Skip to main content

Advertisement

Log in

Contamination impact and human health risk in surface soils surrounding the abandoned mine of Zeïda, High Moulouya, Northeastern Morocco

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

The study assesses the levels of 16 heavy metals (HMs) in soils around the Zeïda mine to provide information on the extent of contamination, the ecological risk of these HMs in soils, and the health risk to the residents of the Zeïda village. Total metal concentrations were determined by inductively coupled plasma-mass spectrometry (ICP-MS) for 20 sampling stations around the mining area. The average concentrations of HMs (mg/kg) in the study area were as follows: Ag (2.3), As (90.4), Ba (1605.1), Be (3.1), Co (11.2), Cr (57.6), Cu (33.9), Mn (499.6), Mo (6.1), Ni (23.4), Pb (1338.7), Sb (7.4), Se (1.3), Sn (11.3), Sr (596.5), and Zn (87.9). They were higher than those at the control sites. Twelve single and integrated ecological risk indices, namely Nemerow Pollution Index (PINemerow), Contamination degree (Cd), and Potential Ecological Risk (RI), were used and suggested that tailings and their nearby soils had a moderate to high contamination potential. Based on the US Environmental Protection Agency (USEPA), the carcinogenic risk, non-carcinogenic, hazard quotient (HQ), and hazard index (HI) were calculated with three routes: ingestion, inhalation, and dermal for children and adults. For both children and adults, HI for HMs was in the order: Mn > As > Co > Pb > 1 > other HMs. Mn, As, and Co were hazardous at 90% of soil sampling stations, while Pb was hazardous in tailings samples. The inhalation and dermal carcinogenic risks presented negligible to acceptable levels. The ingestion carcinogenic risk posed a significant issue for As, which tended to be serious for children at the majority of sampling sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Research datasets are submitted as supplementary electronic materials.

Code Availability

R Studio version R 3.6.1 (open-source/free) and XLSTAT software version 2018.5 (Addinsoft).

References

  • Amade, E. (1965). Les gisements de plomb de Zeïda et de Boumia. Notes & Mém. Serv. géol. Maroc., 181, 175–184.

    Google Scholar 

  • Atibu, E. K., Lacroix, P., Sivalingam, P., Ray, N., Giuliani, G., Mulaji, C. K., et al. (2018). High contamination in the areas surrounding abandoned mines and mining activities: An impact assessment of the Dilala, Luilu and Mpingiri Rivers, Democratic Republic of the Congo. Chemosphere, 191, 1008–1020.

    Article  CAS  Google Scholar 

  • Baghdad, B. (2008). Etude des impacts environnementaux et socio-économiques de la mine de plomb abandonnée de Zaida (Haute Moulouya, Maroc). (p. 171). Habilitation Universitaire.

    Google Scholar 

  • Bech, J., Poschenrieder, C., Llugany, M., Barceló, J., Tume, P., Tobias, F., et al. (1997). Arsenic and heavy metal contamination of soil and vegetation around a copper mine in Northern Peru. Science of the Total Environment, 203(1), 83–91.

    Article  CAS  Google Scholar 

  • Bowen, H. (1979). Environmental chemistry of the elements Environmental chemistry of the elements. . Academic Press.

    Google Scholar 

  • Caeiro, S., Costa, M. H., Ramos, T., Fernandes, F., Silveira, N., Coimbra, A., et al. (2005). Assessing heavy metal contamination in Sado Estuary sediment: An index analysis approach. Ecological Indicators, 5(2), 151–169.

    Article  CAS  Google Scholar 

  • Chen, H., Teng, Y., Lu, S., Wang, Y., & Wang, J. (2015). Contamination features and health risk of soil heavy metals in China. Science of the Total Environment, 512, 143–153.

