Skip to main content

Advertisement

Log in

Landslide susceptibility and influencing factors analysis in Rwanda

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

Rwanda as a landlocked country has been recurrently facing tremendous and devastating landslides having serious impacts on the environment and socioeconomic development. Analyzing landslide susceptibility and its influencing factors could ease landslide disaster control and, hence, contributes to environmental sustainability. Unfortunately, detailed information on influencing factors per respective classes and their level of correlation to the probability of landslide occurrence have not been fully analyzed in Rwanda. The purpose of this study is to reveal the spatial correlation between landslide occurrence and different classes of influencing factors using the frequency ratio (FR) approach with geographical information system (GIS) and remote sensing techniques. Initially, a landslide inventory map was prepared using 423 landslide locations that were randomly split into 75% of training datasets (318 points) and 25% (105 points) to validate the model. A multicollinearity analysis was performed among ten influencing factors using the tolerance and variance inflation factor method. These factors include elevation, slope, aspect, distance to roads, distance to rivers, the normalized difference vegetation index, land use land cover, stream power index, rainfall and soil texture. The analysis revealed no multicollinearity among these factors, and therefore, all of them were suitable for modeling process. The FR model evaluated the relationship between landslide incidence and influencing factors in their respective classes and then generated the landslide susceptibility map using GIS which revealed the western, northern and some parts of southern province as the most susceptible areas owing to the slope, LCLU, rainfall and elevation as the main influencing factors. The generated susceptibility map was validated using the area under curve which portrayed 81.2% and 84.6% for success and prediction rate, respectively. To conclude, the results of this study are essential for future initiatives regarding landslide risk reduction toward sustainability in Rwanda. However, these can be broad and may reflect the most landslide influencing factors projected in other central-east African regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Source: Rwanda Population and Housing Census, 2012 (NISR)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahmed, B. (2015). Landslide susceptibility mapping using multi-criteria evaluation techniques in Chittagong Metropolitan Area Bangladesh. Landslides, 12(6), 1077–1095.

    Google Scholar 

  • Allison, P. D. (2012). Logistic regression using SAS: Theory and application. Cary: SAS Institute.

    Google Scholar 

  • Arabameri, A., Pradhan, B., Rezaei, K., Lee, S., & Sohrabi, M. (2019a). An ensemble model for landslide susceptibility mapping in a forested area. Geocarto International. https://doi.org/10.1080/10106049.2019.1585484.

    Article  Google Scholar 

  • Arabameri, A., Pradhan, B., Rezaei, K., Sohrabi, M., & Kalantari, Z. (2019b). GIS-based landslide susceptibility mapping using numerical risk factor bivariate model and its ensemble with linear multivariate regression and boosted regression tree algorithms. Journal of Mountain Science, 16(3), 595–618.

    Google Scholar 

  • Arabameri, A., Pradhan, B., Rezaei, K., Yamani, M., Pourghasemi, H. R., & Lombardo, L. (2018). Spatial modelling of gully erosion using evidential belief function, logistic regression, and a new ensemble of evidential belief function–logistic regression algorithm. Land Degradation and Development, 29(11), 4035–4049.

    Google Scholar 

  • Ardizzone, F., Basile, G., Cardinali, M., Casagli, N., Del Conte, S., Del Ventisette, C., et al. (2012). Landslide inventory map for the Briga and the Giampilieri catchments, NE Sicily Italy. Journal of Maps, 8(2), 176–180.

    Google Scholar 

  • Asumadu-Sarkodie, S., Rufangura, P., Jayaweera, M., & Owusu, P. A. (2015). Situational analysis of flood and drought in Rwanda. International Journal of Scientific and Engineering Research, 6(8), 960.

    Google Scholar 

  • Azhagusundari, B., & Thanamani, A. S. (2013). Feature selection based on information gain. International Journal of Innovative Technology and Exploring Engineering (IJITEE), 2(2), 18–21.

