Skip to main content

Advertisement

Log in

Data envelopment analysis based optimization for improving net ecosystem carbon and energy budget in cotton (Gossypium hirsutum L.) cultivation: methods and a case study of north-western India

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

Cotton (Gossypium hirsutum L.) is an important fiber crop with high energy and C footprints. This study aimed at tracking C footprints through emission of greenhouse gases and energy flow nexus in cotton cultivation to frame policy to reduce C and energy footprints, while enhancing net ecosystem C budget and C sequestration in soils. We attempted to quantify and optimize C footprints and energy flow in cotton cultivation using integrated Life Cycle Assessment and Data Envelopment Analysis approach. The total input energy of 23,960 MJ ha−1 produced total output energy of 73,964 MJ ha−1. The energy use efficiency and energy productivity were 3.1 ± 0.1 and 0.083 ± 0.003 kg MJ ha−1, respectively. The Charnes–Cooper–Rhodes model based Data Envelopment Analysis approach elucidated 37 (out of total 65), while Banker–Charnes–Cooper model revealed 55 decision-making units as energy efficient. The energy footprints expressed as specific energy were significantly higher under current production situation (13.0 MJ kg−1), compared with optimum production situation (12.0 MJ kg−1). The Data Envelopment Analysis based optimized total energy input was significantly reduced by 1522 MJ ha−1 through chemical fertilizers (2.7–51.5%) and biocides (7.7–25.1%), which led to a significant reduction of ~9.2% of total C equivalent emissions having a technical mitigation potential of 114.3 kg CO2e ha−1. The negative values of net ecosystem C budget for efficient (− 4.04 Mg C ha−1) and inefficient (− 4.94 Mg C ha−1) decision making units revealed that these ecosystems act as net C source. The average technical efficiency of 0.87 ± 0.02 revealed that ~13% of total energy input could be saved without any impact on cotton productivity and environment. These results underpin the overwhelming significance of intensified extension efforts for efficient use of chemical fertilizers and discouraging farmers from unwarranted use of biocides in cotton in the north-western India.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

RA :

Autotrophic respiration

BCC model:

Banker–Charnes–Cooper model

CE:

Carbon equivalent

CCR model:

Charnes–Cooper–Rhodes model

CPS:

Current production situation

DMU:

Decision making unit

RE :

Ecosystem respiration

EP :

Energy productivity

ER :

Energy use efficiency

GHGI:

Greenhouse gas intensity

GPP:

Gross primary production

NEE:

Net ecosystem exchange

NEG:

Net energy gain

NPP:

Net primary production

N2O:

Nitrous oxide

NPPAbove-ground biomass :

NPP as above-ground biomass yield

NPPBelow-ground biomass :

NPP as below-ground biomass yield

NPPEconomic yield :

NPP as economic yield

NPPLitter :

NPP as litter

NPPRhizodeposit :

NPP as rhizodeposition

OPS:

Optimum production situation

PTE:

Pure technical efficiency

SE:

Scale efficiency

RH :

Soil heterotrophic respiration

ΔSOC:

Change in soil organic C

ES :

Specific energy

S.E.M :

Standard error from mean

TE:

Technical efficiency

EI :

Total energy input

EO :

Total energy output

References

  • Accorsi, R., Cholette, S., Manzini, R., Pini, C., & Penazzi, S. (2016). The land-network problem: Ecosystem carbon balance in planning sustainable agro-food supply chains. Journal of Cleaner Production, 112, 158–171. https://doi.org/10.1016/j.jclepro.2015.06.082

    Article  CAS  Google Scholar 

  • Adler, R. A., Del Grosso, S. J., & Parton, W. J. (2007). Life-cycle assessment of net greenhouse gas flux for bioenergy cropping systems. Ecological Applications, 17, 675–691.

    Google Scholar 

  • Agbenyegah, B. K. (2012). Cotton. Agricultural Commodities, 2, 59–64.

    Google Scholar 

  • AICCIP. (2011). All India Coordinated Cotton Improvement Project. Annual Report 2010–11, Central Institute for Cotton Research, Regional Station, Coimbatore, p. 1–5.

  • Alizadeh, R., Allen, J. K., & Mistree, F. (2020). Managing computational complexity using surrogate models: A critical review. Research in Engineering Design. https://doi.org/10.1007/s00163-020-00336-7

    Article  Google Scholar 

  • Alizadeh, R., Beiragh, R. G., Soltanisehat, L., Soltanzadeh, E., & Lund, P. D. (2020). Performance evaluation of complex electricity generation systems: A dynamic network-based data envelopment analysis approach. Energy Economics, 91, 104894.

