Skip to main content

Advertisement

Log in

Phytoplankton communities of eutrophic freshwater bodies (Kerala, India) in relation to the physicochemical water quality parameters

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

Algal bloom of eutrophic freshwaters is important from different aspects of sustainable developmental perspectives. Apart from the identification of the algal species which multiply fast in response to eutrophication, phytoplankton studies concerning water quality parameters of eutrophic waters help environment inventory of such fast-growing algal species. The knowledge of specific environment requirements of fast-growing algae is highly significant in the control of toxic algal blooming and industrial utilization of non-toxic species in phycoremediation or as new bioresources for fuel, food or feeds. In this context, seasonal dynamics of the phytoplankton community in seven different kinds of eutrophic waters from 66 representative locations of Kerala, South India, was measured in two seasons. Altogether, 297 algal species belonging to 8 phyla, 11 classes and 26 orders were observed in the waters. Ecology and diversity of algal communities concerning physicochemical water quality parameters were compared, which enabled assessment of the ecological amplitude of several specific dominant species common to eutrophic waters in Kerala. The crucial roles of dissolved oxygen (p < 0.05), total Kjeldahl nitrogen (p < 0.01), and ammoniacal nitrogen (p < 0.05) in causing algal blooms are assessed using correlation analysis. The principal component analysis extracted the entire water quality parameters into five groups of components acting towards the cause of algal blooms. Overall, the investigation has generated relevant new information of several hitherto uninvestigated fast-growing non-toxic algal species such as Kirchneriella lunaris, Ankistrodesmus falcatus, Radiococcus nimbatus, Coelastrum microporum and Scenedesmus dimorphus, which are industrially useful and can contribute to ecotechnological innovations essential for sustainable development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ansari, A. A., Ghanim, S. Al, Trivedi, S., Rehman, H., Abbas, Z. K., & Saggu, S. (2015). Seasonal dynamics in the trophic status of water, floral and faunal density along with some selected coastal areas of the Red Sea, Tabuk, Saudi Arabia. International Aquatic Research, 7(4), 337–348. https://doi.org/10.1007/s40071-015-0118-6.

    Article  Google Scholar 

  • APHA. (1995). Standard methods for the examination of water and wastewater (9th ed.). Washington, DC: American Public Health Association.

    Google Scholar 

  • Badrakh, A., Chultemdorji, T., Hagan, R., Govind, S., Tserendorj, T., Vanya, D., et al. (2008). A study of the quality and hygienic conditions of spring water in Mongolia. Journal of Water and Health, 6(1), 141–148. https://doi.org/10.2166/wh.2007.017.

    Article  CAS  Google Scholar 

  • Bernal, C. B., Vazquez, G., Quintal, I. B., & Bussy, A. L. (2008). Microalgal dynamics in batch reactors for municipal wastewater treatment containing dairy sewage water. Water, Air, and Soil pollution, 190, 259–270. https://doi.org/10.1007/s11270-007-9598-3.

    Article  CAS  Google Scholar 

  • Brandao, I. L. S., Mannaerts, C. M., & Saraiva, A. C. F. (2017). Seasonal variation of phytoplankton indicates small impacts of anthropic activities in a Brazilian Amazonian reserve. Ecohydrology & Hydrobiology. https://doi.org/10.1016/j.ecohyd.2017.04.001.

    Article  Google Scholar 

  • Buzancic, M., Gladan, Z. N., Marasovic, I., Kuspilic, G., & Grbec, B. (2016). Eutrophication influence on phytoplankton community composition in three bays on the eastern Adriatic coast. Oceanologia, 58, 302–316. https://doi.org/10.1016/j.oceano.2016.05.003.

    Article  Google Scholar 

  • Buzzi, F. (2002). Phytoplankton assemblages in two sub-basins of Lake Como. Journal of Limnology, 61(1), 117–128. https://doi.org/10.4081/jlimnol.2002.117.

    Article  Google Scholar 

  • CED. (2003). Survey and inventory of wetlands of Kerala for conservation and sustainable management of resources. Project Report, Kerala Forest Department, Thiruvananthapuram, Kerala.

  • Celekli, A., & Kulkoyluoglu, O. (2007). On the relationship between ecology and phytoplankton composition in a karstic spring (Cepni, Bolu). Ecological Indicators, 7, 497–503. https://doi.org/10.1016/j.ecolind.2006.02.006.