    Article  CAS  Google Scholar 

  • Chen, L., Wu, J., Lu, J., Xia, C., Urynowicz, M. A., Huang, Z., Gao, L., & Ma, M. (2018). Speciation, fate and transport, and ecological risks of Cu, Pb, and Zn in tailings from Huogeqi Copper Mine, Inner Mongolia, China. Journal of Chemistry. https://doi.org/10.1155/2018/2340542.

    Article  Google Scholar 

  • Cheng, J.-L., Zhou, S., & Zhu, Y.-W. (2007). Assessment and mapping of environmental quality in agricultural soils of Zhejiang Province, China. Journal of Environmental Sciences, 19(1), 50–54.

    Article  CAS  Google Scholar 

  • Cheng, W., Lei, S., Bian, Z., Zhao, Y., Li, Y., & Gan, Y. (2020). Geographic distribution of heavy metals and identification of their sources in soils near large, open-pit coal mines using positive matrix factorization. Journal of Hazardous Materials, 387, 121666.

    Article  CAS  Google Scholar 

  • Chowdhury, A., & Maiti, S. K. (2016). Identifying the source and accessing the spatial variations, contamination status, conservation threats of heavy metal pollution in the river waters of Sunderban biosphere reserve, India. Journal of Coastal Conservation, 20(3), 257–269.

    Article  Google Scholar 

  • Dagallier, G., & Charoy, B. (1991). Pb · Ba mineralization in the Triassic arkoses of the Haute Moulouya (Morocco) related to differential silicification episodes in pediments: A model. Journal of African Earth Sciences (and the Middle East), 12(1–2), 253–265.

    Article  CAS  Google Scholar 

  • Damian, G. E., Micle, V., Sur, I. M., & Băbău, A. M. C. (2019). From environmental ethics to sustainable decision-making: Assessment of potential ecological risk in soils around abandoned mining areas-case study “Larga de Sus mine”(Romania). Journal of Agricultural and Environmental Ethics, 32(1), 27–49.

    Article  Google Scholar 

  • El Azhari, A., Rhoujjati, A., El Hachimi, M. L., & Ambrosi, J.-P. (2017). Pollution and ecological risk assessment of heavy metals in the soil-plant system and the sediment-water column around a former Pb/Zn-mining area in NE Morocco. Ecotoxicology and Environmental Safety, 144, 464–474.

    Article  CAS  Google Scholar 

  • El Hachimi, M. L., Bouabdli, A., & Fekhaoui, M. (2013). Les rejets miniers de traitement: caractérisation, capacité polluante et impacts environnementaux, mine Zeïda, mine Mibladen, Haute Moulouya (Maroc). Environnement & Technique, 323, 32–42.

    Google Scholar 

  • El Hachimi, M. L., Fekhaoui, M., El Abidi, A., & Rhoujatti, A. (2014). Contamination des sols par les métaux lourds à partir de mines abandonnées: le cas des mines Aouli-Mibladen-Zeïda au Maroc. Cahiers Agricultures, 23(3), 213–219.

    Article  Google Scholar 

  • Förstner, U., Ahlf, W., & Calmano, W. (1993). Sediment quality objectives and criteria development in Germany. Water Science and technology, 28(8–9), 307–316.

    Article  Google Scholar 

  • Frelich, L. E. (2019). Terrestrial ecosystem impacts of sulfide mining: Scope of issues for the boundary waters canoe area wilderness, Minnesota, USA. Forests, 10(9), 747.

    Article  Google Scholar 

  • Guo, G., & Zhang, D. (2021). Source apportionment and source-specific health risk assessment of heavy metals in size-fractionated road dust from a typical mining and smelting area, Gejiu, China. Environmental Science and Pollution Research, 28(8), 9313–9326.

    Article  CAS  Google Scholar 

  • Guo, X., Zhao, Y., He, H., & Wang, X. (2020). Potential ecological risk assessment of soil heavy metals in Hunchun basin, Northeast China. Arabian Journal of Geosciences, 13(2), 1–9.

