Skip to main content
Log in

Soil water seasonal and spatial variability in Northeast Brazil

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

The Brazilian Northeast has great agricultural potential; however, the region suffers from high variability in precipitation. Water is the main element for plant development, and its entry and exit in the soil can be counted by water balance (WB). Therefore, the objective of this study was to determine the spatial and seasonal water conditions in Northeastern Brazil and thus show that the region can be a major agricultural producer. A historical series of rainfall and air temperature from 1950 to 1990, collected from 1536 surface weather stations, representing the entire region, was used. Potential evapotranspiration (PET) was estimated using the Thornthwaite (1948) method and WB by the Thornthwaite and Mather (1955) method, using an available water capacity (WC) of 100 mm, as it is the value used to characterize water availability. Descriptive analysis was performed to identify the variations of the data set, and the probability test was performed by the Kolmogorov–Smirnov method. The data were specialized using the kriging method. The distribution of air temperature values showed that the region had a temperature between 20 and 29 °C. The state of Maranhão (MA) was the warmest, with a probability of occurrence of 28 °C reaching 92%. MA is a state with climatic classes like Am, Aw, and As according to Köppen (1936). The rainfall in the northeast was between 955 mm annual−1 and 1600 mm annual−1, with the highest concentration in the state of MA and the lowest in Rio Grande do Norte (RN). Soil water storage (STO) was greater in January to June, mainly on the coast. Most of the water surplus (EXC) was distributed between May and July, a total of 60%, concentrated in MA and the northeastern coast. The averages were 200 mm annual−1 to 700 mm annual−1 for the water deficit (DEF), with the highest values concentrated in the Ceará (CE) state, with a high probability of occurrence. In CE the classes As and BSh according to Köppen (1936) predominate. The general mean of the region Northeast Brazil for STO, EXC, and DEF was 43.6 (± 17.6) mm, 231.4 (± 276) mm, and 430.6 (± 168.6) mm, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Amare, M., Jensen, N. D., Shiferaw, B., & Cissé, J. D. (2018). Rainfall shocks and agricultural productivity: Implication for rural household consumption. Agricultural Systems, 166, 79–89.

    Article  Google Scholar 

  • Amorim, A. C. B., Chaves, R. R., & Silva, C. M. S. (2014). Influence of the tropical atlantic ocean’s sea surface temperature in the eastern northeast Brazil precipitation. Atmospheric and Climate Sciences, 4, 874–883.

    Article  Google Scholar 

  • Aparecido, L. E. O., Batista, R. M., Moraes, J. R. D. S. C., et al. (2019). Agricultural zoning of climate risk for Physalis peruviana cultivation in Southeastern Brazil. Pesquisa Agropecuaria Brasileira, 54, 1–8. https://doi.org/10.1590/S1678-3921.pab2019.v54.00057

    Article  Google Scholar 

  • Aparecido, L. E. O., da Silva Cabral de Moraes, J. R., de Meneses, K. C., et al. (2020). Agricultural zoning as tool for expansion of cassava in climate change scenarios. Theoretical and Applied Climatology . https://doi.org/10.1007/s00704-020-03367-1

  • Barra, T. S., Costa, J. N., Rao, T. R., Sediyama, G. C., Ferreira, W. P. M., & Dantas Neto, F. S. (2002). Climatological characterization Climatological characterization of the drought severity of the State of Ceará - Brazil of the drought severity of the State of Ceará - Brazil of the drought severity of the State of Ceará - Brazil. Revista Brasileira De Engenharia Agrícola e Ambiental, 6(2), 266–272.

    Article  Google Scholar 

  • Boer-Euser, T., McMillan, H. K., Hrachowitz, M., Winsemius, H. C., & Savenije, H. H. G. (2016). Influence of soil and climate on root zone storage capacity. Water Resources Research, 52, 2009–2024.

    Article  Google Scholar 

  • Brasil. (1981). Ministério das Minas e Energia. Secretaria Geral. Projeto RADAMBRASIL. Rio de Janeiro: Levantamento de Recursos Naturais, 25, 29, 31.

  • Brazil. (1992). Climatological Normal (1961–1990). – SPI/ EMBRAPA, Brası´lia.

  • Burney, J., Cesano, D., Russell, J., la Rovere, E. L., Corral, T., Coelho, N. S., & Santos, L. (2014). Climate change adaptation strategies for smallholder farmers in the Brazilian Sertão. Climatic Change, 126, 45–59.

    Article  Google Scholar 

  • Carleton, T. A. (2017). Crop-damaging temperatures increase suicide rates in India. Proceedings of the National Academy of Sciences, 114(33), 8746–8751.