    Article  Google Scholar 

  • Celekli, A., Ozturk, B., & Kapi, M. (2014). Relationship between phytoplankton composition and environmental variables in an artificial pond. Algal Research, 5(1), 37–41. https://doi.org/10.1016/j.algal.2014.05.002.

    Article  Google Scholar 

  • Central Pollution Control Board (CPCB). (2017). Permissible limit for the discharge of industrial effluents (inland water surface). New Delhi: Government of India.

    Google Scholar 

  • Cetin, A. K., & Sen, B. (2004). Seasonal distribution of phytoplankton in Orduzu Dam Lake (Malatya, Turkey). Turkish Journal of Botany, 28, 279–285.

    Google Scholar 

  • Chandrashekar, J. S., Babu, K. L., & Somashekar, R. K. (2003). Impact of urbanization on Bellandur Lake, Bangalore—a case study. Journal of Environmental Biology, 24(3), 223–227.

    CAS  Google Scholar 

  • Chang, H. (2005). Spatial and temporal variations of water quality in the Han river and its tributaries, Seoul, Korea, 1993–2002. Water, Air, and Soil pollution, 161(1–4), 267–284. https://doi.org/10.1007/s11270-005-4286-7.

    Article  CAS  Google Scholar 

  • Chaudhary, R., & Pillai, R. S. (2009). Algal biodiversity and related physico-chemical parameters in Sasthamcottah Lake, Kerala (India). Journal of Environmental Research and Development, 3(3), 790–795.

    CAS  Google Scholar 

  • Chia, M. A., Bako, S. P., Alonge, S. O., & Adamu, A. K. (2011). Green algal interactions with physicochemical parameters of some manmade ponds in Zaria, northern Nigeria. Revista Brasileira de Botânica, 34(3), 285–295. https://doi.org/10.1590/S0100-84042011000300004.

    Article  Google Scholar 

  • Chiu, S. Y., Kao, C. Y., Chen, T. Y., Chang, Y. B., Kuo, C. M., & Lin, C. S. (2015). Cultivation of microalgal Chlorella for biomass and lipid production using wastewater as nutrient resource. Bioresource Technology, 184(March), 179–189. https://doi.org/10.1016/j.biortech.2014.11.080.

    Article  CAS  Google Scholar 

  • Comin, F. A., Alonso, M., Lopez, P., & Comelles, M. (1983). Limnology of Gallocanta Lake, Aragon, northeastern Spain. Hydrobiologia, 105, 207–221.

    Article  CAS  Google Scholar 

  • Correll, D. L. (1999). Phosphorus: A rate limiting nutrient in surface waters. Poultry Science, 78, 674–682.

    Article  CAS  Google Scholar 

  • Davies, O. A., Abowei, J. F. N., & Tawari, C. C. (2009). Phytoplankton community of Elechi Creek, Niger Delta, Nigeria—A nutrient-polluted tropical creek. American Journal of Applied Sciences, 6, 1143–1152.

    Article  CAS  Google Scholar 

  • Dawes, C. J. (1981). Marine botany. New York: Wiley.

    Google Scholar 

  • De La Rey, P. A., Taylor, J. C., Laas, A., Van Rensburg, L., & Vosloo, A. (2004). Determining the possible application value of diatoms as indicators of general water quality: A comparison with SASS 5. Water SA, 30(3), 325–332. https://doi.org/10.4314/wsa.v30i3.5080.

    Article  Google Scholar 

  • Desikachary, T. V. (1959). Cyanophyta. New Delhi: Indian Council of Agriculture Research.

    Google Scholar 

  • Dey, H. S., Tayung, K., & Bastia, A. K. (2010). Occurrence of nitrogen-fixing cyanobacteria in local rice fields of Orissa, India. Ecoprint, 17, 77–85. https://doi.org/10.3126/eco.v17i0.4120.

    Article  Google Scholar 

  • Dugdale, R. C., Wilkerson, F. P., Hogue, V. E., & Marchi, A. (2007). The role of ammonium and nitrate in spring bloom development in San Francisco Bay. Estuarine, Coastal and Shelf Science, 73, 17–29. https://doi.org/10.1016/j.ecss.2006.12.008.

    Article  Google Scholar 

  • Eigemann, F., Mischke, U., Hupfer, M., Schaumburg, J., & Hilt, S. (2016). Biological indicators track differential responses of pelagic and littoral areas to nutrient load reductions in German lakes. Ecological Indicators, 61, 905–910. https://doi.org/10.1016/j.ecolind.2015.10.045.

