Skip to main content

Advertisement

Log in

Temporal and spatial dynamics of land use and land cover changes in derived savannah hydrological basin of Enugu State, Nigeria

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

The combined effects of climate change and aggressive anthropogenic activities linked to urban developments have resulted in major land use and land cover (LULC) changes in eastern Nigeria. These LULC changes have grave implications for water resources and the surface hydrology. This study was aimed at specifically quantifying the extent of LULC changes and the implications for surface hydrology of the study area. The study investigated the spatiotemporal effects of LULC on the hydrology of the basin of Enugu State, Nigeria, using the Soil and Water Assessment Tool (SWAT). SWAT model has been extensively used to study watershed response to rainfall and LULC dynamics. The trend of the basin’s LULC was studied over two decades. The watershed was delineated into 17 sub-basins using SRTM digital elevation model. The delineation of the watershed and the extraction of the stream network were enabled by SAGA Strahler order plug-in. The model results showed that the basin’s soil composition, associated with moderately high run-off, remains somewhat static during the 20-year study period. The soil types were distributed as follows: plinthic acrisols (42.4%), ferric acrisols (11.9%) and dystric nitosols (45.7%), with Ap15-1a-1068 being the most dominant and comprising 66% sand. All soil types in the study area belong to the hydrological soil group C. The LUCL of the basin (3027.4 km2) comprised of rangeland (2414.57 km2), built-up (57.46 km2), cropland (541.25 km2), forest (11.25 km2) and water (0.21 km2). Over the two decades of interest, the basin has undergone LULC changes of − 14.71%, 21.29%, 50.62%, 98% and 0.00% in rangeland, built-up area, cropland, forest and water body, respectively. The changes led to encroachment, alterations and diversification of LULC types of the sub-basins, resulting in changes in their surface characteristics and an increase in the number of hydrologic response units (HRUs) within the sub-basins from 74 in 2001 to 97 in 2019. Out of the 17 sub-basins, the HRU increased in 12, decreased in 2 and stayed the same in 3 sub-basins. Increase in the number of HRUs is significantly higher for HRUs smaller than 100 km2. The major trend of LULC changes is the conversion of rangeland to residential area and agricultural land due to aggressive urbanization and rising need for food production to meet the demands of increasing population. Proper legislation should be put in place to ensure that the impact of urbanization and activities of herdsmen be contained and re-aligned with the sustainable development goals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability of data and materials

The data and materials are available on request and can be obtained from the first author.

References

  • ABS. (2013). Water use and conservation survey. Australian Bureau Statistics.www.abs.gov.au.

  • Agbaogun, S. O., & Akintunde-Alo, D. (2020). Dynamics of land use land cover change in Enugu City of Enugu State, Nigeria. Research Square. https://doi.org/10.21203/rs.3.rs-70093/v1

  • Akinbile, C. O., Ogunmola, O. O., Abolude, A. T., & Akande, S. O. (2020). Trends and spatial analysis of temperature and rainfall patterns on rice yields in Nigeria. Atmospheric Science Letters, 21(3), e944. https://doi.org/10.1002/asl.944

    Article  Google Scholar 

  • Alawamy, J. S., Balasundram, S. K., Mohd. Hanif, A. H., & Boon Sung, C. T. (2020). Detecting and analyzing land use and land cover changes in the region of Al-Jabal Al-Akhdar, Libya using time-series landsat data from 1985 to 2017. Sustainability. https://doi.org/10.3390/su12114490

    Article  Google Scholar 

  • Anierobi, C., & Obasi, C. O. (2021). Urbanization and rural-urban migration: Toward involving the church in addressing pro-poor urban housing challenges in Enugu Nigeria. SAGE Open. https://doi.org/10.1177/21582440211040123

    Article  Google Scholar 

  • Apuke, O. D., & Omar, B. (2020). Nigeria: Conflict victims’ assessment and narratives on the reportage of herdsmen-farmers conflict. Conflict Studies Quarterly, 31, 229–240.