    Google Scholar 

  • Baas, S., Ramasamy, S., DePryck, J. D., & Battista, F. (2008). Disaster risk management systems analysis. Rome: FAO.

    Google Scholar 

  • Bizimana, H., & Sönmez, O. (2015). Landslide occurrences in the hilly areas of Rwanda, their causes and protection measures. Disaster Science and Engineering, 1(1), 1–7.

    Google Scholar 

  • Braun, A., Urquia, E. L. G., Lopez, R. M., & Yamagishi, H. (2019). Landslide susceptibility mapping in tegucigalpa, honduras, using data mining methods. In Paper read at IAEG/AEG annual meeting proceedings, San Francisco, California, 2018-Volume 1.

  • Broeckx, J., Vanmaercke, M., Duchateau, R., & Poesen, J. (2018). A data-based landslide susceptibility map of Africa. Earth-Science Reviews, 185, 102–121.

    Google Scholar 

  • Bui, D. T., Tuan, T. A., Klempe, H., Pradhan, B., & Revhaug, I. (2016). Spatial prediction models for shallow landslide hazards: A comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree. Landslides, 13(2), 361–378.

    Google Scholar 

  • Cao, C., Xu, P., Wang, Y., Chen, J., Zheng, L., & Niu, C. (2016). Flash flood hazard susceptibility mapping using frequency ratio and statistical index methods in coalmine subsidence areas. Sustainability, 8(9), 948.

    Google Scholar 

  • Cetin, M. (2015a). Determining the bioclimatic comfort in Kastamonu City. Environmental Monitoring and Assessment, 187(10), 640.

    Google Scholar 

  • Cetin, M. (2015b). Using GIS analysis to assess urban green space in terms of accessibility: case study in Kutahya. International Journal of Sustainable Development and World Ecology, 22(5), 420–424.

    Google Scholar 

  • Chen, W., Chai, H., Zhao, Z., Wang, Q., & Hong, H. (2016). Landslide susceptibility mapping based on GIS and support vector machine models for the Qianyang County China. Environmental Earth Sciences, 75(6), 474.

    Google Scholar 

  • Chen, Z., Liang, S., Ke, Y., Yang, Z., & Zhao, H. (2019a). Landslide susceptibility assessment using evidential belief function, certainty factor and frequency ratio model at Baxie River basin NW China. Geocarto International, 34(4), 348–367.

    Google Scholar 

  • Chen, W., Peng, J., Hong, H., Shahabi, H., Pradhan, B., Liu, J., et al. (2018a). Landslide susceptibility modelling using GIS-based machine learning techniques for Chongren County, Jiangxi Province, China. Science of the Total Environment, 626, 1121–1135.

    CAS  Google Scholar 

  • Chen, W., Pourghasemi, H. R., Kornejady, A., & Xie, X. (2019b). GIS-based landslide susceptibility evaluation using certainty factor and index of entropy ensembled with alternating decision tree models. In H. R. Pourghasemi & M. Rossi (Eds.), Natural hazards GIS-based spatial modeling using data mining techniques (pp. 225–251). Berlin: Springer.

    Google Scholar 

  • Chen, W., Pourghasemi, H. R., & Naghibi, S. A. (2017a). Prioritization of landslide conditioning factors and its spatial modeling in Shangnan County, China using GIS-based data mining algorithms. Bulletin of Engineering Geology and the Environment, 72, 1–19.

    Google Scholar 

  • Chen, W., Shahabi, H., Shirzadi, A., Li, T., Guo, C., Hong, H., et al. (2018b). A novel ensemble approach of bivariate statistical-based logistic model tree classifier for landslide susceptibility assessment. Geocarto International, 33(12), 1398–1420.

    Google Scholar 

  • Chen, W., Xie, X., Peng, J., Shahabi, H., Hong, H., Bui, D. T., et al. (2018c). GIS-based landslide susceptibility evaluation using a novel hybrid integration approach of bivariate statistical based random forest method. CATENA, 164, 135–149.