    Article  CAS  Google Scholar 

  • Gatz, L. (2018). Freshwater harmful algal blooms: Causes, challenges, and policy considerations. Congressional Research Service (Vol. 6). https://fas.org/sgp/crs/misc/R44871.pdf. Accessed 1 Mar 2019.

  • George, B., Nirmal Kumar, J. I., & Kumar, R. N. (2012). Study on the influence of hydro-chemical parameters on phytoplankton distribution along Tapi estuarine area of Gulf of Khambhat, India. Egyptian Journal of Aquatic Research, 38, 157–170. https://doi.org/10.1016/j.ejar.2012.12.010.

    Article  Google Scholar 

  • Gharib, S. M., El-Sherif, Z. M., Abdel-Halim, A. M., & Radwan, A. A. (2011). Phytoplankton and environmental variables as a water quality indicator for the beaches at Matrouh, south-eastern Mediterranean Sea, Egypt: An assessment. Oceanologia, 53(3), 819–836. https://doi.org/10.5697/oc.53-3.819.

    Article  Google Scholar 

  • Guiry, M. D., & Guiry, G. M. (2017). AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. Retrieved July 25, 2017 from, http://www.algaebase.org.

  • Hodgkiss, I. J., & Lu, S. (2004). The effects of nutrients and their ratios on phytoplankton abundance in Junk Bay, Hong Kong. Hydrobiologia, 512, 215–229. https://doi.org/10.1023/B:HYDR.0000020330.37366.e5.

    Article  CAS  Google Scholar 

  • Huisman, J., Codd, G. A., Paerl, H. W., Ibelings, B. W., Verspagen, J. M. H., & Visser, P. M. (2018). Cyanobacterial blooms. Nature Reviews Microbiology, 16(8), 471–483. https://doi.org/10.1038/s41579-018-0040-1.

    Article  CAS  Google Scholar 

  • Hulyal, S. B., & Kaliwal, B. B. (2009). Dynamics of phytoplankton in relation to physico-chemical factors of Almatti reservoir of Bijapur District, Karnataka State. Environmental Monitoring and Assessment, 153, 45–59. https://doi.org/10.1007/s10661-008-0335-1.

    Article  CAS  Google Scholar 

  • Hutchinson, G. E. (1975). A treatise on limnology: Limnological botany (Vol. 3). New York: Wiley.

    Google Scholar 

  • Iqbal, F., Abdus Salam, M. A., Khan, B. A., Ahmad, S., Qamar, M., & Umer, K. (2004). Seasonal variations of physico-chemical characteristics of River Soan water at Dhoak Pathan Bridge (Chakwal), Pakistan. International Journal of Agriculture & Biology, 6, 89–92.

    Google Scholar 

  • John, D. M. (2011). The freshwater algal flora of the British Isles: An identification guide to freshwater and terrestrial algae. In D. M. John, B. A. Whitton, & A. J. Brook (Eds.), Aquatic conservation: Marine and freshwater ecosystems (2nd ed.). Cambridge: Cambridge University Press. https://doi.org/10.1002/aqc.579.

    Chapter  Google Scholar 

  • John, J., & Francis, M. S. (2012). Mapping microalgal resources of Idukki District, Kerala in Western Ghats, India. Acta Biologica Indica, 1(1), 91–97.

    Google Scholar 

  • Jyothi, K., Krishna Prasad, M., & Mohan Narasimha Rao, G. (2016). Algae in fresh water ecosystem. Phykos, 46(1), 25–31.

    Google Scholar 

  • Kaiser, H. F. (1960). The application of electronic computers to factor analysis. Educational and Psychological Measurement, XX(1), 141–151.

    Article  Google Scholar 

  • Kamat, S. V. (2000). Hydrobiological studies of two temple ponds in Ponda Taluk, Goa. Ecology and Environment Conservation, 6, 361–362.

    CAS  Google Scholar 

  • Kanninen, J., Kauppi, L., & Yrjana, E. (1982). The role of nitrogen as a growth limiting factor in the eutrophic Lake Vesijarvi, southern Finland. Hydrobiologia, 86, 81–85.

    Article  CAS  Google Scholar 

  • Kaul, V. (1977). Limnological survey of Kashmir lakes with special reference to trophic status and conservation. International Journal of Environmental Science, 3, 29–44.

