Skip to main content
Log in

Real-time monitoring of water requirement in protected farms by using polynomial neural networks and image processing

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

The monitoring of water requirement in irrigation areas is mostly performed by on-farm methods like utilization of soil probes, tensiometers, or neutron probes. The probes are placed into the soil collected from different depths of the root zone of the crop. But such procedures are found to be time-consuming. As a result, non-portable capacitance-based probes were nowadays utilized for monitoring of soil moisture. However, the sensor-based non-portable system is expensive and out of reach of ordinary farmers. But an absence of on-time monitoring of soil moisture in the root zone of the soil often results in crop failure and incurs a substantial loss on the cultivators. In the present investigation, a real-time inexpensive water monitoring system was proposed to monitor soil moisture in the root zone of a crop such that both time and expenditure can be reduced. The present study is an attempt to develop a real-time monitoring process for crop water requirement (CWR) in protected farm irrigation systems as a function of the significant parameters such as soil porosity (SP), water availability, crop biomass equivalent (CBE), frequency of nutrient application, frequency of irrigation, and CWR. A systematic literature review was performed to identify parameters for CWR, which were then selected by a relevant group of experts on the field. A two-step methodology was followed to develop a function that can automatically estimate water requirement in the root zone of the crop. In the first step, a new probability optimization technique (POT) was proposed for the identification of the priority value of the selected parameters to generate an ideal scenario. In the second step, the index, developed from the parameters and respective priorities selected in the first step, was predicted recurring to polynomial neural network models. The implementation of the nonlinear transfer function in the development of the neural network framework ensures generation of a platform-independent model, which can be embedded to monitor watering requirement for crops cultivated in a protected farm concept. The data of SP and CBE were retrieved from two separate indices (index of soil porosity and biomass index) calculated from images captured from the root and surface areas of the crops. Here, the POT method was used followed by the z score of priority function of the selected parameters estimated by polynomial networks and was fed for the calculation of the water requirement index (WRI). The normalized relative difference of the WRI of two consecutive days provides the information about the necessity of watering and accordingly, the crops in the system are irrigated. The results from the decision-making method indicated that the most significant parameter among the compared factors is CWR. The peak pixel value of each column of the image, for retrieving information from captured images and to identify soil porosity and biomass, was found to be the most contributing factor. The polynomial neural network (PNN) model trained with the information from POT method was found to be the best predictive variant among all the considered configuration of the model having a mean absolute accuracy of 99.08% during the testing phase of the PNN model. This real-time system, when implemented in a real-life scenario, can conserve both water and energy expended in running the watering networks of protected farms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998a). Crop evapotranspiration-guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. FAO, Rome, 300(9), D05109.

    Google Scholar 

  • Allen, Richard G., Pereira, Luis S., Raes, Dirk, & Smith, Martin. (1998b). Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. FAO, Rome, 300(9), D05109.

    Google Scholar 

  • Anonymous. (2013a). Renewable energy resources. 63 Southshire Drive, Bennington, United States. http://www.rer-biomass.com/grass-biomass/what-is-crop-biomass/. Accessed November 20, 2016.

  • Anonymous (2013b). What is a CCD? Overview. Spectral Instruments, Inc, 420 N. Bonita Ave. Tucson, AZ 85745 USA. http://www.specinst.com/What_Is_A_CCD.html. Accessed November 20, 2016.

  • Barron, R. L., Cellucci, R. L., Jordan, P. R., Beam, N. E., Hess, P., & Barron, A. R. (1990). Applications of polynomial neural networks to FDIE and reconfigurable flight control. In Proceedings of the IEEE national on aerospace and electronics conference, 1990. NAECON 1990 (pp. 507–519). IEEE.

  • Brouwer, C., &Heibloem, M. (1986). Irrigation water management: Irrigation water needs. Training Manual, 3. FAO. http://www.fao.org/docrep/s2022e/s2022e07.htm Accessed November 20, 2016.

  • David P. K. (2014). Different soils and how they help plants grow, ecosystem restoration, analytical methods, tech guide, physical properties: porosity, Montana State University Bozeman. http://ecorestoration.montana.edu/mineland/guide/analytical/physical/porosity.htm. Accessed November 20, 2016.

  • De, P., & Majumder, M. (2017). Monitoring water input quality: Early screening and system support through the application of an adapted multiple criteria decision-making method. Desalination and Water Treatment, 82, 44–56.

    Article  CAS  Google Scholar 

  • Dursun, M., & Ozden, S. (2011). A wireless application of drip irrigation automation supported by soil moisture sensors. Scientific Research and Essays, 6(7), 1573–1582.

    Google Scholar 

  • Easterling, D. R., Evans, J. L., Groisman, P. Y., Karl, T. R., Kunkel, K. E., & Ambenje, P. (2000). Observed variability and trends in extreme climate events: a brief review. Bulletin of the American Meteorological Society, 81(3), 417–425.