    Google Scholar 

  • Chen, W., Xie, X., Wang, J., Pradhan, B., Hong, H., Bui, D. T., et al. (2017b). A comparative study of logistic model tree, random forest, and classification and regression tree models for spatial prediction of landslide susceptibility. CATENA, 151, 147–160.

    Google Scholar 

  • Chen, W., Yan, X., Zhao, Z., Hong, H., Bui, D. T., & Pradhan, B. (2019c). Spatial prediction of landslide susceptibility using data mining-based kernel logistic regression, naive Bayes and RBFNetwork models for the Long County area (China). Bulletin of Engineering Geology and the Environment, 78(1), 247–266.

    Google Scholar 

  • Dahal, R. K., Hasegawa, S., Nonomura, A., Yamanaka, M., Masuda, T., & Nishino, K. (2008). GIS-based weights-of-evidence modelling of rainfall-induced landslides in small catchments for landslide susceptibility mapping. Environmental Geology, 54(2), 311–324.

    CAS  Google Scholar 

  • Dahigamuwa, T., Yu, Q., & Gunaratne, M. (2016). Feasibility study of land cover classification based on normalized difference vegetation index for landslide risk assessment. Geosciences, 6(4), 45.

    Google Scholar 

  • Danielson, T. (2013). Utilizing a high resolution digital elevation model (DEM) to develop a stream power index (SPI) for the gilmore creek Watershed in Winona County Minnesota. Papers in Resource Analysis, 15, 11.

    Google Scholar 

  • De La Ville, N., Diaz, A. C., & Ramirez, D. (2002). Remote sensing and GIS technologies as tools to support sustainable management of areas devastated by landslides. Environment, Development and Sustainability, 4(2), 221–229.

    Google Scholar 

  • Dormann, C. F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., et al. (2013). Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography, 36(1), 27–46.

    Google Scholar 

  • Dou, J., Bui, D. T., Yunus, A. P., Jia, K., Song, X., Revhaug, I., et al. (2015). Optimization of causative factors for landslide susceptibility evaluation using remote sensing and GIS data in parts of Niigata Japan. PloS one, 10(7), e0133262.

    Google Scholar 

  • Ercanoglu, M., & Gokceoglu, C. (2002). Assessment of landslide susceptibility for a landslide-prone area (north of Yenice, NW Turkey) by fuzzy approach. Environmental Geology, 41(6), 720–730.

    Google Scholar 

  • Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., et al. (2015). The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Scientific Data, 2, 150066.

    Google Scholar 

  • Gan, F., He, B., & Wang, T. (2018). Water and soil loss from landslide deposits as a function of gravel content in the Wenchuan earthquake area, China, revealed by artificial rainfall simulations. PLoS ONE, 13(5), e0196657.

    Google Scholar 

  • Gayen, A., Saha, S., & Pourghasemi, H. R. (2019). Soil erosion assessment using RUSLE model and its validation by FR probability model. Geocarto International. https://doi.org/10.1080/10106049.2019.1581272.

    Article  Google Scholar 

  • Gholami, M., Ghachkanlu, E. N., Khosravi, K., & Pirasteh, S. (2019). Landslide prediction capability by comparison of frequency ratio, fuzzy gamma and landslide index method. Journal of Earth System Science, 128(2), 42.

    Google Scholar 

  • Guo, H. (2010). Understanding global natural disasters and the role of earth observation. International Journal of Digital Earth, 3(3), 221–230.

    Google Scholar 

  • Hasanat, M. H. A., Ramachandram, D., & Mandava, R. (2010). Bayesian belief network learning algorithms for modeling contextual relationships in natural imagery: a comparative study. Artificial Intelligence Review, 34(4), 291–308.

    Google Scholar 

  • Hengl, T., Heuvelink, G. B., Kempen, B., Leenaars, J. G., Walsh, M. G., Shepherd, K. D., et al. (2015). Mapping soil properties of Africa at 250 m resolution: Random forests significantly improve current predictions. PLoS ONE, 10(6), e0125814.