    CAS  Google Scholar 

  • Kaul, V., Handoo, J. K., & Raina, R. (1980). Physicochemical characteristics of Nilnag—A high altitude forest lake in Kashmir- and its comparison with the Valley Lakes. Proceedings of The Indian National Science Academy, B46, 528–541.

    Google Scholar 

  • Kelly, W. R., Panno, S. V., & Hackley, K. (2012). The sources, distribution, and trends of chloride in the waters of Illinois (Vol. Bulletin B). Illinois: Illinois State Water Survey. http://hdl.handle.net/2142/90994. Accessed 2 Nov 2019.

  • Kennedy, T. A., Naeem, S., Howe, K. M., Knops, J. M. H., Tilamn, D., & Relch, P. (2002). Biodiversity as a barrier to ecological invasion. Nature, 417, 636–638.

    Article  CAS  Google Scholar 

  • Kokkal, K., Harinarayanan, P., & Sabu, K. K. (2007). Wetlands of Kerala. In M. Sengupta & R. Dalwani (Eds.), Proceedings of Taal 2007: The 12th world lake conference (pp. 1889–1893).

  • Kookal, S. K., Santhakumaran, P., & Ray, J. G. (2016). Experimental assessment of productivity, oil-yield and oil-profile of eight different common freshwater-blooming green algae of Kerala. Biocatalysis and Agricultural Biotechnology, 8, 270–277. https://doi.org/10.1016/j.bcab.2016.10.007.

    Article  Google Scholar 

  • Kosten, S., Huszar, V. L. M., Becares, E., Costa, L. S., Donk, E., Hansson, L.-A., et al. (2011). Warmer climates boost cyanobacterial dominance in shallow lakes. Global Change Biology, 18(1), 118–126. https://doi.org/10.1111/j.1365-2486.2011.02488.x.

    Article  Google Scholar 

  • Lawton, R. J., Mata, L., Nys, R. De, & Paul, N. A. (2013). Algal bioremediation of waste waters from land-based aquaculture using ulva: Selecting target species and strains. PLoS ONE, 8(10), 1–10. https://doi.org/10.1371/journal.pone.0077344.

    Article  CAS  Google Scholar 

  • Lopes, C. B., Lillebø, A. I., Dias, J. M., Pereira, E., Vale, C., & Duarte, A. C. (2007). Nutrient dynamics and seasonal succession of phytoplankton assemblages in a Southern European Estuary: Ria de Aveiro, Portugal. Estuarine, Coastal and Shelf Science, 71, 480–490. https://doi.org/10.1016/j.ecss.2006.09.015.

    Article  Google Scholar 

  • Lopez, C. B., Jewett, E. B., Dortch, Q., Walton, B. T., & Hudnell, H. K. (2008). Scientific assessment of marine harmful algal blooms. https://www.whoi.edu/fileserver.do?id=41023&pt=10&p=19132. Accessed 20 Feb 2019.

  • Malik, D. S., & Bharti, U. (2012). Status of plankton diversity and biological productivity of Sahastradhara stream at Uttarakhand, India. Journal of Applied and Natural Science, 4(1), 96–103.

    Article  Google Scholar 

  • Margalef, R. (1968). Perspectives in ecological theory. Chicago: The University of Chicago Press.

    Google Scholar 

  • Miranda, J., & Krishnakumar, G. (2015). Microalgal diversity in relation to the physicochemical parameters of some Industrial sites in Mangalore, South India. Environmental Monitoring and Assessment, 187, 1–25. https://doi.org/10.1007/s10661-015-4871-1.

    Article  CAS  Google Scholar 

  • Mishra, V. K., Upadhyaya, A. R., Pandey, S. K., & Tripathi, B. D. (2008). Heavy metal pollution induced due to coal mining effluent on surrounding aquatic ecosystem and its management through naturally occurring aquatic macrophytes. Bioresource Technology, 99, 930–936. https://doi.org/10.1016/j.biortech.2007.03.010.

    Article  CAS  Google Scholar 

  • Nair, B. N., Shobha, V., Paul, P. A., Miranda, P. I., & Suryanarayanan, H. (1986). Nature and distribution of the littoral Algae and Sea grasses of the South-west coast of India. Proceedings of The Indian National Science Academy, B52(6), 733–744.