    Article  Google Scholar 

  • Arnold, C. L., & Gibbons, C. J. (1996). Impervious surface coverage: The emergence of a key environmental indicator. Journal of the American Planning Association, 62(2), 243–258. https://doi.org/10.1080/01944369608975688

    Article  Google Scholar 

  • Awotwi, A., Yeboah, F., & Kumi, M. (2015). Assessing the impact of land cover changes on water balance components of White Volta Basin in West Africa. Water and Environment Journal, 29(2), 259–267. https://doi.org/10.1111/wej.12100

    Article  Google Scholar 

  • Baker, T. J., & Miller, S. N. (2013). Using the soil and water assessment tool (SWAT) to assess land use impact on water resources in an East African watershed. Journal of Hydrology, 486, 100–111. https://doi.org/10.1016/j.jhydrol.2013.01.041

    Article  Google Scholar 

  • Balha, A., Vishwakarma, B. D., Pandey, S., & Singh, C. K. (2020). Predicting impact of urbanization on water resources in megacity Delhi. Remote Sensing Applications: Society and Environment, 20, 100361. https://doi.org/10.1016/j.rsase.2020.100361

    Article  Google Scholar 

  • Barron, O., Froend, R., Hodgson, G., Ali, R., Dawes, W., Davies, P., & McFarlane, D. (2014). Projected risks to groundwater-dependent terrestrial vegetation caused by changing climate and groundwater abstraction in the Central Perth Basin Western Australia. Hydrological Processes, 28(22), 5513–5529. https://doi.org/10.1002/hyp.10014

    Article  Google Scholar 

  • Birhanu, A., Masih, I., van der Zaag, P., Nyssen, J., & Cai, X. (2019). Impacts of land use and land cover changes on hydrology of the Gumara catchment, Ethiopia. Physics and Chemistry of the Earth, Parts a/b/c, 112, 165–174. https://doi.org/10.1016/j.pce.2019.01.006

    Article  Google Scholar 

  • Blanco, H., McCarney, P., Parnell, S., Schmidt, M., & Seto, K. C. (2011). The role of urban land in climate change. Climate change and cities: First assessment report of the urban climate change research network, 240.

  • Bosmans, J. H. C., van Beek, L. P. H., Sutanudjaja, E. H., & Bierkens, M. F. P. (2017). Hydrological impacts of global land cover change and human water use. Hydrology and Earth System Sciences, 21(11), 5603–5626. https://doi.org/10.5194/hess-21-5603-2017

    Article  Google Scholar 

  • Carlson, T. N., & Traci Arthur, S. (2000). The impact of land use — land cover changes due to urbanization on surface microclimate and hydrology: a satellite perspective. Global and Planetary Change, 25(1), 49–65. https://doi.org/10.1016/S0921-8181(00)00021-7

  • Chasama, L. G., & Tungu, B. G. (2017). Socio-economic values and performance of Zebu Cattle Indigenous in Ukerewe and Bunda Districts of Tanzania. Huria: Journal of the Open University of Tanzania, 24(3), 111–125.

  • Chinago, A. B. (2015). Climatological review of Enugu rainfall from 1916 to 2012 and its implications. Global Journal of Science Frontier Research, 15, 111–180.

    Google Scholar 

  • Coppock, D. L., Fernández-Giménez, M., Hiernaux, P., Huber-Sannwald, E., Schloeder, C., Valdivia, C., Arredondo, J. T., Jacobs, M., Turin, C., & Turner, M. (2017) Rangeland systems in developing nations: Conceptual advances and societal implications. In: D. D. Briske (ed.) Rangeland systems: Processes, management and challenges pp. 569–641. Springer International Publishing.

  • de Oliveira, V. A., de Mello, C. R., Viola, M. R., & Srinivasan, R. (2018). Land-use change impacts on the hydrology of the upper Grande river basin, Brazil. Cerne, 24, 334–343. https://doi.org/10.1590/01047760201824042573

    Article  Google Scholar 

  • Dile, Y. T., & Srinivasan, R. (2014). Evaluation of CFSR climate data for hydrologic prediction in data-scarce watersheds: An application in the Blue Nile River Basin. JAWRA Journal of the American Water Resources Association, 50(5), 1226–1241. https://doi.org/10.1111/jawr.12182

    Article  Google Scholar 

  • Egbenta, R. I. (2012). Analysis of residential land use change in Enugu urban. Journal of Environmental Management and Safety, 1(1), 111–123.