    Google Scholar 

  • Hong, H., Liu, J., Zhu, A.-X., Shahabi, H., Pham, B. T., Chen, W., et al. (2017). A novel hybrid integration model using support vector machines and random subspace for weather-triggered landslide susceptibility assessment in the Wuning area (China). Environmental Earth Sciences, 76(19), 652.

    Google Scholar 

  • Huggins, C. (2009). Agricultural policies and local grievances in rural Rwanda. Peace Review, 21(3), 296–303.

    Google Scholar 

  • Intarawichian, N., & Dasananda, S. (2011). Frequency ratio model based landslide susceptibility mapping in lower Mae Chaem watershed Northern Thailand. Environmental Earth Sciences, 64(8), 2271–2285.

    Google Scholar 

  • Jaafari, A., Najafi, A., Pourghasemi, H., Rezaeian, J., & Sattarian, A. (2014). GIS-based frequency ratio and index of entropy models for landslide susceptibility assessment in the Caspian forest, northern Iran. International Journal of Environmental Science and Technology, 11(4), 909–926.

    Google Scholar 

  • Jebur, M. N., Pradhan, B., & Tehrany, M. S. (2014). Optimization of landslide conditioning factors using very high-resolution airborne laser scanning (LiDAR) data at catchment scale. Remote Sensing of Environment, 152, 150–165.

    Google Scholar 

  • Jha, A. K., Bloch, R., & Lamond, J. (2012). Cities and flooding: A guide to integrated urban flood risk management for the 21st century. Washington: The World Bank.

    Google Scholar 

  • Jiang, W., Rao, P., Cao, R., Tang, Z., & Chen, K. (2017). Comparative evaluation of geological disaster susceptibility using multi-regression methods and spatial accuracy validation. Journal of Geographical Sciences, 27(4), 439–462.

    Google Scholar 

  • Kadam, A., Karnewar, A. S., Umrikar, B., & Sankhua, R. (2018). Hydrological response-based watershed prioritization in semiarid, basaltic region of western India using frequency ratio, fuzzy logic and AHP method. Environment, Development and Sustainability, 21, 1–25.

    Google Scholar 

  • Kalantar, B., Ueda, N., Al-Najjar, H. A. H., Idrees, M. O., Motevalli, A., & Pradhan, B. (2018). Landslide susceptibility mapping at Dodangeh watershed, Iran using LR and ANN models in GIS. Paper read at Earth Resources and Environmental Remote Sensing/GIS Applications IX.

  • Karamage, F., Zhang, C., Fang, X., Liu, T., Ndayisaba, F., Nahayo, L., et al. (2017). Modeling rainfall-runoff response to land use and land cover change in Rwanda (1990–2016). Water, 9(2), 147.

    Google Scholar 

  • Karamage, F., Zhang, C., Ndayisaba, F., Shao, H., Kayiranga, A., Fang, X., et al. (2016). Extent of cropland and related soil erosion risk in Rwanda. Sustainability, 8(7), 609.

    Google Scholar 

  • Kayastha, P. (2015). Landslide susceptibility mapping and factor effect analysis using frequency ratio in a catchment scale: A case study from Garuwa sub-basin East Nepal. Arabian Journal of Geosciences, 8(10), 8601–8613.

    Google Scholar 

  • Kayastha, P., Dhital, M. R., & De Smedt, F. (2012). Landslide susceptibility mapping using the weight of evidence method in the Tinau watershed Nepal. Natural hazards, 63(2), 479–498.

    Google Scholar 

  • Kia, M. B., Pirasteh, S., Pradhan, B., Mahmud, A. R., Sulaiman, W. N. A., & Moradi, A. (2012). An artificial neural network model for flood simulation using GIS: Johor River Basin Malaysia. Environmental Earth Sciences, 67(1), 251–264.