    Google Scholar 

  • Nascimento, I. A., Marques, S. S. I., Cabanelas, I. T. D., Pereira, S. A., Druzian, J. I., de Souza, C. O., et al. (2013). Screening microalgae strains for biodiesel production: Lipid productivity and estimation of fuel quality based on fatty acids profiles as selective criteria. BioEnergy Research, 6(1), 1–13. https://doi.org/10.1007/s12155-012-9222-2.

    Article  CAS  Google Scholar 

  • Nassar, M. Z., El-Din, N. G. S., & Gharib, S. M. (2015). Phytoplankton variability in relation to some environmental factors in the eastern coast of Suez Gulf, Egypt. Environmental Monitoring and Assessment, 187(648), 1–18. https://doi.org/10.1007/s10661-015-4874-y.

    Article  CAS  Google Scholar 

  • Nasser, K. M. M., & Sureshkumar, S. (2013). Interaction between microalgal species richness and environmental variables in Peringalkuthu Reservoir, Western Ghats, Kerala. Journal of Environmental Biology, 34, 1001–1005.

    Google Scholar 

  • Ogawa, Y., & Ichimura, S. (1984). Phytoplankton diversity in inland waters of different trophic status. Japanese Journal of Limnology, 45(3), 173–177.

    Article  Google Scholar 

  • Paerl, H. W., Fulton, R. S., Moisander, P. H., & Dyble, J. (2001). Harmful freshwater algal blooms, with an emphasis on cyanobacteria. The Scientific World, 1, 76–113. https://doi.org/10.1100/tsw.2001.16.

    Article  CAS  Google Scholar 

  • Philipose, M. T. (1967). Chlorococcales-monograph on algae. New Delhi: Indian Council of Agriculture Research.

    Google Scholar 

  • Pielou, E. C. (1966). The measurement of diversity in different types of biological collections. Journal of Theoretical Biology, 13, 131–144.

    Article  Google Scholar 

  • Radojevic, M., & Bashkin, V. (2006). Practical environmental analysis (2nd ed.). Cambridge: Cambridge University Press.

    Google Scholar 

  • Rai, P. K., & Tripathi, B. D. (2006). Impact of thermal power effluent on aquatic environment. National Journal of Radiation Research, 3(4), 190–192.

    Google Scholar 

  • Ravindra, K., Meenakshi, A., Rani, M., & Kaushik, A. (2003). Seasonal variations in physico-chemical characteristics of River Yamuna in Haryana and its ecological best-designated use. Journal of Environmental Monitoring, 5, 419–426.

    Article  CAS  Google Scholar 

  • Ray, J. G., & Thomas, B. T. (2012). Ecology and diversity of green-algae of tropical Oxic Dystrustepts soils in relation to different soil parameters and vegetation. Research Journal of Soil Biology, 4(3), 42–68. https://doi.org/10.3923/rjsb.2012.42.68.

    Article  Google Scholar 

  • Redfield, A. C., Ketchum, B. H., & Richards, F. A. (1963). The influence of organisms on the composition of sea-water. In M. N. Hill (Ed.), The composition of seawater: Comparative and descriptive oceanography. The sea: Ideas and observations on progress in the study of the seas (2nd ed., pp. 26–77). New York: Wiley Interscience.

    Google Scholar 

  • Reynolds, C. (1984). Phytoplankton periodicity: The interactions of form, function and environmental variability. Freshwater Biology, 14, 111–142.

    Article  Google Scholar 

  • Reynolds, C. (2006). Ecology, biodiversity and conservation. In M. Usher, D. Saunders, R. Peet & A. Dobson (Eds.), Ecology of phytoplankton (Vol. 1). Cambridge: Cambridge University Press. https://doi.org/10.1017/cbo9781107415324.004.

    Chapter  Google Scholar 

  • Reynolds, C. S., Huszar, V., Kruk, C., Naselli-Flores, L., & Melo, S. (2002). Towards a functional classification of the freshwater phytoplankton. Journal of Plankton Research, 24(5), 417–428. https://doi.org/10.1093/plankt/24.5.417.

    Article  Google Scholar 

  • Roleda, M. Y., Cornwall, C. E., Feng, Y., McGraw, C. M., Smith, A. M., & Hurd, C. L. (2015). Effect of ocean acidification and pH fluctuations on the growth and development of coralline algal recruits, and an associated benthic algal assemblage. PLoS ONE, 10, 1–19. https://doi.org/10.1371/journal.pone.0140394.