    Google Scholar 

  • Elfert, S., & Bormann, H. (2010). Simulated impact of past and possible future land use changes on the hydrological response of the Northern German lowland ‘Hunte’ catchment. Journal of Hydrology, 383(3), 245–255. https://doi.org/10.1016/j.jhydrol.2009.12.040

    Article  Google Scholar 

  • Eneh, O. C., Eneh, C. A., & Chiemela, S. N. (2016). Genetically modified foods: Food consumer awareness in Enugu Nigeria. Jokull, 66(3), 76–84.

    Google Scholar 

  • Enete, I. C. (2014). Impacts of climate change on agricultural production in Enugu state, Nigeria. Journal of Earth Science & Climatic Change, 5(9), 234.

    Google Scholar 

  • Eze, J. (2021). Urbanization in Nigeria, Enugu (the coal city) as an urban town: A historical review. Cities, 113, 103096. https://doi.org/10.1016/j.cities.2020.103096

    Article  Google Scholar 

  • Fenetahun, Y., Yong-dong, W., You, Y., & Xinwen, X. (2020). Dynamics of forage and land cover changes in Teltele district of Borana rangelands, southern Ethiopia: Using geospatial and field survey data. BMC Ecology, 20(1), 55. https://doi.org/10.1186/s12898-020-00320-8

    Article  Google Scholar 

  • Floyd, B. (1969). Eastern Nigeria: A geographical review. In B. Floyd (Ed.), Vegetation (pp. 152–165). Palgrave Macmillan UK. https://doi.org/10.1007/978-1-349-00666-3_9

  • Foster, S. S. D. (1988). Quantification of groundwater recharge in arid regions: a practical view for resource development and management. In: I. Simmers (ed.) Estimation of natural groundwater recharge. pp. 323–338. Springer Netherlands. https://doi.org/10.1007/978-94-015-7780-9_20

  • Galindo-Pellicena, M. A., Martín-Francés, L., Gracia, A., de Gaspar, I., Arsuaga, J. L., & Carretero, J. M. (2017). Evidences of the use of cattle as draught animals in Chalcolithic of El Portalón (Sierra de Atapuerca, Burgos). Quaternary International, 438, 1–10. https://doi.org/10.1016/j.quaint.2015.11.052

  • Germer, J., & Sauerborn, J. (2008). Estimation of the impact of oil palm plantation establishment on greenhouse gas balance. Environment, Development and Sustainability, 10(6), 697–716. https://doi.org/10.1007/s10668-006-9080-1

    Article  Google Scholar 

  • Hao, F. H., Chen, L. Q., Liu, C. M., & Dai, D. (2004). Impact of land use change on runoff and sediment yield. Journal of Soil and Water Conservation, 18(3), 5–8.

    Google Scholar 

  • Haque, M. A., Umar, B., & Kawuyo, U. A. (2000). A preliminary survey on the use of animal power in agricultural operations in Adamawa state, Nigeria. Outlook on Agriculture, 29(2), 123–127. https://doi.org/10.5367/000000000101293121

  • Holmes, M., Thomas, R., & Hamerow, H. (2021). Identifying draught cattle in the past: Lessons from large-scale analysis of archaeological datasets. International Journal of Paleopathology, 33, 258–269. https://doi.org/10.1016/j.ijpp.2021.05.004

  • Hu, Y., Zhen, L., & Zhuang, D. (2019). Assessment of land-use and land-cover change in Guangxi China. Scientific Reports, 9(1), 2189. https://doi.org/10.1038/s41598-019-38487-w

    Article  CAS  Google Scholar 

  • Igwe, C. A. (2012). Gully erosion in southeastern Nigeria: Role of soil properties and environmental factors. In Research on soil erosion (pp. 157–171). Tech Open Science. https://doi.org/10.5772/51020

  • Igwe, O., Ifediegwu, S. I., & Onwuka, O. S. (2020). Determining the occurrence of potential groundwater zones using integrated hydro-geomorphic parameters, GIS and remote sensing in Enugu State, Southeastern Nigeria. Sustainable Water Resources Management, 6(3), 39. https://doi.org/10.1007/s40899-020-00397-5

    Article  Google Scholar 

  • Inmpey, J. C. (2019). Urbanization and urban housing policy implementation in enugu metropolis: A review of issues, challenges and prospects for sustainable development. Sapientia Global Journal of Arts, Humanities and Development Studies, 2(2), 78–94.