    Google Scholar 

  • Kim, J.-C., Lee, S., Jung, H.-S., & Lee, S. (2018a). Landslide susceptibility mapping using random forest and boosted tree models in Pyeong-Chang Korea. Geocarto international, 33(9), 1000–1015.

    Google Scholar 

  • Kim, J.-M., Son, K., & Kim, Y.-J. (2018b). Assessing regional typhoon risk of disaster management by clustering typhoon paths. Environment, Development and Sustainability, 21, 1–14.

    Google Scholar 

  • Kumar, R., & Anbalagan, R. (2016). Landslide susceptibility mapping using analytical hierarchy process (AHP) in Tehri reservoir rim region, Uttarakhand. Journal of the Geological Society of India, 87(3), 271–286.

    Google Scholar 

  • Kurban, A., Strobl, J., Amanambu, A., Khan, G., & Valentine, M. (2018). A bivariate statistical technique with knowledge-based analytical hierarchy process for landslide susceptibility assessment in Naryn River Basin Kyrgyzstan. International Journal of Geoinformatics, 14(1), 65.

    Google Scholar 

  • Kutlug Sahin, E., Ipbuker, C., & Kavzoglu, T. (2017). Investigation of automatic feature weighting methods (Fisher, Chi square and Relief-F) for landslide susceptibility mapping. Geocarto International, 32(9), 956–977.

    Google Scholar 

  • Li, L., Lan, H., Guo, C., Zhang, Y., Li, Q., & Wu, Y. (2017). A modified frequency ratio method for landslide susceptibility assessment. Landslides, 14(2), 727–741.

    Google Scholar 

  • Mandal, S., & Mondal, S. (2019). Frequency ratio (FR) model and modified information value (MIV) model in landslide susceptibility assessment and prediction. In Statistical approaches for landslide susceptibility assessment and prediction. Cham: Springer.

  • Menard, S. (1995). Applied logistic regression analysis. Thousand Oaks: Sage University Series.

    Google Scholar 

  • Meten, M., Bhandary, N. P., & Yatabe, R. (2015). GIS-based frequency ratio and logistic regression modelling for landslide susceptibility mapping of Debre Sina area in central Ethiopia. Journal of Mountain Science, 12(6), 1355–1372.

    Google Scholar 

  • MIDIMAR. (2012). Disaster high risk zones on floods and landslides. Kigali: MIDIMAR.

    Google Scholar 

  • MIDIMAR. (2013). National disaster risk management plan.

  • MIDIMAR. (2018). The national risk atlas of Rwanda (pp. 44–45). Kigal.

  • Mind’je, R., Li, L., Amanambu, A. C., Nahayo, L., Nsengiyumva, J. B., Gasirabo, A., & Mindje, M. (2019). Flood susceptibility modeling and hazard perception in Rwanda. International Journal of Disaster Risk Reduction. https://doi.org/10.1016/j.ijdrr.2019.101211.

    Article  Google Scholar 

  • Muhire, I., Ahmed, F., & MMM, A. E. (2015). Spatio-temporal variations of rainfall erosivity in Rwanda. Journal of Soil Science and Environmental Management, 6(4), 72–83.

    Google Scholar 

  • Nahayo, L., Kalisa, E., Maniragaba, A., & Nshimiyimana, F. X. (2019a). Comparison of analytical hierarchy process and certain factor models in landslide susceptibility mapping in Rwanda. Modeling Earth Systems and Environment, 5, 1–11.

    Google Scholar 

  • Nahayo, L., Mupenzi, C., Habiyaremye, G., Kalisa, E., Udahogora, M., Nzabarinda, V., & Li, L. (2019b). Landslides hazard mapping in Rwanda using bivariate statistical index method. Environmental Engineering Science. https://doi.org/10.1089/ees.2018.0493.