    Google Scholar 

  • Alizadeh, R., Jia, L., Nellippallil, A. B., Wang, G., Hao, J., Allen, J. K., & Mistree, F. (2019). Ensemble of surrogates and cross-validation for rapid and accurate predictions using small data sets. Artificial Intelligence for Engineering Design, Analysis and Manufacturing. https://doi.org/10.1017/S089006041900026X

    Article  Google Scholar 

  • Alizadeh, R., Lund, P. D., Beynaghi, A., Abolghasemi, M., & Maknoon, R. (2016). An integrated scenario-based robust planning approach for foresight and strategic management with application to energy industry. Technological Forecasting and Social Change, 104, 162–171. https://doi.org/10.1016/j.techfore.2015.11.030

    Article  Google Scholar 

  • Alizadeh, R., Lund, P. D., & Soltanisehat, L. (2020). Outlook on biofuels in future studies: A systematic literature review. Renewable and Sustainable Energy Reviews, 134, 110326. https://doi.org/10.1016/j.rser.2020.110326

    Article  CAS  Google Scholar 

  • Alizadeh, R., & Soltanisehat, L. (2020). Stay competitive in 2035: A scenario-based method to foresight in the design and manufacturing industry. Forsight, 22(3), 309–330.

    Google Scholar 

  • ASABE Standard D497.5. (2006). Agricultural machinery management data (St. Joseph, Mich.).

  • Balezentiene, L., Streimikiene, D., & Balezentis, T. (2013). Fuzzy decision support methodology for sustainable energy crop selection. Renewable and Sustainable Energy Reviews, 17, 83–93.

    Google Scholar 

  • Banker, R., Charnes, A., & Cooper, W. (1984). Some models for estimating technical and scale inefficiencies in data envelopment analysis. Management Science, 30, 1078–1092.

    Google Scholar 

  • Baran, M. F. (2016). Energy efficiency analysis of cotton production in Turkey: A case study for Adyaman province. American-Eurasian Journal of Agriculture Environmental Sciences, 16(2), 229–233.

    CAS  Google Scholar 

  • Barwale, R. B., Gadwal, V. R., Zehr, U., & Zehr, B. (2004). Prospects for Bt cotton technology in India. AgBio Forum, 7(1 and 2), 23–26.

    Google Scholar 

  • Basit, M., Saeed, S., Saleem, M. A., Denholm, I., & Shah, M. (2013). Detection of resistance, cross-resistance, and stability of resistance to new chemistry insecticides in Bemisia tabaci (Homoptera: Aleyrodidae). Journal of Economical Entomology, 106, 1414–1422.

    CAS  Google Scholar 

  • Beynaghi, A., Moztarzadeh, F., Shahmardan, A., Alizadeh, R., Salimi, J., & Mozafari, M. (2016). Makespan minimization for batching work and rework process on a single facility with an aging effect: A hybrid meta-heuristic algorithm for sustainable production management. Journal of Intelligent and Manufacturing, 30(1), 1–13.

    Google Scholar 

  • Bhatia, A., Pathak, H., Aggarwal, P. K., & Jain, N. (2010). Trade-off between productivity enhancement and global warming potential of rice and wheat in India. Nutrient Cycling in Agroecosystem, 86, 413–424.

    Google Scholar 

  • Blaise, D., Singh, J. V., Venugopalan, M. V., & Mayee, C. D. (2003). Effect of continuous application of manures and fertilizers on productivity of cotton-sorghum rotation. Acta Agronomica Hungarica, 51, 61–67.

    Google Scholar 

  • Boumans, J. H., van Hoorn, J. W., Kruseman, G. P., & Tanwar, B. S. (1988). Water table control, reuse and disposal of drainage water in Haryana. Agriculture Water Management, 14, 537–545.

    Google Scholar 

  • Brar, A. S., Thind, J. S., & Brar, L. S. (1998). Bio-efficacy of pre-plant application of pendimethalin and trifluralin for weed control in cotton. Journal of Research Punjab Agricultural University, 35, 12–17.

    CAS  Google Scholar 

  • Canakci, M., Topakci, M., Akinci, I., & Ozmerzi, A. (2005). Energy use pattern of some field crops and vegetable production: Case study for Antalya Region, Turkey. Energy Conservation and Management, 46, 655–666.

    Google Scholar 

  • CGWB. (2013). Central ground water board, Ground water information booklet, Mansa district, Punjab, Government of India, Ministry of Water Resources, North Western Region, Chandigarh, India.

  • Chambers, R., Chung, Y., & Färe, R. (1996). Benefit and distance functions. Journal of Economic Theory, 70, 407–419.

    Google Scholar 

  • Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 2(6), 429–444.

    Google Scholar 

  • Choudhary, M., Rana, K. S., Bana, R. S., Ghasal, P. C., Choudhary, G. L., Jakhar, P., & Verma, R. (2017). Energy budgeting and carbon footprint of pearl millet-Mustard cropping system under conventional and conservation agriculture in rainfed semi-arid agro-ecosystem. Energy, 130, 307–317.

    Google Scholar 

  • Cisneros, J. J., & Godfrey, L. D. (2001). Mid-season pest status of the cotton aphid (Homoptera: Aphididae) in California cotton: Is nitrogen a key factor? Environmental Entomology, 30, 501–510.

    Google Scholar 

  • Deilmann, C., Hennersdorf, J., Lehmann, I., & Reißmann, D. (2018). Data envelopment analysis of urban efficiency-Interpretative methods to make DEA a heuristic tool. Ecological Indicators, 84, 607–718.