    Article  CAS  Google Scholar 

  • Gutiérrez, M., Mickus, K., & Camacho, L. M. (2016). Abandoned PbZn mining wastes and their mobility as proxy to toxicity: A review. Science of the Total Environment, 565, 392–400.

    Article  CAS  Google Scholar 

  • Hakanson, L. (1980). An ecological risk index for aquatic pollution control. A sedimentological approach. Water Research, 14(8), 975–1001.

    Article  Google Scholar 

  • Iavazzo, P., Adamo, P., Boni, M., Hillier, S., & Zampella, M. (2012). Mineralogy and chemical forms of lead and zinc in abandoned mine wastes and soils: An example from Morocco. Journal of Geochemical Exploration, 113, 56–67.

    Article  CAS  Google Scholar 

  • Jayarathne, A., Egodawatta, P., Ayoko, G. A., & Goonetilleke, A. (2018). Assessment of ecological and human health risks of metals in urban road dust based on geochemical fractionation and potential bioavailability. Science of the Total Environment, 635, 1609–1619.

    Article  CAS  Google Scholar 

  • Jébrak, M., Marcoux, E., Nasloubi, M., & Zaharaoui, M. (1998). From sandstone-to carbonate-hosted stratabound deposits: An isotope study of galena in the Upper-Moulouya District (Morocco). Mineralium Deposita, 33(4), 406–415.

    Article  Google Scholar 

  • Jia, Z., Li, S., & Wang, L. (2018). Assessment of soil heavy metals for eco-environment and human health in a rapidly urbanization area of the upper Yangtze Basin. Scientific Reports, 8(1), 1–14.

    Article  Google Scholar 

  • Jorfi, S., Maleki, R., Jaafarzadeh, N., & Ahmadi, M. (2017). Pollution load index for heavy metals in Mian-Ab plain soil, Khuzestan, Iran. Data in Brief, 15, 584–590.

    Article  Google Scholar 

  • Khalil, A., Hanich, L., Bannari, A., Zouhri, L., Pourret, O., & Hakkou, R. (2013). Assessment of soil contamination around an abandoned mine in a semi-arid environment using geochemistry and geostatistics: Pre-work of geochemical process modeling with numerical models. Journal of Geochemical Exploration, 125, 117–129.

    Article  CAS  Google Scholar 

  • Korosi, J., Thienpont, J., Eickmeyer, D., Kimpe, L., & Blais, J. (2020). DATASET: A paleolimnological approach for interpreting Aquatic Effects Monitoring at the Diavik Diamond Mine. . Lac de Gras.

    Google Scholar 

  • Landers, M., & Usher, B. (2012). Acid metalliferous leaching of a mineral sands deposit: From field to laboratory. In International mine water association symposium (pp. 215–221).

  • Li, F., Zhang, J., Cao, T., Li, S., Chen, Y., Liang, X., et al. (2018). Human health risk assessment of toxic elements in farmland topsoil with source identification in Jilin Province, China. International Journal of Environmental Research and Public Health, 15(5), 1040.

    Article  CAS  Google Scholar 

  • Li, X., Yang, H., Zhang, C., Zeng, G., Liu, Y., Xu, W., et al. (2017). Spatial distribution and transport characteristics of heavy metals around an antimony mine area in central China. Chemosphere, 170, 17–24.

    Article  CAS  Google Scholar 

  • Li, Z., Ma, Z., van der Kuijp, T. J., Yuan, Z., & Huang, L. (2014). A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment. Science of the Total Environment, 468, 843–853.

    Article  CAS  Google Scholar 

  • Likuku, A. S., Mmolawa, K. B., & Gaboutloeloe, G. K. (2013). Assessment of heavy metal enrichment and degree of contamination around the copper–nickel mine in the Selebi Phikwe Region, Eastern Botswana. Environment and Ecology Research, 1(2), 15–17.

    Google Scholar 

  • Lin, W., Wu, K., Lao, Z., Hu, W., Lin, B., Li, Y., et al. (2019). Assessment of trace metal contamination and ecological risk in the forest ecosystem of dexing mining area in northeast Jiangxi Province, China. Ecotoxicology and Environmental Safety, 167, 76–82.