    Article  Google Scholar 

  • Nahayo, L., Ndayisaba, F., Karamage, F., Nsengiyumva, J. B., Kalisa, E., Mind’je, R., et al. (2019c). Estimating landslides vulnerability in Rwanda using analytic hierarchy process and geographic information system. Integrated Environmental Assessment and Management, 15, 364–373.

    Google Scholar 

  • Ndayisaba, F., Guo, H., Bao, A., Guo, H., Karamage, F., & Kayiranga, A. (2016). Understanding the spatial temporal vegetation dynamics in Rwanda. Remote Sensing, 8(2), 129.

    Google Scholar 

  • Nizeyimana, E. (1997). A toposequence of soils derived from volcanic materials in Rwanda: morphological, chemical, and physical properties. Soil Science, 162(5), 350–360.

    CAS  Google Scholar 

  • Nsengiyumva, J. B., Luo, G., Hakorimana, E., Mind’je, R., Gasirabo,A., & Mukanyandwi, V. (2019). Comparative analysis of deterministic and semiquantitative approaches for shallow landslide risk modeling in Rwanda. Risk Analysis.

  • Nsengiyumva, J. B., Luo, G., Nahayo, L., Huang, X., & Cai, P. (2018). Landslide susceptibility assessment using spatial multi-criteria evaluation model in Rwanda. International Journal of Environmental Research and Public Health, 15(2), 243.

    Google Scholar 

  • Ntwali, D., Ogwang, B. A., & Ongoma, V. (2016). The impacts of topography on spatial and temporal rainfall distribution over Rwanda based on WRF model. Atmospheric and Climate Sciences, 6(02), 145.

    Google Scholar 

  • Nyesheja, E. M., Chen, X., El-Tantawi, A. M., Karamage, F., Mupenzi, C., & Nsengiyumva, J. B. (2018). Soil erosion assessment using RUSLE model in the Congo Nile Ridge region of Rwanda. Physical Geography, 40, 1–22.

    Google Scholar 

  • Obarein, O. A., & Amanambu, A. C. (2019). Rainfall timing: Variation, characteristics, coherence, and interrelationships in Nigeria. Theoretical and Applied Climatology, 137, 1–15.

    Google Scholar 

  • Oliveira, A., Bateira, C., Fernandes, J., Faria, A., & Gonçalves, J. (2018). Influence of digital elevation MODELS ON landslide susceptibility with logistic regression model. Revista do Departamento de Geografia, 36, 33–47.

    Google Scholar 

  • Park, S., & Kim, J. (2019). Landslide susceptibility mapping based on random Forest and boosted regression tree models, and a comparison of their performance. Applied Sciences, 9(5), 942.

    Google Scholar 

  • Pawluszek, K., & Borkowski, A. (2017). Impact of DEM-derived factors and analytical hierarchy process on landslide susceptibility mapping in the region of Rożnów Lake Poland. Natural Hazards, 86(2), 919–952.

    Google Scholar 

  • Petrea, D., Bilașco, Ș., Roșca, S., Vescan, I., & Fodorean, I. (2014). The determination of the landslide occurrence probability by GIS spatial analysis of the land morphometric characteristics (case study: the Transylvanian Plateau). Carpathian Journal of Earth and Environmental Sciences, 9(2), 91–102.

    Google Scholar 

  • Piller, A. N. (2016). Precipitation Intensity Required for Landslide Initiation in Rwanda.

  • Pourghasemi, H., Pradhan, B., Gokceoglu, C., & Moezzi, K. D. (2012). Landslide susceptibility mapping using a spatial multi criteria evaluation model at Haraz Watershed, Iran. In Terrigenous mass movements: Springer, Berlin, 23–49.

  • Pradhan, B. (2010). Flood susceptible mapping and risk area delineation using logistic regression, GIS and remote sensing. Journal of Spatial Hydrology 9 (2).

  • Pradhan, B., & Lee, S. (2010). Delineation of landslide hazard areas on Penang Island, Malaysia, by using frequency ratio, logistic regression, and artificial neural network models. Environmental Earth Sciences, 60(5), 1037–1054.