    Google Scholar 

  • deMol, R. M., & van Beek, P. (1991). An OR contribution to the solution of the environmental problems in the Netherlands caused by manure. European Journal of Operational Research, 52, 16–27.

    Google Scholar 

  • Devasenapathy, P., Senthilkumar, G., & Shanmugam, P. M. (2009). Energy management in crop production. Indian Journal of Agronomy, 54, 80–90.

    Google Scholar 

  • Dhawan, A., Sharma, M., Jindal, V., & Kumar, R. (2008). Etimation of losses due to insect-pests in Bt Cotton. Indian Journal of Ecology, 35(1), 77–81.

    Google Scholar 

  • Dhawan, A. K., Simwat, G. S., & Prakash, R. (1999). Evaluation of decidan for the control of bollworm complex on upland cotton. Pestology, 23, 55–62.

    Google Scholar 

  • Erdal, D., Handan, A., Bekir, D., & Yalcin, Y. (2009). Energy usage and benefit-cost analysis of cotton production in Turkey. African Journal of Agricultural Research, 4(7), 599–604.

    Google Scholar 

  • Erdal, G., Esengun, K., Erdal, H., & Gunduz, O. (2007). Energy use and economical analysis of sugar beet production in Tokat province of Turkey. Energy, 32, 35–41.

    Google Scholar 

  • FAO. (2014). Food and Agricultural Organization. 2014. http://fao.org/.

  • Farrell, M. J. (1957). The measurement of productive efficiency. Journal of the Royal Statistical Society Series A (general), 120, 253–281.

    Google Scholar 

  • Gémar, G., Gómez, T., Molinos-Senante, M., Caballero, R., & Sala-Garrido, R. (2018). Assessingchanges in eco-productivity of wastewater treatment plants: The role of costs, pollutant removal efficiency, and greenhouse gas emissions. Environmental Impact Assessment and Reviews, 69, 24–31.

    Google Scholar 

  • GharizadehBeiragh, R., Alizadeh, R., ShafieiKaleibari, S., Cavallaro, F., HashemkhaniZolfani, S., Bausys, R., & Mardani, A. (2020). An integrated multi-criteria decision making model for sustainability performance assessment for insurance companies. Sustainability, 12, 789.

    Google Scholar 

  • Grant, R. F., Arkebauer, T. J., Dobermann, A., Hubbard, K. G., Schimelfenig, T. T., Suyker, A. E., Verma, S. B., & Walters, D. T. (2007). Net biome productivity of irrigated and rainfed maize soybean rotations: Modeling vs. measurements. Agronomy Journal, 99(6), 1404–1423.

    CAS  Google Scholar 

  • Günther, J., Thevs, N., Gusovius, H. J., Sigmund, I., Brückner, T., Beckmann, V., & Abdusalik, N. (2017). Carbon and phosphorus footprint of the cotton production in Xinjiang, China, in comparison to an alternative fibre (Apocynum) from Central Asia. Journal of Cleaner Production, 148, 490–497.

    Google Scholar 

  • Heidari, M. D., Omid, M., & Mohammadi, A. (2012). Measuring productive efficiency of horticultural greenhouses in Iran: a data envelopment analysis approach. Expert Systems with Applications, 39(1), 1040–1045.

    Google Scholar 

  • Huang, Y., Zhang, W., Sun, W., & Zheng, X. (2007). Net primary production of Chinese croplands from 1950 to 1999. Ecological Applications, 17(3), 692–701.

    Google Scholar 

  • IPCC. (2007). Intergovernmental Panel on Climate Change (IPCC), Changes in atmospheric constituents and in radiative forcing. In: Solomon, S., Qin, D., Manning, M., (Eds.), Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom/New York, NY, USA.

  • Iribarren, D., Vazquez-Rowe, I., Moreira, M., & Feijoo, G. (2010). Further potentials in the joint implementation of life cycle assessment and data envelopment analysis. Science of the Total Environment, 408, 5265–5272.

    CAS  Google Scholar 

  • Jeffries, B. (2013). Cutting cotton carbon emissions-Findings from Warangal, India.

  • Jia, L., Alizadah, R., Hao, J., Wang, G., Allen, J. K., & Mistree, F. (2020). A rule-based method for automated surrogate model selection. Advanced Engineering Informatics, 45, 101123.

    Google Scholar 

  • Jin, M., Shi, X., Emrouznejad, A., & Yang, F. (2017). Determining the optimal carbon tax rate based on data envelopment analysis. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2017.10.127

    Article  Google Scholar 

  • Kaleibari, S., GharizadehBeiragh, R., Alizadeh, R., & Solimanpur, M. (2016). A framework for performance evaluation of energy supply chain by a compatible network data envelopment analysis model. Scientia Iranica E, 23(4), 1904–1917.

    Google Scholar 

  • Karimi, M., Beheshti-Tabar, I., & Khubbakht, G. M. (2008). Energy production in Iran’s agronomy. American-Eurasian Journal of Agriculture Environmental Science, 4, 172–177.

    Google Scholar 

  • Kazemi, H., Shokrgozar, M., Kamkar, B., & Soltani, A. (2018). Analysis of cotton production by energy indicators in two different climatic regions. Journal of Cleaner Production, 190, 729–736.