  • Iyi, E. A. (2014). A review of Enugu (Enugu State, Nigeria) urban growth and development. Journal of Research in Environmental and Earth Sciences, 1(3), 44–51.

    Google Scholar 

  • Kadima, K. B., Sackey, A. K., & Esievo, K. A. N. (2017). Potential impact of husbandry practices on the welfare and productivity of draught cattle in rural communities around Zaria, Nigeria. Nigerian Veterinary Journal, 38(2), 167–177.

  • Khoi, D. N., & Suetsugi, T. (2014). The responses of hydrological processes and sediment yield to land-use and climate change in the Be River catchment Vietnam. Hydrological Processes, 28(3), 640–652. https://doi.org/10.1002/hyp.9620

    Article  Google Scholar 

  • Lau, S. K. P., Teng, J. L. L., Chiu, T. H., Chan, E., Tsang, A. K. L., Panagiotou, G., Zhai, S.-L., & Woo, P. C. Y. (2018). Differential microbial communities of omnivorous and herbivorous cattle in Southern China. Computational and Structural Biotechnology Journal, 16, 54–60. https://doi.org/10.1016/j.csbj.2018.02.004

  • Li, P., Li, H., Yang, G., Zhang, Q., & Diao, Y. (2018). Assessing the hydrologic impacts of land use change in the Taihu Lake Basin of China from 1985 to 2010. Water, 10(11), 1512.

    Article  Google Scholar 

  • Li, Y., Chang, J., Luo, L., Wang, Y., Guo, A., Ma, F., & Fan, J. (2019). Spatiotemporal impacts of land use land cover changes on hydrology from the mechanism perspective using SWAT model with time-varying parameters. Hydrology Research, 50(1), 244–261. https://doi.org/10.2166/nh.2018.006

    Article  Google Scholar 

  • Liu, J., Zhang, C., Kou, L., & Zhou, Q. (2017a). Effects of climate and land use changes on water resources in the Taoer river. Advances in Meteorology. https://doi.org/10.1155/2017/1031854

    Article  Google Scholar 

  • Liu, W., Liu, J., Kuang, W., & Ning, J. (2017b). Examining the influence of the implementation of major function-oriented zones on built-up area expansion in China. Journal of Geographical Sciences, 27(6), 643–660. https://doi.org/10.1007/s11442-017-1398-0

    Article  Google Scholar 

  • Lu, Z., Zou, S., Qin, Z., Yang, Y., Xiao, H., Wei, Y., Zhang, K., & Xie, J. (2015). Hydrologic responses to land use change in the loess plateau: Case study in the upper Fenhe river watershed. Advances in Meteorology. https://doi.org/10.1155/2015/676030

    Article  Google Scholar 

  • Luan, X.-B., Wu, P.-T., Sun, S.-K., Li, X.-L., Wang, Y.-B., & Gao, X.-R. (2018). Impact of land use change on hydrologic processes in a large plain irrigation district. Water Resources Management, 32(9), 3203–3217. https://doi.org/10.1007/s11269-018-1986-5

    Article  Google Scholar 

  • Mahmoud, S. H., & Alazba, A. A. (2015). Hydrological response to land cover changes and human activities in arid regions using a geographic information system and remote sensing. Plos One. https://doi.org/10.1371/journal.pone.0125805

    Article  Google Scholar 

  • Mallupattu, P. K., & Sreenivasula Reddy, J. R. (2013). Analysis of land use/land cover changes using remote sensing data and GIS at an Urban Area, Tirupati, India. The Scientific World Journal. https://doi.org/10.1155/2013/268623