    Google Scholar 

  • Pritchard, M. F. (2013). Land, power and peace: Tenure formalization, agricultural reform, and livelihood insecurity in rural Rwanda. Land Use Policy, 30(1), 186–196.

    Google Scholar 

  • Raja, N. B., Çiçek, I., Türkoğlu, N., Aydin, O., & Kawasaki, A. (2017). Landslide susceptibility mapping of the Sera River Basin using logistic regression model. Natural Hazards, 85(3), 1323–1346.

    Google Scholar 

  • Regmi, A. D., Devkota, K. C., Yoshida, K., Pradhan, B., Pourghasemi, H. R., Kumamoto, T., et al. (2014). Application of frequency ratio, statistical index, and weights-of-evidence models and their comparison in landslide susceptibility mapping in Central Nepal Himalaya. Arabian Journal of Geosciences, 7(2), 725–742.

    Google Scholar 

  • Reichenbach, P., Mondini, A., & Rossi, M. (2014). The influence of land use change on landslide susceptibility zonation: the Briga catchment test site (Messina, Italy). Environmental Management, 54(6), 1372–1384.

    CAS  Google Scholar 

  • REMA. (2011). Rwanda Atlas of our changing environment.

  • Restrepo, C., & Alvarez, N. (2006). Landslides and their contribution to land-cover change in the mountains of Mexico and Central America 1. Biotropica, 38(4), 446–457.

    Google Scholar 

  • Roback, K., Clark, M. K., West, A. J., Zekkos, D., Li, G., Gallen, S. F., et al. (2018). The size, distribution, and mobility of landslides caused by the 2015 Mw7. 8 Gorkha earthquake Nepal. Geomorphology, 301, 121–138.

    Google Scholar 

  • Romer, C., & Ferentinou, M. (2016). Shallow landslide susceptibility assessment in a semiarid environment—a quaternary catchment of KwaZulu-Natal, South Africa. Engineering Geology, 201, 29–44.

    Google Scholar 

  • Rosi, A., Segoni, S., Catani, F., & Casagli, N. (2012). Statistical and environmental analyses for the definition of a regional rainfall threshold system for landslide triggering in Tuscany (Italy). Journal of Geographical Sciences, 22(4), 617–629.

    Google Scholar 

  • Rwandan Red Cross. (2018). 18 dead after massive landslide in Rwanda.

  • Rwanga, S. S., & Ndambuki, J. (2017). Accuracy assessment of land use/land cover classification using remote sensing and GIS. International Journal of Geoscience, 8(4), 611–622.

    Google Scholar 

  • Salvati, P., Petrucci, O., Rossi, M., Bianchi, C., Pasqua, A. A., & Guzzetti, F. (2018). Gender, age and circumstances analysis of flood and landslide fatalities in Italy. Science of the Total Environment, 610, 867–879.

    Google Scholar 

  • Samanta, R. K., Bhunia, G. S., Shit, P. K., & Pourghasemi, H. R. (2018). Flood susceptibility mapping using geospatial frequency ratio technique: A case study of Subarnarekha River Basin India. Modeling Earth Systems and Environment, 4(1), 395–408.

    Google Scholar 

  • Sambasivarao, K. V. (2015). Quantifying the role of vegetation in slope stability.

  • Samia, J., Temme, A., Bregt, A., Wallinga, J., Guzzetti, F., Ardizzone, F., et al. (2017). Do landslides follow landslides? Insights in path dependency from a multi-temporal landslide inventory. Landslides, 14(2), 547–558.

    Google Scholar 

  • Schwarz, M., Preti, F., Giadrossich, F., Lehmann, P., & Or, D. (2010). Quantifying the role of vegetation in slope stability: a case study in Tuscany (Italy). Ecological Engineering, 36(3), 285–291.