    Google Scholar 

  • Khan, M., & Damalas, C. A. (2015). Factors preventing the adoption of alternatives to chemical pest control among Pakistani cotton farmers. International Journal of Pest Management, 61, 9–16.

    CAS  Google Scholar 

  • Khoshnevisan, B., Bolandnazar, E., Shamshirband, S., Motamed, M., Badrul, N., & MatKiah, M. L. (2015). Decreasing environmental impacts of cropping systems using life cycle assessment (LCA) and multi-objective genetic algorithm. Journal of Cleaner Production, 86, 67–77.

    Google Scholar 

  • Khoshnevisan, B., Rafiee, S., Omid, M., & Mousazadeh, H. (2013b). Reduction of CO2 emission by improving energy use efficiency of greenhouse cucumber production using DEA approach. Energy, 55, 676–682.

    CAS  Google Scholar 

  • Khoshnevisan, B., Rafiee, S., Omid, M., & Mousazadeh, H. (2014). Prediction of potato yield based on energy inputs using multi-layer adaptive neuro-fuzzy inference system. Measurement, 47, 521–530.

    Google Scholar 

  • Khoshnevisan, B., Rafiee, S. H., Omid, M., Yousefi, M., & Movahedi, M. (2013a). Modeling of energy consumption and GHG (greenhouse gas) emissions in wheat production in Esfahan province of Iran using artificial neural networks. Energy, 52, 333–338.

    Google Scholar 

  • Khoshnevisan, B., Shariati, H. M., Rafiee, S., & Mousazadeh, H. (2014). Comparison of energy consumption and GHG emissions of open field and greenhouse strawberry production. Renewable and Sustainable Energy Reviews, 29, 316–324.

    CAS  Google Scholar 

  • Kousar, R., Makhdum, M. S. A., Yaqoob, S., & Saghir, A. (2006). Economics of energy use in cotton production on small farms in district Sahiwal, Punjab, Pakistan. Journal of Agriculture and Social Science, 2, 219–221.

    Google Scholar 

  • Kranthi, S., Kranthi, K. R., Kumar, R., Dharajothi, Udiker, S. S., Prasad Ra, G. M. V., Zanware, P. R., Nagarare, V. S., Naik, C. B., Singh, V., Ramamurthy, V. V., & Monga, D. (2011). Emerging and key insect pests on Bt cotton-their identification, taxonomy, genetic diversity and management. Book of papers. World Cotton Research Conference-5, Mumbai, India, 7–11th November, 2011 (Excel India Publishers), pp. 281–286.

  • Kubota, F., & Cantorski da Rosa, L. (2013). Identification and conception of cleaner production opportunities with the theory of inventive problem solving. Journal of Cleaner Production, 47, 199–210. https://doi.org/10.1016/j.jclepro.2012.07.059

    Article  Google Scholar 

  • Kumar, K., & Stanley, S. (2006). Comparative efficacy of transgenic Bt and non-transgenic cotton against insect pest of cotton in Tamil Nadu, India. Resistant Pest Management Newsletter, 15, 38–43.

    Google Scholar 

  • Lal, R. (2004). Carbon emission from farm operations. Environmental International, 30, 981–990.

    CAS  Google Scholar 

  • Li, Y., & Cui, Q. (2017). Carbon neutral growth from 2020 strategy and airline environmental inefficiency: A network range adjusted environmental data envelopment analysis. Applied Energy, 199, 13–24.

    Google Scholar 

  • Lin, B., & Du, K. (2015). Energy and CO2 emissions performance in China’s regional economies: Do market-oriented reforms matter? Energy Policy, 78, 113–124.

    Google Scholar 

  • Liu, C., Yao, Z., Wang, K., Zheng, X., & Li, B. (2019). Net ecosystem carbon and greenhouse gas budgets in fiber and cereal cropping systems. Science of the Total Environment, 647, 895–904.

    CAS  Google Scholar 

  • Luyssaert, S., Inglima, I., Jung, M., Richardson, A., Reichstein, M., Papale, D., Piao, S. L., Schulze, E. D., Wingate, L., Matteucci, G., Aragao, L., Aubinet, M., Beer, C., Bernhofer, C., Black, K. G., Bonal, D., Bonnefond, J. M., Chambers, J., Ciais, P., … Laurila, T. (2007). CO2 balance of boreal, temperate, and tropical forests derived from a global database. Global Change Biology, 13, 2509–2537.

    Google Scholar 

  • Malana, N. M., & Malano, H. M. (2006). Benchmarking productive efficiency of selective wheat areas in Pakistan and India using data envelopment analysis. Irrigation and Drainage, 55, 383–394.

    Google Scholar 

  • Mandal, K., Saha, K., Ghosh, P., Hati, K., & Bandyopadhyay, K. (2002). Bioenergy and economic analysis of soybean-based crop production systems in central India. Biomass and Bioenergy, 23, 337–345.

    Google Scholar 

  • Maraseni, T. N., Cockfield, G., & Maroulis, J. (2010). An assessment of greenhouse gas emission; Implications for the Australian cotton industry. Journal of Agricultural Science, 148, 501–510.