    Article  CAS  Google Scholar 

  • Liu, S., Tian, S., Li, K., Wang, L., & Liang, T. (2018). Heavy metal bioaccessibility and health risks in the contaminated soil of an abandoned, small-scale lead and zinc mine. Environmental Science and Pollution Research, 25(15), 15044–15056.

    Article  CAS  Google Scholar 

  • Mama, C., Nnaji, C., Emenike, P., & Chibueze, C. (2020). Potential environmental and human health risk of soil and roadside dust in a rapidly growing urban settlement. International Journal of Environmental Science and Technology, 17(4), 1–16.

    Article  CAS  Google Scholar 

  • Marquès, M., Domingo, J. L., Nadal, M., & Schuhmacher, M. (2020). Health risks for the population living near petrochemical industrial complexes. 2. Adverse health outcomes other than cancer. Science of the total environment. (p. 139122). Elsevier.

    Google Scholar 

  • Muller, G. (1969). Index of geoaccumulation in sediments of the Rhine River. GeoJournal, 2, 108–118.

    Google Scholar 

  • Nassiri, O., Rhoujjati, A., & Hachimi, M. L. E. L. (2021). Contamination, sources and environmental risk assessment of heavy metals in water, sediment and soil around an abandoned Pb mine site in North East Morocco. Environmental Earth Sciences, 80(3), 1–20.

    Article  CAS  Google Scholar 

  • Neiva, A., Albuquerque, M., Antunes, I. M. H. R., Carvalho, P., Santos, A., Boente, C., et al. (2019). Assessment of metal and metalloid contamination in soils trough compositional data: The old Mortórios uranium mine area, central Portugal. Environmental Geochemistry and Health, 41(6), 2875–2892.

    Article  CAS  Google Scholar 

  • Neogi, B., Tiwari, A. K., Singh, A. K., & Pathak, D. (2018). Evaluation of metal contamination and risk assessment to human health in a coal mine region of India: A case study of the North Karanpura coalfield. Human and Ecological Risk Assessment: An International Journal, 24(8), 2011–2023.

    Article  CAS  Google Scholar 

  • Ngole-Jeme, V. M., & Fantke, P. (2017). Ecological and human health risks associated with abandoned gold mine tailings contaminated soil. PLoS ONE, 12(2), e0172517.

    Article  CAS  Google Scholar 

  • Ni, M., Mao, R., Jia, Z., Dong, R., & Li, S. (2018). Heavy metals in soils of Hechuan County in the upper Yangtze (SW China): Comparative pollution assessment using multiple indices with high-spatial-resolution sampling. Ecotoxicology and Environmental Safety, 148, 644–651.

    Article  CAS  Google Scholar 

  • Njuguna, S. M., Onyango, J. A., Githaiga, K. B., Gituru, R. W., & Yan, X. (2020). Application of multivariate statistical analysis and water quality index in health risk assessment by domestic use of river water. Case study of Tana River in Kenya. Process Safety and Environmental Protection, 133, 149–158.

    Article  CAS  Google Scholar 

  • Nouri, M., El Rasafi, T., & Haddioui, A. (2017). Levels of metals in soils of ait ammar iron mine, Morocco: Human health risks. Acta Chemica Iasi, 25(2), 127–144.

    Article  Google Scholar 

  • Olumayowa Oluwasola, H., Oluoye, O., Mohammad Bashir, S., Odewole, O. A., Onyeka Abugu, H., Akpomie, K. G., et al. (2021). Geochemical and health risk assessment of heavy metals concentration in soils around Oke Ere mining area in Kogi State Nigeria. International Journal of Environmental Analytical Chemistry. https://doi.org/10.1080/03067319.2020.1862817.