    Article  CAS  Google Scholar 

  • Carvalho, A. L., Menezes, R. S. C., Nóbrega, R. S., Pinto, A. DE S., Ometto, J. P. H. B., Von Randow, C., Giarolla, A. (2015). Impact of climate changes on potential sugarcane yield in Pernambuco, northeastern region of Brazil. Renewable Energy, 78, 26–34.

  • Caverzan, A., Passaia, G., Rosa, S. B., Ribeiro, C. W., Lazzarotto, F., & Margis-Pinheiro, M. (2012). Plant responses to stresses: Role of ascorbate peroxidase in the antioxidant protection. Genetics and Molecular Biology, 35, 1011–1019.

    Article  CAS  Google Scholar 

  • Ceglar, A., Toreti, A., Lecerf, R., van der Velde, M., & Dentener, F. (2016). Impact of meteorological drivers on regional inter-annual crop yield variability in France. Agricultural and Forest Meteorology, 216, 58–67.

    Article  Google Scholar 

  • Cierjacks, A., Pommeranz, M., Schulz, K., & Almeida-Cortez, J. (2016). Is crop yield related to weed species diversity and biomass in coconut and banana fields of northeastern Brazil? Agriculture, Ecosystems & Environment, 220, 175–183.

    Article  Google Scholar 

  • Connor, J. D., Schwabe, K., King, D., & Knapp, K. (2012). Irrigated agriculture and climate change: The influence of water supply variability and salinity on adaptation. Ecological Economics, 77, 149–157.

    Article  Google Scholar 

  • Duarte, Y. C. N., & Sentelhas, P. (2019). NASA/POWER and DailyGridded weather datasets—how good they are for estimating maize yields in Brazil? International Journal of Biometeorology. https://doi.org/10.1007/s00484-019-01810-1

    Article  Google Scholar 

  • El-Fadel, M., Zeinati, M., & Jamali, D. (2000). Water resources in Lebanon: Characterization, water balance and constraints. International Journal of Water Resources Development, 16, 615–638.

    Article  Google Scholar 

  • FAO. (2001). FAOClim 2.0. Agroclimatic Database CDROM + Users Manual. – Environment and Natural Resources Working paper No. 5, 72 pp.

  • Hastenrath, S. (2011). Exploring the climate problems of Brazil’s Nordeste: a review. Climatic Change, 112(2), 243–251.

    Article  Google Scholar 

  • Hoogenboom, G. (2000). Contribution of agrometeorology to the simulation of crop production and its applications. Agricultural and Forest Meteorology, 103(137), 157.

    Google Scholar 

  • Instituto Brasileiro de Geografia e Estatística (IBGE). (2017). Levantamento Sistemático da Produção Agrícola.

  • Instituto Brasileiro de Geografia e Estatística (IBGE). (2018). Levantamento Sistemático da Produção Agrícola.

  • INMET - Instituto Nacional de Meteorologia. (2019). Banco de Dados Meteorológicos.

  • Ji, S., & Unger, P. W. (2001). Soil water accumulation under different precipitation, potential evaporation, and straw mulch conditions. Soil Science Society of America Journal, 65(2), 442.

    Article  CAS  Google Scholar 

  • Köppen, W. (1936). Das geographisca System der Klimate (pp. 103–115). Gebr, Borntraeger.

  • Lecoeur, J., & Sinclair, R. T. (1996). Field pea transpiration and leaf growth in response to soil water deficits. Crop Science, Madison, 36, 331–335.

    Article  Google Scholar 

  • Marengo, J. A., & Bernasconi, M. (2015). Regional differences in aridity/drought conditions over Northeast Brazil: Present state and future projections. Climatic Change, 129, 103–115.

    Article  Google Scholar 

  • Marengo, J. A., Torres, R. R., & Alves, L. M. (2016). Drought in Northeast Brazil—past, present, and future. Theoretical and Applied Climatology, 129(3–4), 1189–1200.

    Google Scholar 

  • Nascimento, F. C. A. et al. (2017). Análise Estatística dos Eventos Secos e Chuvosos de Precipitação do Estado do Maranhão. Revista Brasileira de Meteorologia, 32(3).

  • O’Sullivan, D., & Unwin, D. J. (2010). Geographic information analysis (p. 405). Wiley.

    Book  Google Scholar 

  • Pántano, V. C., Penalba, O. C., Spescha, L. B., & Murphy, G. M. (2017). Assessing how accumulated precipitation and long dry sequences impact the soil water storage. International Journal of Climatology, 37(12), 4316–4326.