    CAS  Google Scholar 

  • Mayee, C. D., Monga, D., Dhillon, S. S., Nehra, P. L., & Pundhir, P. (2008). Cotton–wheat production system in South Asia: A success story. Asia-Pacific Association of Agricultural Research Institutions, Bangkok, 2008, 1–48.

    Google Scholar 

  • Mohammadi, A., Rafiee, S., Jafari, A., Dalgaard, T., Trydeman, M., Keyhani, A., Mousavi-Avval, A., & Hermansen, E. (2013). Potential greenhouse gas emission reductions in soybean farming: A combined use of life cycle assessment and data envelopment analysis. Journal of Cleaner Production, 54, 89–100.

    Google Scholar 

  • Mohammadi, A., Rafiee, S., Jafari, A. M., Keyhani, A., Dalgaard, T., Trydeman, M., Nguyen, T., Borek, R., & Hermansen, E. (2014). Joint life cycle assessment and data envelopment analysis for the benchmarking of environmental impacts in rice paddy production. Journal of Cleaner Production, 106, 521–532.

    Google Scholar 

  • Mohammadi, A., Rafiee, S., Mohtasebi, S. S., Mousavi-Avval, S. H., & Rafiee, H. (2011). Energy efficiency improvement and input cost saving in kiwifruit production using Data Envelopment Analysis approach. Renewable Energy, 36, 2573–2579.

    Google Scholar 

  • Monga, O., Bousso, M., Garnier, P., & Pot, V. (2009). Using pore space 3D geometrical modelling to simulate biological activity: Impact of soil structure. Computer Geosciences, 35, 1789–1801.

    CAS  Google Scholar 

  • Mousavi-Avval, S. H., Mohammadi, A., Rafiee, S., & Tabatabaeefar, A. (2012). Assessing the technical efficiency of energy use in different barberry production systems. Journal of Cleaner Production, 27, 126–132.

    Google Scholar 

  • Mousavi-Avval, S. H., Rafiee, S., Jafari, A., & Mohammadi, A. (2011). Optimization of energy consumption for soybean production using Data Envelopment Analysis (DEA) approach. Applied Energy, 88, 3765–3772.

    Google Scholar 

  • Nabavi-Pelesaraei, A., Abdi, R., Rafiee, S., & Montaker, H. G. (2014a). Optimization of energy required and greenhouse gas emissions analysis for orange producers using data envelopment analysis approach. Journal of Cleaner Production, 65, 311–317.

    CAS  Google Scholar 

  • Nabavi-Pelesaraei, A., Abdi, R., Rafiee, S., & Taromi, K. (2014b). Applying data envelopment analysis approach to improve energy efficiency and reduce greenhouse gas emission of rice production. Engineering in Agriculture Environment Food, 7(4), 155–162.

    Google Scholar 

  • Nabavi-Pelesaraei, A., Hosseinzadeh-Bandbafha, H., Qasemi-Kordkheili, P., Kouchaki-Penchah, H., & Riahi-Dorcheh, F. (2016). Applying optimization techniques to improve of energy efficiency and GHG (greenhouse gas) emissions of wheat production. Energy, 103, 672–678.

    Google Scholar 

  • Nemecek, T., & Erzinger, S. (2005). Modelling representative life cycle inventories for Swiss arable crops (9 pp). International Journal of Life Cycle Assessment, 10, 68–76.

    CAS  Google Scholar 

  • Omid, M., Ghojabeige, F., Delshad, M., & Ahmadi, H. (2011). Energy use pattern and benchmarking of selected greenhouses in Iran using data envelopment analysis. Energy Conversion and Management, 52(1), 153–162.

    Google Scholar 

  • Ozkan, B., Akcaoz, H., & Karadeniz, F. (2004). Energy requirement and economic analysis of citrus production in Turkey. Energy Conversion and Management, 45, 1821–1830.

    Google Scholar 

  • Pahlavan, R., Omid, M., & Akram, A. (2011). Energy use efficiency in greenhouse tomato production in Iran. Energy, 36, 6714–6719.

    Google Scholar 

  • Pahlavan, R., Omid, M., Rafiee, S., & Mousavi-Avval, S. H. (2012). Optimization of energy consumption for rose production in Iran. Energy for Sustainable Development, 16, 236–241.

    Google Scholar 

  • Pathak, H., Ladha, J. K., Aggarwal, P. K., Peng, S., Das, S., Singh, Y., Singh, B., Kamra, S. K., Mishra, B., Sastri, A. S. R. A. S., Aggarwal, H. P., Das, D. K., & Gupta, R. K. (2003). Trends of Climatic potential and on-farm yields of rice and wheat in the Indo-Gangetic Plains. Field Crops Research, 80, 223–234.

    Google Scholar 

  • Payraudeau, S., & van der Werf, H. M. G. (2005). Environmental impact assessment for a farming region: A review of methods. Agriculture, Ecosystems and Environment, 107, 1–19.

    Google Scholar 

  • Pettigrew, W. T., & Dowd, M. K. (2014). Nitrogen fertility and irrigation effects on cotton seed composition. Journal of Cotton Science, 18, 410–419.