    Article  CAS  Google Scholar 

  • Santhakumaran, P., Kookal, S. K., & Ray, J. G. (2018). Biomass yield and biochemical profile of fourteen species of fast-growing green algae from eutrophic bloomed freshwaters of Kerala, South India. Biomass and Bioenergy, 119, 155–165. https://doi.org/10.1016/j.biombioe.2018.09.021.

    Article  CAS  Google Scholar 

  • Sargaonkar, A., & Deshpande, V. (2003). Development of an Overall Water Quality Index (OWQI) for surface water in Indian context. Environmental Monitoring and Assessment, 89, 43–67.

    Article  CAS  Google Scholar 

  • Sarwar, S. G., & Majid, I. (1997). Abiotic features and diatom population of Wular Lake, Kashmir. Ecology Environment and Conservation, 3(3), 121–127.

    CAS  Google Scholar 

  • Shannon, C. E. (1948). A mathematical theory of communication. The Bell System Technical Journal, 27, 379–423. 623–656 (reprint).

  • Shanthala, M., Hosmani, S. P., & Hosetti, B. B. (2009). Diversity of phytoplanktons in a waste stabilization pond at Shimoga Town, Karnataka state, India. Environmental Monitoring and Assessment, 151, 437–443. https://doi.org/10.1007/s10661-008-0287-5.

    Article  CAS  Google Scholar 

  • Sharma, R. C., Singh, N., & Chauhan, A. (2016). The influence of physico-chemical parameters on phytoplankton distribution in a head water stream of Garhwal Himalayas: A case study. Egyptian Journal of Aquatic Research, 42, 11–21. https://doi.org/10.1016/j.ejar.2015.11.004.

    Article  Google Scholar 

  • Simpson, E. H. (1949). Measurement of diversity. Nature, 163(4148), 688. https://doi.org/10.1038/163688a0.

    Article  Google Scholar 

  • Singh, K. P., Malik, A., Mohan, D., & Sinha, S. (2004). Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India)—A case study. Water Research, 38, 3980–3992. https://doi.org/10.1016/j.watres.2004.06.011.

    Article  CAS  Google Scholar 

  • Smith, V. H. (1983). Low nitrogen to phosphorus ratios favor dominance by blue-green algae in lake phytoplankton. Science, 221, 669–671.

    Article  CAS  Google Scholar 

  • Taleb, A., Kandilian, R., Touchard, R., Montalescot, V., Rinaldi, T., Taha, S., et al. (2018). Screening of freshwater and seawater microalgae strains in fully controlled photobioreactors for biodiesel production. Bioresource Technology, 218, 480–490. https://doi.org/10.1016/j.biortech.2016.06.086.

    Article  CAS  Google Scholar 

  • Telesh, I. V. (2004). Plankton of the Baltic estuarine ecosystems with emphasis on Neva Estuary: A review of present knowledge and research perspectives. Marine Pollution Bulletin, 49, 206–219. https://doi.org/10.1016/j.marpolbul.2004.02.009.

    Article  CAS  Google Scholar 

  • Tharavathi, N. C., & Hosetti, B. B. (2003). Biodiversity of algae and protozoa in a natural waste stabilization pond: A field study. Journal of Environmental Biology, 24, 193–199.

    CAS  Google Scholar 

  • Tian, W., Zhang, H., Zhao, L., Zhang, F., & Huang, H. (2017). Phytoplankton diversity effects on community biomass and stability along nutrient gradients in a eutrophic lake. International Journal of Environmental Research and Public Health, 14(95), 1–15. https://doi.org/10.3390/ijerph14010095.

    Article  CAS  Google Scholar 

  • Trifonova, I. (1993). Seasonal succession of phytoplankton and its diversity in two highly eutrophic lakes with different conditions of stratification. Hydrobiologia, 249(1–3), 93–100. https://doi.org/10.1007/BF00008845.

    Article  Google Scholar 

  • Trivedy, R. K., & Goel, P. K. (1984). Chemical and biological methods for water pollution studies. Aligarh: Environmental Publications.

    Google Scholar 

  • Upadhyay, R., Pandey, A. K., Upadhyay, S. K., Bassin, J. K., & Misra, S. M. (2012). Limnochemistry and nutrient dynamics in Upper Lake, Bhopal, India. Environmental Monitoring and Assessment, 184, 7065–7077. https://doi.org/10.1007/s10661-011-2480-1.

