter < 25 μm in mean aerodynamic diameter and carbon monoxide levels during the burning of mosquito coils and their association with respiratory health. Chest, 149(2), 459–466.

    Article  Google Scholar 

  • Sandeep, P., Saradhi, I. V., & Pandit, G. G. (2013). Seasonal variation of black carbon in fine particulate matter (PM2.5) at the tropical coastal city of Mumbai, India. Bulletin of Environmental Contamination and Toxicology, 91(5), 605–610.

    Article  CAS  Google Scholar 

  • Satsangi, P. G., Yadav, S., Pipal, A. S., & Kumbhar, N. (2014). Characteristics of trace metals in fine (PM2.5) and inhalable (PM10) particles and its health risk assessment along with in-silico approach in indoor environment of India. Atmospheric Environment, 92, 384–393.

    Article  CAS  Google Scholar 

  • Saksena, S., Singh, P. B., Prasad, R. K., Prasad, R., Malhotra, P., Joshi, V., & Patil, R. S. (2003). Exposure of infants to outdoor and indoor air pollution in low-income urban areas—a case study of Delhi. Journal of Exposure Science & Environmental Epidemiology, 13(3), 219–230.

    Article  CAS  Google Scholar 

  • Shao, Z., Bi, J., Ma, Z., & Wang, J. (2017). Seasonal trends of indoor fine particulate matter and its determinants in urban residences in Nanjing, China. Building and Environment, 125, 319–325.

    Article  Google Scholar 

  • Schneider, J., & Eixmann, R. (2002). Three years of routine Raman lidar measurements of tropospheric aerosols: Backscattering, extinction, and residual layer height. Atmospheric Chemistry and Physics, 2(4), 313–323.

    Article  Google Scholar 

  • Singh, P., Saini, R., & Taneja, A. (2014). Physicochemical characteristics of PM2.5: Low, middle, and high–income group homes in Agra, India–a case study. Atmospheric Pollution Research, 5(3), 352–360.

    Article  CAS  Google Scholar 

  • Tunno, B. J., Shields, K. N., Cambal, L., Tripathy, S., Holguin, F., Lioy, P., & Clougherty, J. E. (2015). Indoor air sampling for fine particulate matter and black carbon in industrial communities in Pittsburgh. Science of the Total Environment, 536, 108–115.

    Article  CAS  Google Scholar 

  • Yuan, Y., Luo, Z., Liu, J., Wang, Y., & Lin, Y. (2018). Health and economic benefits of building ventilation interventions for reducing indoor PM2.5 exposure from both indoor and outdoor origins in urban Beijing China. Science of the Total Environment, 626, 546–554.

    Article  CAS  Google Scholar 

  • Wallace, L. A., Wheeler, A. J., Kearney, J., Van Ryswyk, K., You, H., Kulka, R. H., Rasmussen, P. E., Brook, J. R., & Xu, X. (2011). Validation of continuous particle monitors for personal, indoor, and outdoor exposures. Journal of Exposure Science & Environmental Epidemiology, 21(1), 49–64.

    Article  CAS  Google Scholar 

  • Watson, J. G., & Chow, J. C. (2001). Estimating middle-, neighborhood-, and urban-scale contributions to elemental carbon in Mexico City with a rapid response aethalometer. Journal of the Air & Waste Management Association, 51(11), 1522–1528.

    Article  CAS  Google Scholar 

  • Zhang, L., Jiang, Z., Tong, J., Wang, Z., Han, Z., & Zhang, J. (2010). Using charcoal as base material reduces mosquito coil emissions of toxins. Indoor Air, 20(2), 176–184.

    Article  CAS  Google Scholar 

  • Zhou, Z., Dionisio, K. L., Arku, R. E., Quaye, A., Hughes, A. F., Vallarino, J., & Ezzati, M. (2011). Household and community poverty, biomass use, and air pollution in Accra, Ghana. Proceedings of the National Academy of Sciences, 108(27), 11028–11033.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project is supported by the IRCC, IIT Bombay under the seed Grant No. RD/0516-IRCCSH0-008, as well as the partial support from MHRD, Govt. of India Grant NO. RD/0114-IMHPC06-003. We thank Darwin Varghese, Saurabh Lohe and Muhammed Gulam Tajdaar for their kind help during household questionnaire surveys and air pollution monitoring campaigns. We are grateful to Dr Martin Fierz, Naneos Particle Solutions, GMBH, Switzerland for the generous support with Partectors. We are also thankful to all the survey participants of seven slums and the residents of Santosh Nagar and Hanuman Nagar slums for providing access to their homes to conduct indoor air pollution measurements.

Funding

This project is supported by the IRCC, IIT Bombay under the seed grant no. RD/0516-IRCCSH0-008, as well as the partial support from MHRD, Govt. of India grant no. RD/0114-IMHPC06-003.

Author information

Authors and Affiliations

Authors

Contributions

H.C.P. contributed to the study conception and design. Material preparation, data collection and analysis were performed by A.A. The first draft of the manuscript was written by A.A., and H.C.P. reviewed and edited previous versions of the manuscript. Both authors read and approved the final manuscript.

Corresponding author

Correspondence to Harish C. Phuleria.

Ethics declarations

Conflicts of interest

The author declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4280 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anand, A., Phuleria, H.C. Assessment of indoor air quality and housing, household and health characteristics in densely populated urban slums. Environ Dev Sustain 24, 11929–11952 (2022). https://doi.org/10.1007/s10668-021-01923-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-021-01923-x

Keywords

Navigation