    Google Scholar 

  • Pimentel, D., Hepperly, P., Hanson, J., Douds, D., & Seidel, R. (2005). Environmental, energetic and economic comparisons of organic and conventional farming systems. BioScience, 55, 573–582.

    Google Scholar 

  • Pishgar-Komleh, S. H., Akram, A., Keyhani, A., Raei, M., Elshout, P. M. F., Huijbregts, M. A. J., & Zelm, R. V. (2017). Variability in the carbon footprint of open-field tomato production in Iran-A case study of Alborz and East-Azerbaijan provinces. Journal of Cleaner Production, 142, 1510–1517.

    CAS  Google Scholar 

  • Pishgar-Komleh, S. H., Sefeedpari, P., & Ghahderijani, M. (2012). Exploring energy consumption and CO2 emission of cotton production in Iran. Journal of Renewable and Sustainable Energy, 4–033115, 1–14.

    Google Scholar 

  • Prescher, A., Grünwald, T., & Bernhofer, C. (2010). Land use regulates carbon budgets in eastern Germany: From NEE to NBP. Agriculture Forest Meteorology, 50, 1016–1025.

    Google Scholar 

  • Pyke, B. (2009). The impacts of carbon trading on the cotton industry. 68th ICAC Plenary, Fourth Breakout Session, Thursday 10th September, 2009. Cape Town. Available at:www.icac.org/meetings/plenary/68_ cape_town/documents/bo4/bo4_e_pyke.pdf.

  • Rebolledo-Leiva, R., Angulo-Meza, L., Iriarte, A., & González-Araya, M. C. (2017). Joint carbon footprint assessment and data envelopment analysis for the reduction of greenhouse gas emissions in agriculture production. Science of the Total Environment, 593–594, 36–46.

    Google Scholar 

  • Saad, A. A., Das, T. K., Rana, D. S., Sharma, A. R., Bhattacharyya, R., & Lal, K. (2016). Energy auditing of a maize-wheat-greengram cropping system under conventional and conservation agriculture in irrigated north-western Indo-Gangetic Plains. Energy, 116, 293–305.

    Google Scholar 

  • Sadaghiani, M., Alizadeh, R., & Bahrami, M. (2014). Scenario-based planning for energy foresightcase study: Iran’s transportation industry. The 10th international Energy Conference (IEC 2014), Tehran, pp. 1–26.

  • Sami, M., & Reyhani, H. (2018). Energy and greenhouse gases balances of cotton farming in Iran: A case study. Acta Univ Agric EtSilvicMendelianae Brunensis, 66(12), 101–109.

    Google Scholar 

  • SAP. (2017). Statistical Abstracts of Punjab. Issued by Economic Advisor to Government of Punjab, Economic and Statistical Organization, Government of Punjab. Publication No. 956, 2017; p: 1–774. www.esopb.gov.inwww.esopb.gov.in.

  • Seiford, L. M., & Thrall, R. M. (2000). Recent developments in DEA: The mathematical programming approach to frontier analysis. Journal of Econometrics, 46(1–2), 7–38.

    Google Scholar 

  • Shafiq, M., & Reman, T. (2000). The extent of resource use inefficiencies in cotton production in Pakistan’s Punjab: An application of Data Envelopment Analysis. Agricultural Economics, 22, 321–330.

    Google Scholar 

  • Sharma, B. R., & Minhas, P. S. (2005). Strategies for managing saline/alkali waters for sustainable agricultural production in South Asia. Agriculture Water Management, 78, 136–151.

    Google Scholar 

  • Sharma, S., Singh, P., & Sodhi, G. P. S. (2020). Soil organic carbon and biological indicators of uncultivated vis-à-vis intensively cultivated soils under rice–wheat and cotton–wheat cropping systems in south-western Punjab. Carbon Management, 11(6), 681–695.

    CAS  Google Scholar 

  • Shephard, R. W. (1953). Cost and production functions. Princeton University Press.

    Google Scholar 

  • Singh, G., Singh, P., & Sodhi, G. P. S. (2017). Assessment and analysis of agriculture technology adoption and yield gaps in wheat production in sub-tropical Punjab. Indian Journal of Extension Education, 53(1), 70–77.

    Google Scholar 

  • Singh, G., Singh, P., & Sodhi, G. P. S. (2018). Farmers’ perception towards pigeon pea cultivation as an alternate to Bt-cotton in south-western Punjab. Indian Journal of Extension Education, 54(4), 171–179.

    Google Scholar 

  • Singh, G., Singh P., & Sodhi, G.P.S. (2021). Assessment and analysis of agricultural technology adoption in cotton (Gossypium hirsutum L.) cultivation in south-western Punjab. Agricultural Research Journal, (Accepted).

  • Singh, P., & Benbi, D. K. (2020b). Modeling soil organic carbon with DNDC and RothC models in different wheat-based cropping systems in north-western India. Communications in Soil Science and Plant Analysis, 51(9), 1184–1203.