    Article  Google Scholar 

  • Oukemeni, D., & Bourne, J. (1993). Etude géochimique des granitoïdes du pluton d’Aouli, Haute Moulouya. Maroc. Journal of African Earth Sciences (and the Middle East), 17(4), 429–443.

    Article  CAS  Google Scholar 

  • Pandey, B., Agrawal, M., & Singh, S. (2016). Ecological risk assessment of soil contamination by trace elements around coal mining area. Journal of Soils and Sediments, 16(1), 159–168.

    Article  CAS  Google Scholar 

  • Park, J.-H., & Choi, K.-K. (2012). Health risk assessment through residents exposure to toxic metals in soil and groundwater in the vicinity of Sanyang Metal Mine. Korean Journal of Environmental Agriculture, 31(2), 97–103.

    Article  Google Scholar 

  • Qingjie, G., Jun, D., Yunchuan, X., Qingfei, W., & Liqiang, Y. (2008). Calculating pollution indices by heavy metals in ecological geochemistry assessment and a case study in parks of Beijing. Journal of China University of Geosciences, 19(3), 230–241.

    Article  Google Scholar 

  • Qu, L., Huang, H., Xia, F., Liu, Y., Dahlgren, R. A., Zhang, M., et al. (2018). Risk analysis of heavy metal concentration in surface waters across the rural–urban interface of the Wen-Rui Tang River, China. Environmental Pollution, 237, 639–649.

    Article  CAS  Google Scholar 

  • Rakotondrabe, F., Ngoupayou, J. R. N., Mfonka, Z., Rasolomanana, E. H., Abolo, A. J. N., & Ako, A. A. (2018). Water quality assessment in the Bétaré-Oya gold mining area (East-Cameroon): Multivariate statistical analysis approach. Science of the Total Environment, 610, 831–844.

    Article  CAS  Google Scholar 

  • Reimann, C., & De Caritat, P. (2012). Chemical elements in the environment factsheets for the geochemist and environmental scientist. . Springer.

    Google Scholar 

  • Reyes, A., Cuevas, J., Fuentes, B., Fernández, E., Arce, W., Guerrero, M., & Letelier, M. V. (2021). Distribution of potentially toxic elements in soils surrounding abandoned mining waste located in Taltal, Northern Chile. Journal of Geochemical Exploration, 220, 106653.

    Article  CAS  Google Scholar 

  • Rubio, B., Nombela, M., & Vilas, F. (2000). Geochemistry of major and trace elements in sediments of the Ria de Vigo (NW Spain): An assessment of metal pollution. Marine Pollution Bulletin, 40(11), 968–980.

    Article  CAS  Google Scholar 

  • Saha, J. K., Selladurai, R., Coumar, M. V., Dotaniya, M., Kundu, S., & Patra, A. K. (2017). Soil pollution-an emerging threat to agriculture. (Vol. 10). Springer.

    Book  Google Scholar 

  • Sahoo, P. K., Dall’Agnol, R., Salomão, G. N., Junior, J. D., da Silva, M. S., Martins, G. C., e Souza Filho, P. W., Powell, M. A., Maurity, C. W., Angelica, R. S., & da Costa, M. F. (2020). Source and background threshold values of potentially toxic elements in soils by multivariate statistics and GIS-based mapping: A high density sampling survey in the Parauapebas basin, Brazilian Amazon. Environmental Geochemistry and Health, 42(1), 255–282.

    Article  CAS  Google Scholar 

  • Shi, J., Chang, Y., Khan, F., Zhu, Y., & Chen, G. (2020). Methodological improvements in the risk analysis of an urban hydrogen fueling station. Journal of Cleaner Production, 257, 120545.

    Article  CAS  Google Scholar 

  • Singh, U. K., Ramanathan, A., & Subramanian, V. (2018). Groundwater chemistry and human health risk assessment in the mining region of East Singhbhum, Jharkhand, India. Chemosphere, 204, 501–513.

    Article  CAS  Google Scholar 

  • Sutherland, R. (2000). Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environmental Geology, 39(6), 611–627.