    Article  Google Scholar 

  • Garel, E. (2017).Collection and dissemination of data from environmental monitoring systems in estuaries. In Experiment@ International Conference (exp. at’17) (4th ed., pp. 61–64). IEEE.

  • Gebre, S. L., & Getahun, Y. S. (2016). Analysis of climate variability and drought frequency events on Limpopo River Basin, South Africa. Hydrology Current Research, 7, 249. https://doi.org/10.4172/2157-7587.1000249.

    Article  Google Scholar 

  • Ghazali, R., Hussain, A., & El-Deredy, W. (2006). Application of ridge polynomial neural networks to financial time series prediction. In International joint conference on neural networks, 2006, IJCNN’06 (pp. 913–920). IEEE.

  • Ghazali, R., Hussain, A. J., & Salleh, M. M. (2008). Application of polynomial neural networks to exchange rate forecasting. In 8th international conference on intelligent systems design and applications, 2008 ISDA’08 (Vol. 2, pp. 90–95). IEEE.

  • Haddeland, I., Lettenmaier, D. P., & Skaugen, T. (2006). Effects of irrigation on the water and energy balances of the Colorado and Mekong river basins. Journal of Hydrology, 324(1), 210–223.

    Article  Google Scholar 

  • Hanks, R. J. (1983). Yield and water-use relationships: An overview. In Limitations to efficient water use in crop production, limitationstoef (pp. 393–411).

  • Harpham, C., Dawson, C. W., & Brown, M. R. (2004). A review of genetic algorithms applied to training radial basis function networks. Neural Computing and Applications, 13(3), 193–201.

    Article  Google Scholar 

  • Hassan-Esfahani, L., Ebtehaj, A. M., Torres-Rua, A., & McKee, M. (2017). Spatial scale gap filling using an unmanned aerial system: A statistical downscaling method for applications in precision agriculture. Sensors, 17(9), 2106.

    Article  Google Scholar 

  • Hochmuth, G. J. (1992). Fertilizer management for drip-irrigated vegetables in Florida. HortTechnology, 2(1), 27–32.

    Article  Google Scholar 

  • Kacira, M., & Ling, P. P. (2001). Design and development of an automated and Non–contact sensing system for continuous monitoring of plant health and growth. Transactions of the ASAE, 44(4), 989.

    Article  CAS  Google Scholar 

  • Lambin, E. F., & Meyfroidt, P. (2011). Global land use change, economic globalization, and the looming land scarcity. Proceedings of the National Academy of Sciences, 108(9), 3465–3472.

    Article  Google Scholar 

  • Lehner, B., Döll, P., Alcamo, J., Henrichs, T., & Kaspar, F. (2006). Estimating the impact of global change on flood and drought risks in Europe: A continental, integrated analysis. Climatic Change, 75(3), 273–299.

    Article  Google Scholar 

  • MAIB. (2015). Frequency of irrigation, water management including micro irrigation, Agriculture Information Bank (MAIB). http://agriinfo.in/default.aspx?page=topic&superid=1&topicid=29.

  • MDA. (2017). Irrigation management, conservation practices. Minnesota Conservation Funding Guide, Minnesota Department of Agriculture (MDA), Saint Paul, USA. http://www.mda.state.mn.us/protecting/conservation/practices/irrigation.aspx. Accessed November 20, 2017.

  • Meade, Maureen O., Guyatt, Gordon H., Cook, Richard J., Groll, Ryan, Kachura, John R., Wigg, Melanie, et al. (2001). Agreement between alternative classifications of acute respiratory distress syndrome. American Journal of Respiratory and Critical Care Medicine, 163(2), 490–493.

    Article  CAS  Google Scholar 

  • Mizoguchi, M., Mitsuishi, S., Ito, T., Oki, K., Ninomiya, S., Hirafuji, M., Fukatsu, T., Kiura, T., Tanaka, K., Toritani, H. and Hamada, H., (2008). Real-time monitoring of soil information in agricultural fields in Asia using Field server. In Proceedings of 1st global workshop on high resolution digital soil sensing and mapping (Vol. 2, pp. 19–24). http://www.iai.ga.a.u-tokyo.ac.jp/mizo/pocket/DSSM08/amizo@mail.ecc.u-tokyo.ac.jp_final_.pdf. Accessed November 20, 2016.

  • Mosavi, M. R. (2008). Recurrent polynomial neural networks for enhancing performance of GPS based line fault location. In 9th International conference on signal processing, 2008, ICSP. (pp. 1668–1672). IEEE.

  • Mosavi, M. R. (2009). Recurrent polynomial neural networks for enhancing performance of GPS in electric systems. Wireless Sensor Network, 1(02), 95.

    Article  Google Scholar 

  • Nagle, L. K. (2016). Protected Food Production: Applications and Modeling (Doctoral dissertation, The Pennsylvania State University).