    Article  Google Scholar 

  • Mango, L. M., Melesse, A. M., McClain, M. E., Gann, D., & Setegn, S. (2011). Land use and climate change impacts on the hydrology of the upper Mara River Basin, Kenya: Results of a modeling study to support better resource management. Hydrology and Earth System Sciences, 15(7), 2245–2258. https://doi.org/10.5194/hess-15-2245-2011

    Article  Google Scholar 

  • Mao, D., & Cherkauer, K. A. (2009). Impacts of land-use change on hydrologic responses in the Great Lakes region. Journal of Hydrology, 374(1–2), 71–82. https://doi.org/10.1016/j.jhydrol.2009.06.016

    Article  Google Scholar 

  • Marapara, T. R., Jackson, B. M., Hartley, S., & Maxwell, D. (2021). Disentangling the factors that vary the impact of trees on flooding (a review). Water and Environment Journal, 35(2), 514–529. https://doi.org/10.1111/wej.12647

    Article  Google Scholar 

  • Marhaento, H., Booij, M. J., & Hoekstra, A. Y. (2018). Hydrological response to future land-use change and climate change in a tropical catchment. Hydrological Sciences Journal, 63(9), 1368–1385. https://doi.org/10.1080/02626667.2018.1511054

    Article  Google Scholar 

  • Mohapatra, S. N., Pani, P., & Sharma, M. (2014). Rapid urban expansion and its implications on geomorphology: A remote sensing and GIS based study. Geography Journal. https://doi.org/10.1155/2014/361459

    Article  Google Scholar 

  • Msofe, N. K., Sheng, L., & Lyimo, J. (2019). Land use change trends and their driving forces in the Kilombero Valley Floodplain, Southeastern Tanzania. Sustainability. https://doi.org/10.3390/su11020505

    Article  Google Scholar 

  • Naikoo, M. W., Rihan, M., Ishtiaque, M., & Shahfahad. . (2020). Analyses of land use land cover (LULC) change and built-up expansion in the suburb of a metropolitan city: Spatio-temporal analysis of Delhi NCR using landsat datasets. Journal of Urban Management, 9(3), 347–359. https://doi.org/10.1016/j.jum.2020.05.004

    Article  Google Scholar 

  • Ndulue, E. L., Mbajiorgu, C. C., Ugwu, S. N., Ogwo, V., & Ogbu, K. N. (2015). Assessment of land use/cover impacts on runoff and sediment yield using hydrologic models: A review. Journal of Ecology and the Natural Environment, 7(2), 46–55. https://doi.org/10.5897/JENE2014.0482

    Article  Google Scholar 

  • Nijnik, M., Oskam, A., & Nijnik, A. (2012). Afforestation for the provision of multiple ecosystem services: A Ukrainian case study. International Journal of Forestry Research. https://doi.org/10.1155/2012/295414

    Article  Google Scholar 

  • Nnam, V.C. (2020). Monitoring and prediction of land use in Enugu Urban, Nigeria, Using GIS and remote sensing. FIG OICRF.

  • Nnam, V., Okonkwo, U., & Onwuzuligbo, C. (2019). Spatio-temporal monitoring and prediction of physical urban development of part of Nike, Enugu, Nigeria using remote sensing and GIS. Environmental Review, 6(2), 1–16.

  • Nzeh, E., Eboh, E., & Nweze, N. J. (2015). Status and trends of deforestation: An insight and lessons from Enugu State Nigeria. Net Journal of Agricultural Science, 3(1), 23–31.

    Google Scholar 

  • Ogarekpe, N., Obio, E., Tenebe, I., Emenike, P., & Nnaji, C. (2020a). A dataset for the flood vulnerability assessment of the upper cross river basin using morphometric analysis. Data in Brief, 30, 105344. https://doi.org/10.1016/j.dib.2020.105344

    Article  CAS  Google Scholar 

  • Ogarekpe, N., Obio, E., Tenebe, I., Emenike, P., & Nnaji, C. (2020b). Flood vulnerability assessment of the upper Cross River basin using morphometric analysis. Geomatics, Natural Hazards and Risk, 11(1), 1378–1403. https://doi.org/10.1080/19475705.2020.1785954

    Article  Google Scholar 

  • Okoli, A. C., & Ogayi, C. O. (2018). Herdsmen militancy and humanitarian crisis in Nigeria: A theoretical briefing. African Security Review, 27(2), 129–143. https://doi.org/10.1080/10246029.2018.1499545

    Article  Google Scholar 

  • Odalonu, B. H. (2020). Appraisal of the political and socio-economic effects of farmers-herders conflict in Uzo-Uwani local government area of Enugu State, Nigeria. Journal of Alternative Perspectives in the Social Sciences, 10(3), 367–393.