    Article  CAS  Google Scholar 

  • Thomilson, D., Wilson, D., Harris, C., & Jeffrey, D. (1980). Problem in heavy metals in estuaries and the formation of pollution index. Hel WissMeeresunlter, 33(1–4), 566–575.

    Google Scholar 

  • Turekian, K. K., & Wedepohl, K. H. (1961). Distribution of the elements in some major units of the earth’s crust. Geological Society of America Bulletin, 72(2), 175–192.

    Article  CAS  Google Scholar 

  • ur Rehman, I., Ishaq, M., Ali, L., Khan, S., Ahmad, I., Din, I. U., & Ullah, H. (2018). Enrichment, spatial distribution of potential ecological and human health risk assessment via toxic metals in soil and surface water ingestion in the vicinity of Sewakht mines, district Chitral, Northern Pakistan. Ecotoxicology and Environmental Safety, 154, 127–136.

    Article  CAS  Google Scholar 

  • USEPA, (1991). Role of the baseline risk assessment in Superfund remedy selection decisions.

  • USEPA, (1993). Reference dose (RfD): Description and use in health risk assessments. Background document 1A.

  • USEPA. (2001). Supplemental guidance for developing soil screening levels for superfund sites. Peer Review Draft, OSWER, 9355, 4–24.

    Google Scholar 

  • USEPA, (2004). Risk Assessment Guidance for Superfund. Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment).

  • USEPA. (2017). Regional Screening Levels (RSLs)–Generic Tables (June 2017). . US Environmental Protection Agency Washington.

    Google Scholar 

  • Wei, C., Wang, C., & Yang, L. (2009). Characterizing spatial distribution and sources of heavy metals in the soils from mining-smelting activities in Shuikoushan, Hunan Province, China. Journal of Environmental Sciences, 21(9), 1230–1236.

    Article  CAS  Google Scholar 

  • WHO, (1994). Assessing human health risks of chemicals: Derivation of guidance values for health-based exposure limits.

  • Xu, X., Li, Y., Wang, Y., & Wang, Y. (2011). Assessment of toxic interactions of heavy metals in multi-component mixtures using sea urchin embryo-larval bioassay. Toxicology in Vitro, 25(1), 294–300.

    Article  CAS  Google Scholar 

  • Zheng, H., Kong, S., Yan, Y., Chen, N., Yao, L., Liu, X., et al. (2020). Compositions, sources and health risks of ambient volatile organic compounds (VOCs) at a petrochemical industrial park along the Yangtze River. Science of the Total Environment, 703, 135505.

    Article  CAS  Google Scholar 

  • Zhong, T., Xue, D., Zhao, L., & Zhang, X. (2018). Concentration of heavy metals in vegetables and potential health risk assessment in China. Environmental Geochemistry and Health, 40(1), 313–322.

    Article  CAS  Google Scholar 

  • Zhu, D., Wei, Y., Zhao, Y., Wang, Q., & Han, J. (2018). Heavy metal pollution and ecological risk assessment of the agriculture soil in Xunyang Mining Area, Shaanxi Province, Northwestern China. Bulletin of Environmental Contamination and Toxicology, 101(2), 178–184.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Oumayma NASSIRI, first author, has realized an original work based on different modules through data collection, experimentation, and other statistical analyses under the supervision of Ali Rhoujjati, Moulay Lâarabi EL Hachimi. They have corrected and evaluated the manuscript with Jean Paul Ambrosi and guided in all the phases of research with full supervision.

Corresponding author

Correspondence to Oumayma Nassiri.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appear to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 234 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nassiri, O., EL Hachimi, M.L., Ambrosi, J.P. et al. Contamination impact and human health risk in surface soils surrounding the abandoned mine of Zeïda, High Moulouya, Northeastern Morocco. Environ Dev Sustain 23, 17030–17059 (2021). https://doi.org/10.1007/s10668-021-01380-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-021-01380-6

Keywords

Navigation