    CAS  Google Scholar 

  • Singh, P., & Benbi, D. K. (2020a). Nutrient management impacts on net ecosystem carbon budget and energy flow nexus in intensively cultivated cropland ecosystems of north-western India. Paddy and Water Environment, 18(4), 697–715. https://doi.org/10.1007/s10333-020-00812-9

    Article  Google Scholar 

  • Singh, P., Benbi, D. K., & Verma, G. (2020a). Nutrient management impacts on nutrient use efficiency and energy, carbon, and net ecosystem economic budget of rice-wheat cropping system in north-western India. Journal of Soil Science and Plant Nutrition, 21, 559–577.

    Google Scholar 

  • Singh, P., Saini, S. P., & Sidhu, A. S. (2012). Effect evaluation of balanced fertilizer use in maize (Zea mayz L.) through yield attributes, crop efficiency and energy relationships in subtropical floodplain soils. International Journal of Agricultural Sciences, 8(2), 364–370.

    Google Scholar 

  • Singh, P., Singh, G., & Sodhi, G. P. S. (2019). Energy auditing and optimization approach for improving energy efficiency of rice cultivation in south-western Punjab, India. Energy, 174, 269–279.

    Google Scholar 

  • Singh, P., Singh, G., & Sodhi, G. P. S. (2019). Applying DEA optimization approach for energy auditing in wheat cultivation under rice-wheat and cotton-wheat cropping systems in north-western India. Energy, 181, 18–28. https://doi.org/10.1016/j.energy.2019.05.147

    Article  Google Scholar 

  • Singh, P., Singh, G., & Sodhi, G. P. S. (2020b). Energy and carbon footprints of wheat establishment following different rice residue management strategies vis-à-vis conventional tillage coupled with rice residue burning in north-western India. Energy, 200, 117554.

    CAS  Google Scholar 

  • Smith, P., Laniganb, G., Kutschc, W. L., Buchmannd, N., Eugsterd, W., Aubinete, M., Ceschiaf, E., Béziatf, P., Yeluripatia, J. B., Osborneg, B., Moorsh, E. J., Brutf, A., Wattenbacha, M., Saundersg, M., & Jones, M. (2010). Measurements necessary for assessing the net ecosystem carbon budget of Croplands. Agriculture, Ecosystem and Environment, 139, 302–315.

    Google Scholar 

  • Smith, P., Martino, D., Cai, Z., Gwary, D., Janzen, H. H., Kumar, P., McCarl, B., Ogle, S., O’Mara, F., Rice, C., Scholes, B., Sirotenko, O., Howden, M., McAllister, T., Pan, G., Romanenkov, V., Schneider, U., Towprayoon, S., Wattenbach, M., & Smith, J. (2008). Greenhouse gas mitigation in agriculture. Philosophical Trans Royal Soc, B, 363, 789–813.

    CAS  Google Scholar 

  • Soto-Silva, W., Nadal-Roig, E., Gonzalez-Araya, M. C., & Pla-Aragones, L. (2016). Operational research models applied to the fresh fruit supply chain. European Journal of Operational Research, 251, 345–355.

    Google Scholar 

  • Tabatabaie, M. H., Rafiee, S., & Keyhani, A. (2012). Energy consumption flow and econometric models of two plum cultivars productions in Tehran province of Iran. Energy, 44, 211–216.

    Google Scholar 

  • Taheri-Rad, A., Khojastehpour, M., Rohani, A., Khoramdel, S., & Nikkhah, A. (2017). Energy flow modeling and predicting the yield of Iranian paddy cultivars using Artificial Neural Networks. Energy, 135, 405–412.

    CAS  Google Scholar 

  • Tapia, J. F. D., Promentilla, M. A. B., Tseng, M. L., & Tan, R. R. (2017). Screening of carbon dioxide utilization options using hybrid analytic hierarchy process-data envelopment analysis method. Journal of Cleaner Production, 165, 1361–1370. https://doi.org/10.1016/j.jclepro.2017.07.182

    Article  CAS  Google Scholar 

  • Ton, P., Asterine, A., & Knappa, M. (2012). Cotton and climate change-Impacts and options to adapt. EGU General Assembly 2012, held 22–27th April, 2012 in Vienna, Austria., 2012. p.421.

  • Traboulsi, R. (1994). Bemisia tabaci: A report on its pest status with particular reference to the Near East. FAO Plant Protection Bulletin, 42, 33–58.

    Google Scholar 

  • Ullah, A., Perret, S. R., Gheewala, S. H., & Soni, P. (2015). Eco-efficiency of cotton-cropping systems in Pakistan: An integrated approach of life cycle assessment and data envelopment analysis. Journal of Cleaner Production, 134, 623–632.

    Google Scholar 

  • Vázquez-Rowe, I., & Iribarren, D. (2015). Review of life-cycle approaches coupled with data envelopment analysis: Launching the CFP + DEA method for energy policy making. Science World Journal, 813921, 10.

    Google Scholar 

  • Vázquez-Rowe, I., Villanueva-Rey, P., Iribarren, D., Moreira, M., & Feijoo, G. (2012). Joint life cycle assessment and data envelopment analysis of grape production for vinification in the RíasBaixas appellation (NW Spain). Journal of Cleaner Production, 27, 92–102.