    Google Scholar 

  • Shafizadeh-Moghadam, H., Valavi, R., Shahabi, H., Chapi, K., & Shirzadi, A. (2018). Novel forecasting approaches using combination of machine learning and statistical models for flood susceptibility mapping. Journal of Environmental Management, 217, 1–11.

    Google Scholar 

  • Shahabi, H., Hashim, M., & Ahmad, B. B. (2015). Remote sensing and GIS-based landslide susceptibility mapping using frequency ratio, logistic regression, and fuzzy logic methods at the central Zab basin Iran. Environmental Earth Sciences, 73(12), 8647–8668.

    Google Scholar 

  • Siahkamari, S., Haghizadeh, A., Zeinivand, H., Tahmasebipour, N., & Rahmati, O. (2018). Spatial prediction of flood-susceptible areas using frequency ratio and maximum entropy models. Geocarto International, 33(9), 927–941.

    Google Scholar 

  • Stanley, T., & Kirschbaum, D. B. (2017). A heuristic approach to global landslide susceptibility mapping. Natural Hazards, 87(1), 145–164.

    Google Scholar 

  • Tehrany, M. S., Pradhan, B., & Jebur, M. N. (2014). Flood susceptibility mapping using a novel ensemble weights-of-evidence and support vector machine models in GIS. Journal of Hydrology, 512, 332–343.

    Google Scholar 

  • Tsangaratos, P., & Ilia, I. (2016). Comparison of a logistic regression and Naïve Bayes classifier in landslide susceptibility assessments: The influence of models complexity and training dataset size. Catena, 145, 164–179.

    Google Scholar 

  • UNISDR. (2015). United National International Strategy for Disaster Risk Reduction, Disaster in Numbers.

  • Walker, L. R., & Shiels, A. B. (2013). Physical causes and consequences for Landslide Ecology.

  • Wang, Q., Li, W., Yan, S., Wu, Y., & Pei, Y. (2016). GIS based frequency ratio and index of entropy models to landslide susceptibility mapping (Daguan, China). Environmental Earth Sciences, 75(9), 780.

    Google Scholar 

  • Xu, C., Xu, X., Dai, F., Xiao, J., Tan, X., & Yuan, R. (2012). Landslide hazard mapping using GIS and weight of evidence model in Qingshui river watershed of 2008 Wenchuan earthquake struck region. Journal of Earth Science, 23(1), 97–120.

    Google Scholar 

  • Yan, F., Zhang, Q., Ye, S., & Ren, B. (2018). A novel hybrid approach for landslide susceptibility mapping integrating analytical hierarchy process and normalized frequency ratio methods with the cloud model. Geomorphology, 327, 170–187.

    Google Scholar 

  • Yilmaz, I., & Ercanoglu, M. (2019). Landslide inventory, sampling and effect of sampling strategies on landslide susceptibility/hazard modelling at a glance. In H. Pourghasemi & M. Rossi (Eds.), Natural hazards GIS-based spatial modeling using data mining techniques. Cham: Springer.

    Google Scholar 

  • Zaibon, S., Anderson, S. H., Thompson, A. L., Kitchen, N. R., Gantzer, C. J., & Haruna, S. I. (2017). Soil water infiltration affected by topsoil thickness in row crop and switchgrass production systems. Geoderma, 286, 46–53.

    Google Scholar 

Download references

Acknowledgements

Authors express their sincere gratitude for the research funding provided by the Chinese Academy of Science (UCAS) to fully complete this article. The authors are also thankful to the Ministry of Emergency Management in Rwanda for the provision of data and information, and the National Engineering Laboratory for Integrated Aero-Space-Ground-Ocean Big Data Application Technology of Northwestern Polytechnical University for its remarkable assistance in the data collection and processing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lanhai Li.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mind’je, R., Li, L., Nsengiyumva, J.B. et al. Landslide susceptibility and influencing factors analysis in Rwanda. Environ Dev Sustain 22, 7985–8012 (2020). https://doi.org/10.1007/s10668-019-00557-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-019-00557-4

Keywords

Navigation