    Article  CAS  Google Scholar 

  • Vajravelu, M., Martin, Y., Ayyappan, S., & Mayakrishnan, M. (2018). Seasonal influence of physico-chemical parameters on phytoplankton diversity, community structure and abundance at Parangipettai coastal waters, Bay of Bengal, South East Coast of India. Oceanologia, 60(2), 114–127. https://doi.org/10.1016/j.oceano.2017.08.003.

    Article  Google Scholar 

  • Vallina, S. M., Follows, M. J., Dutkiewicz, S., Montoya, J. M., Cermeno, P., & Loreau, M. (2014). Global relationship between phytoplankton diversity and productivity in the ocean. Nature Communications, 5, 1–10. https://doi.org/10.1038/ncomms5299.

    Article  CAS  Google Scholar 

  • van Geest, A. (2019). Digicodes: Digital image collection of desmids. Retrieved January 24, 2017 from, http://www.digicodes.info/index.html.

  • Vass, K. K. (1980). On the trophic status and conservation of Kashmir Lakes. Hydrobiologia, 68(1), 9–15.

    Article  Google Scholar 

  • Vijayan, D., & Ray, J. G. (2015). Green algae of a unique tropical wetland, Kuttanadu, Kerala, India, in relation to soil regions, seasons, and paddy growth stages. International Journal of Science, Environment and Technology, 4(3), 770–803.

    Google Scholar 

  • Warren, C. E. (1971). Biology and water pollution control. Philadelphia: Saunders.

    Google Scholar 

  • Wells, M. L., Potin, P., Craigie, J. S., Raven, J. A., Merchant, S. S., Helliwell, K. E., et al. (2017). Algae as nutritional and functional food sources: Revisiting our understanding. Journal of Applied Phycology, 29, 949–982. https://doi.org/10.1007/s10811-016-0974-5.

    Article  CAS  Google Scholar 

  • Whittaker, R. H. (1965). Dominance and diversity in land plant communities. Science, 147, 250–260.

    Article  CAS  Google Scholar 

  • Wilhm, J. L., & Dorris, G. T. (1968). Biological parameters for water quality criteria. BioScience, 18(6), 477–481.

    Article  Google Scholar 

  • WWAP. (2017). (United Nations World Water Assessment Programme).The United Nations World Water Development Report 2017. Paris: UNESCO.

    Google Scholar 

  • Yang, X., Wu, X., Hao, H., & He, Z. (2008). Mechanisms and assessment of water eutrophication. Journal of Zhejiang University Science B, 9(3), 197–209. https://doi.org/10.1631/jzus.B0710626.

    Article  CAS  Google Scholar 

  • Yuan, M., Zhang, C., Jiang, Z., Guo, S., & Sun, J. (2014). Seasonal variations in phytoplankton community structure in the Sanggou, Ailian, and Lidao Bays. Journal of Ocean University of China, 13(6), 1012–1024. https://doi.org/10.1007/s11802-014-2305-2.

    Article  CAS  Google Scholar 

  • Yun, Y. J., & An, K. G. (2016). Roles of N: P ratios on trophic structures and ecological stream health in lotic ecosystems. Water, 8(1), 1–19. https://doi.org/10.3390/w8010022.

    Article  CAS  Google Scholar 

  • Zaccaroni, A., & Scaravelli, D. (2008). Toxicity of fresh water algal toxins to humans and animal. In V. Evangelista, L. Barsanti, A. M. Frassanito, V. Passarelli, & P. Gualtieri (Eds.), Algal toxins: Nature, occurrence, effect and detection. NATO science for peace and security series A: Chemistry and biolog (pp. 1–46). Dordrecht: Springer. https://doi.org/10.1007/978-1-4020-8480-5.

    Chapter  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the ‘Kerala State Council for Science Technology and Environment’ (KSCSTE Order No. 229/2015/KSCSTE dated 23.06.2015) for the significant financial support received under the SRS Major Research Project scheme of the State Government of Kerala to carry out this research. The authors also gratefully acknowledge the ‘microscopic facility’ provided at DBT-MSUB laboratory facility in the School of Biosciences, Mahatma Gandhi University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph George Ray.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

Authors state that the research was conducted according to ethical standards.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 118 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ray, J.G., Santhakumaran, P. & Kookal, S. Phytoplankton communities of eutrophic freshwater bodies (Kerala, India) in relation to the physicochemical water quality parameters. Environ Dev Sustain 23, 259–290 (2021). https://doi.org/10.1007/s10668-019-00579-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-019-00579-y

Keywords

Navigation