  • Onanuga, M. Y., Eludoyin, A. O., & Ofoezie, I. E. (2021). Urbanization and its effects on land and water resources in Ijebuland, Southwestern Nigeria. Environment, Development and Sustainability. https://doi.org/10.1007/s10668-021-01458-1

    Article  Google Scholar 

  • Onyebueke, V., Walker, J., Lipietz, B., Ujah, O., & Ibezim-Ohaeri, V. (2020). Urbanisation-induced displacements in peri-urban areas: Clashes between customary tenure and statutory practices in Ugbo-Okonkwo Community in Enugu Nigeria. Land Use Policy, 99, 104884. https://doi.org/10.1016/j.landusepol.2020.104884

    Article  Google Scholar 

  • Opara, A. I., Ekwe, A. C., Okereke, C. N., Oha, I. A., & Nosiri, O. P. (2012). Integrating airborne magnetic and landsat data for geologic interpretation over part of the Benin Basin Nigeria. Pacific Journal of Science And Technology, 13(1), 556–571.

    Google Scholar 

  • Pandey, A., Bishal, K. C., Kalura, P., Chowdary, V. M., Jha, C. S., & Cerdà, A. (2021). A soil water assessment tool (SWAT) modeling approach to prioritize soil conservation management in river basin critical areas coupled with future climate scenario analysis. Air, Soil and Water Research. https://doi.org/10.1177/11786221211021395

    Article  Google Scholar 

  • Rogger, M., Agnoletti, M., Alaoui, A., Bathurst, J. C., Bodner, G., Borga, M., Chaplot, V., Gallart, F., Glatzel, G., & Hall, J. (2017). Land use change impacts on floods at the catchment scale: Challenges and opportunities for future research. Water Resources Research, 53(7), 5209–5219. https://doi.org/10.1002/2017WR020723

    Article  CAS  Google Scholar 

  • Samal, D. R., & Gedam, S. S. (2015). Monitoring land use changes associated with urbanization: An object based image analysis approach. European Journal of Remote Sensing, 48(1), 85–99. https://doi.org/10.5721/EuJRS20154806

    Article  Google Scholar 

  • Sánchez-Cuervo, A. M., Aide, T. M., Clark, M. L., & Etter, A. (2012). Land cover change in Colombia: Surprising forest recovery trends between 2001 and 2010. PLoS One. https://doi.org/10.1371/journal.pone.0043943

    Article  Google Scholar 

  • Schilling, K. E., Jha, M. K., Zhang, Y., Gassman, P. W., & Wolter, C. F. (2008). Impact of land use and land cover change on the water balance of a large agricultural watershed: Historical effects and future directions. Water Resources Research. https://doi.org/10.1029/2007WR006644

    Article  Google Scholar 

  • Sertel, E., Imamoglu, M. Z., Cuceloglu, G., & Erturk, A. (2019). Impacts of land cover/use changes on hydrological processes in a rapidly urbanizing mid-latitude water supply catchment. Water, 11(5), 1075. https://doi.org/10.3390/w11051075

    Article  Google Scholar 

  • Shahfahad, M. M., Kumari, B., Tayyab, M., Paarcha, A., & Rahman, A. (2021). Indices based assessment of built-up density and urban expansion of fast growing Surat city using multi-temporal Landsat data sets. GeoJournal, 86(4), 1607–1623. https://doi.org/10.1007/s10708-020-10148-w

    Article  Google Scholar 

  • Shanableh, A., Al-Ruzouq, R., Yilmaz, A. G., Siddique, M., Merabtene, T., & Imteaz, M. A. (2018). Effects of land cover change on urban floods and rainwater harvesting: A case study in Sharjah UAE. Water, 10(5), 631. https://doi.org/10.3390/w10050631

    Article  Google Scholar 

  • Song, Y. H., & Ma, J. H. (2008). SWAT-Aided research on hydrological responses to ecological restoration; A case study of the Nanhe River Basin in Huajialing of Longxi Loess Plateau. Acta Ecologica Sinica, 28(2), 636–644.