    Article  Google Scholar 

  • Pinheiro, E. A. R., de Jong Van Lier, Q., Šimůnek, J. (2019). The role of soil hydraulic properties in crop water use efficiency: A process-based analysis for some Brazilian scenarios. Agricultural Systems, 173, 364–377.

  • Rito, K. F., Arroyo-Rodríguez, V., Queiroz, R. T., Leal, I. R., & Tabarelli, M. (2017). Precipitation mediates the effect of human disturbance on the Brazilian Caatinga vegetation. Journal of Ecology, 105(3), 828–838.

    Article  Google Scholar 

  • Rolim, G. S., & Aparecido, L. E. O. (2015). Camargo, Köppen and Thornthwaite climate classification systems in defining climatical regions of the state of São Paulo, Brazil. International Journal of Climatology, 36, 636–643.

  • Rolim, G. S., et al. (2007). Climatic classification of Köppen and Thornthwaite and their applicability in the determination of agroclimatic zones for the state of São Paulo. Revista Bragantia, 66(4), 711–720.

    Article  Google Scholar 

  • Rolim, G. S., Aparecido, L. E. O., Souza, P. S. et al. (2020). Climate and natural quality of Coffea arabica L. drink. Theoretical and Applied Climatology141, 87–98.

  • Sanches, R. G., Santos, B. C., Neves, G. Z. F., Silva, M. S. D., Souza, P. H., & Tech, A. R. B. (2019). Influence of climate variability on sugarcane production in the microregion of São Carlos/Sp from 1994 to 2014. Revista Brasileira de Climatologia, 25, 495–514.

  • Schauberger, B., Archontoulis, S., Arneth, A., Balkovic, J., Ciais, P., Deryng, D., Elliott, J., Folberth, C., Khabarov, N., Müller, C., Pugh, T. A., Rolinski, S., Schaphoff, S., Schmid, E., Wang, X., Schlenker, W., & Frieler, K. (2017). Consistent negative response of US crops to high temperatures in observations and crop models. Nature Communications, 8, 13931.

    Article  CAS  Google Scholar 

  • Scott, R., & Biederman, J. A. (2018). Critical zone water balance over 13 years in a semiarid savanna. Water Resources Research, 55, 574–588.

  • Silva, D. F., Alcântara, C. R. (2009). Water deficit in the northeast region: Space-time variability. cient. Exatas Tecnol, Londrina, 8(1), 45–51.

  • Silva, R. R. V., Gomes, L. J., & Albuquerque, U. P. (2017). What are the socioeconomic implications of the value chain of biodiversity products? A case study in Northeastern Brazil. Environmental Monitoring and Assessment, 189, 1–11.

  • Silveira, H. R. D. O., Santos, M. D. O., Alves, J. D., Souza, K. R. D. D., Andrade, C. A., Alves, R. G. M. (2014). Growth effects of water excess on coffee seedlings (Coffea arabica L.). Acta Scientiarum. Agronomy, 36, 211–218.

  • Singh, K. K., Baxla, A. K., Singh, P., & Singh P. K. (2018). Weather based information on risk management in agriculture. In S. Sheraz Mahdi (Eds.), Climate change and agriculture in India: Impact and adaptation. Cham: Springer.

  • Tack, J., Barkley, A., & Nalley, L. L. (2015). Effect of warming temperatures on US wheat yields. Proceedings of the National Academy of Sciences, 112(22), 6931–6936.

    Article  CAS  Google Scholar 

  • Tanajura, C. A. S., Genz, F., & Araújo, H. A. (2010). Climate change and water resources in bahia: Validation of hadrm3p’s present climate simulation and comparison with scenarios A2 E B2 For 2070–2100. Revista Brasileira De Meteorologia, 25(3), 345–358.

    Article  Google Scholar 

  • Thornthwaite, C. W. (1948). Problems in the classification of climates. Geographical Review, 33, 233–255.

  • Thornthwaite, C. W., Mather, J. R. (1955). The water balance. Centerton: Drexel Institute of Technology, Laboratory of Climatology, 1955. 104p. Publications in climatology, v. 8, n. 1.

  • Yamada, E. S. M., & Sentelhas, P. C. (2014). Agro-climatic zoning of Jatropha curcas as a subside for crop planning and implementation in Brazil. International Journal of Biometeorology, 58(9), 1995–2010.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucas Eduardo de Oliveira Aparecido.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Oliveira Aparecido, L.E., Lorençone, P.A., Lorençone, J.A. et al. Soil water seasonal and spatial variability in Northeast Brazil. Environ Dev Sustain 24, 6136–6152 (2022). https://doi.org/10.1007/s10668-021-01695-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-021-01695-4

Keywords

Navigation