    Google Scholar 

  • Virtanen, Y., Kurppa, S., Saarinen, M., Katajajuuri, J. M., Usva, K., Mäenpää, I., Mäkelä, J., Grönroos, J., & Nissinen, A. (2011). Carbon footprint of food-approaches from national input–output statistics and a LCA of a food portion. Journal of Cleaner Production, 19, 1849–1856.

    Google Scholar 

  • Wang, H., Zhou, P., & Zhou, D. Q. (2013). Scenario based energy efficiency and productivity in China: A non-radial directional distance function analysis. Energy Economics, 40, 795–803.

    Google Scholar 

  • Watto, M. A., & Mugera, A. W. (2015). Econometric estimation of groundwater irrigation efficiency of cotton cultivation farms in Pakistan. Journal of Hydrology and Regional Studies, 4, 193–211.

    Google Scholar 

  • Wiedmann, T., & Minx, J. (2008). A definition of carbon footprint. In C. C. Pertsova (Ed.), Ecological economics research trends (pp. 1–11). Nova Science Publishers. (Chapter 1).

    Google Scholar 

  • Williams, H., & Wikstrom, F. (2011). Environmental impact of packaging and food losses in a life cycle perspective: A comparative analysis of five food items. Journal of Cleaner Production, 19, 43–48.

    Google Scholar 

  • Williams, J., Alizadeh, R., Allen, J.K., & Mistree, F. (2020). Using network partitioning to design a green supply chain. ASME 2020 international design engineering technical conferences and computers and information in engineering conference August 17–19th, 2020, Virtual, Online, Paper No: DETC2020–22644, V11BT11A050; 12 pages, https://doi.org/10.1115/DETC2020-22644.

  • Xie, B., Zheng, X., Zhou, Z., Gu, J., Zhu, B., Chen, X., Shi, Y., Wang, Y., Zhao, Z., Liu, C., Yao, Z., & Zhu, J. (2010). Effects of nitrogen fertilizer on CH4 emission from rice fields: Multi-site field observations. Plant and Soil, 326, 393–401.

    CAS  Google Scholar 

  • Yadav, G. S., Lal, R., Meena, R. S., Datta, M., Babu, S., Das, A., Leyak, J., & Saha, P. (2017). Energy budgeting for designing sustainable and environmentally clean/safer cropping systems for rainfed rice fallow lands in India. Journal of Cleaner Production, 158, 29–37.

    Google Scholar 

  • Yao, X., Zhou, H., Zhang, A., & Li, A. (2015). Regional energy efficiency, carbon emission performance and technology gaps in China: A meta-frontier non-radial directional distance function analysis. Energy Policy, 84, 142–154.

    CAS  Google Scholar 

  • Yilmaz, I., Akcaoz, H., & Ozkan, B. (2005). An analysis of energy use and input costs for cotton production in Turkey. Renewable Energy, 30, 145–155.

    Google Scholar 

  • Yu, A., You, J., Rudkin, S., & Zhang, H. (2019). Industrial carbon abatement allocations and regional collaboration: Reevaluating China through a modified data envelopment analysis. Applied Energy, 233–234, 232–243.

    Google Scholar 

  • Zahedi, M., Eshghizadeh, H. R., & Mondani, F. (2014). Energy use efficiency and economical analysis in cotton production system in an arid region: A case Study for Isfahan Province. Iran. International Journal of Energy Economics and Policy, 4(1), 43–52.

    Google Scholar 

  • Zhang, N., Wang, B., & Liu, Z. (2016). Carbon emissions dynamics, efficiency gains, and technological innovation in China’s industrial sectors. Energy, 99, 10–19.

    Google Scholar 

  • Zhang, P., He, J., Hong, X., Zhang, W., Qin, C., Pang, B., Li, Y., & Liu, Y. (2018). Carbon sources/sinks analysis of land use changes in China based on data envelopment analysis. Journal of Cleaner Production, 204, 702–711. https://doi.org/10.1016/j.jclepro.2018.08.341

    Article  Google Scholar 

  • Zhang, X. Q., Pu, C., Zhao, X., Xue, J. F., Zhang, R., Nie, Z. J., Chen, F., Lal, R., & Zhang, H. L. (2016). Tillage effects on carbon footprint and ecosystem services of climate regulation in a winter wheat–summer maize cropping system of the North China Plain. Ecological Indicators, 67, 821–829.

    CAS  Google Scholar 

  • Zhou, P., Ang, B. W., & Wang, H. (2012). Energy and CO2 emission performance in electricity generation: A non-radial directional distance function approach. European Journal of Operational Research, 221, 625–635.

    Google Scholar 

Download references

Acknowledgements

The authors greatly acknowledge the farmers of the study region for their valuable time and making access to the data during personal interviews.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pritpal Singh.

Ethics declarations

Conflict of interest

The authors declared that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, P., Singh, G. & Sodhi, G.P.S. Data envelopment analysis based optimization for improving net ecosystem carbon and energy budget in cotton (Gossypium hirsutum L.) cultivation: methods and a case study of north-western India. Environ Dev Sustain 24, 2079–2119 (2022). https://doi.org/10.1007/s10668-021-01521-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-021-01521-x

Keyword

Navigation