    Google Scholar 

  • Telldahl, Y., Svensson, E., Götherström, A., & Storå, J. (2011). Typing late prehistoric cows and bulls—osteology and genetics of cattle at the Eketorp ringfort on the Öland island in Sweden. PloS One, 6(6), e20748. https://doi.org/10.1371/journal.pone.0020748

  • Tohiran, K. A., Nobilly, F., Zulkifli, R., Maxwell, T., Moslim, R., & Azhar, B. (2017). Targeted cattle grazing as an alternative to herbicides for controlling weeds in bird-friendly oil palm plantations. Agronomy for Sustainable Development, 37(6), 62. https://doi.org/10.1007/s13593-017-0471-5

  • Villarreal, E. L., & Dixon, A. (2005). Analysis of a rainwater collection system for domestic water supply in Ringdansen, Norrköping Sweden. Building and Environment, 40(9), 1174–1184. https://doi.org/10.1016/j.buildenv.2004.10.018

    Article  Google Scholar 

  • Wang, L., Zhu, J., Xu, Y., & Wang, Z. (2018). Urban built-up area boundary extraction and spatial-temporal characteristics based on land surface temperature retrieval. Remote Sensing, 10(3), 473. https://doi.org/10.3390/rs10030473

    Article  Google Scholar 

  • Ward, S. L. (2010). Rainwater harvesting in the UK.: A strategic framework to enable transition from novel to mainstrean. Publish PhD thesis, University of Exeter. http://hdl.handle.net/10036/106575

  • Welde, K., & Gebremariam, B. (2017). Effect of land use land cover dynamics on hydrological response of watershed: Case study of Tekeze Dam watershed, northern Ethiopia. International Soil and Water Conservation Research, 5(1), 1–16. https://doi.org/10.1016/j.iswcr.2017.03.002

    Article  Google Scholar 

  • Wijesekara, G. N., Gupta, A., Valeo, C., Hasbani, J. G., & Marceau, D. J. (2010). Impact of land-use changes on the hydrological processes in the Elbow river watershed in southern Alberta. 5th International congress on environmental modelling and software. https://scholarsarchive.byu.edu/iemssconference/2010/all/516/

  • Yahaya, M. S., Takahashi, J., Matsuoka, S., & Kibon, A. (1999). Effect of supplementary feeding of cotton seed cake on feed intake, water consumption and work output of work bulls in Borno state, Nigeria. Animal Feed Science and Technology, 79(1), 137–143. https://doi.org/10.1016/S0377-8401(99)00017-6

  • Zhang, X., & Hu, M. (2014). Effectiveness of rainwater harvesting in runoff volume reduction in a planned industrial park China. Water Resources Management, 28(3), 671–682. https://doi.org/10.1007/s11269-013-0507-9

    Article  Google Scholar 

  • Zhou, X., & Chen, H. (2018). Impact of urbanization-related land use land cover changes and urban morphology changes on the urban heat island phenomenon. Science of The Total Environment, 635, 1467–1476. https://doi.org/10.1016/j.scitotenv.2018.04.091

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

The study was conceptualized by CN. The data collection and analysis were carried out by CN. CN, NO and EN wrote the paper.

Corresponding author

Correspondence to Nkpa Mba Ogarekpe.

Ethics declarations

Conflict of interest

The authors declare no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nnaji, C.C., Ogarekpe, N.M. & Nwankwo, E.J. Temporal and spatial dynamics of land use and land cover changes in derived savannah hydrological basin of Enugu State, Nigeria. Environ Dev Sustain 24, 9598–9622 (2022). https://doi.org/10.1007/s10668-021-01840-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-021-01840-z

Keywords

Navigation