  • Nimmo, J. R., & Hillel, D. (2004). Porosity and pore size distribution. Encyclopedia of Soils in the Environment, 3, 295–303.

    Google Scholar 

  • Raju, K. S., Kumar, D. N., & Duckstein, L. (2006). Artificial neural networks and multicriterion analysis for sustainable irrigation planning. Computers & Operations Research, 33(4), 1138–1153.

    Article  Google Scholar 

  • Rudolph-Mohr, N., Vontobel, P., & Oswald, S. E. (2014). A multi-imaging approach to study the root–soil interface. Annals of Botany, 114(8), 1779–1787.

    Article  CAS  Google Scholar 

  • Sheppard, J., & Hoyle, F. (2016). Water availability, fact sheets, soil quality Pty Ltd, The University of Western Australia. http://soilquality.org.au/factsheets/water-availability Accessed November 20, 2016.

  • SMART Fertilizer management (2008). Timing and frequency of fertilizer application. http://www.smart-fertilizer.com/articles/timing-fertilizer-application.

  • Sprenger, M., Tetzlaff, D., & Soulsby, C. (2017). Stable isotopes reveal evaporation dynamics at the soil-plant-atmosphere interface of the critical zone. Hydrology and Earth System Sciences Discussion. https://doi.org/10.5194/hess-2017-87 (In review).

  • Steduto, P., Hsiao, T. C., Fereres, E., & Raes, D. (2012). Crop yield response to water. Rome: FAO.

    Google Scholar 

  • Stephen, G. (2002). Best management practices for irrigating vegetables, extension specialist in vegetable crops, rutgers cooperative extension. New Jersey Agricultural Experiment Station, Rutgers, The State University of New Jersey.

  • Testezlaf, R., Zazueta, F. S., & Yeager, T. H. (1997). A real-time irrigation control system for greenhouses. Applied Engineering in Agriculture, 13(3), 329–332.

    Article  Google Scholar 

  • Tetko, I. V., Aksenova, T. I., Volkovich, V. V., Kasheva, T. N., Filipov, D. V., Welsh, W. J., et al. (2000). Polynomial neural network for linear and non-linear model selection in quantitative-structure activity relationship studies on the internet. SAR and QSAR in Environmental Research, 11(3–4), 263–280.

    Article  CAS  Google Scholar 

  • Tran, N. (2016). Irrigation scheduling based on cumulative vapour pressure deficit to predict nursery tree water stress (Doctoral dissertation).

  • Treftz, C., & Omaye, S. T. (2016). Comparison between hydroponic and soil systems for growing strawberries in a greenhouse. International Journal of Agricultural Extension, 3(3), 195–200.

    Google Scholar 

  • Valipour, M. (2012). A comparison between horizontal and vertical drainage systems (include pipe drainage, open ditch drainage, and pumped wells) in anisotropic soils. IOSR Journal of Mechanical and Civil Engineering, 4(1), 7–12.

    Article  Google Scholar 

  • Valipour, M. (2014). Application of new mass transfer formulae for computation of evapotranspiration. Journal of Applied Water Engineering and Research, 2(1), 33–46.

    Article  Google Scholar 

  • Valipour, M. (2015). Future of agricultural water management in Africa. Archives of Agronomy and Soil Science, 61(7), 907–927.

    Article  Google Scholar 

  • Valipour, M. (2016). How much meteorological information is necessary to achieve reliable accuracy for rainfall estimations? Agriculture, 6(4), 53.

    Article  Google Scholar 

  • Valipour, M. (2017). Global experience on irrigation management under different scenarios. Journal of Water and Land Development, 32, 95–102. https://doi.org/10.1515/jwld-2017-0011.

    Article  Google Scholar 

  • Valipour, M., Banihabib, M. E., & Behbahani, S. M. R. (2013). Comparison of the ARMA, ARIMA, and the autoregressive artificial neural network models in forecasting the monthly inflow of Dez dam reservoir. Journal of Hydrology, 476, 433–441.

    Article  Google Scholar 

  • Valipour, M., Sefidkouhi, M. A. G., & Raeini, M. (2017). Selecting the best model to estimate potential evapotranspiration with respect to climate change and magnitudes of extreme events. Agricultural Water Management, 180, 50–60.

    Article  Google Scholar 

  • Van Zanten, H. H., Mollenhorst, H., Klootwijk, C. W., van Middelaar, C. E., & de Boer, I. J. (2016). Global food supply: Land use efficiency of livestock systems. The International Journal of Life Cycle Assessment, 21(5), 747–758.

    Article  CAS  Google Scholar 

  • Velasquez, M., & Hester, P. T. (2013). An analysis of multi-criteria decision making methods. International Journal of Operations Research, 10(2), 56–66.

    Google Scholar 

  • Viero, D. P., & Valipour, M. (2017). Modeling anisotropy in free-surface overland and shallow inundation flows. Advances in Water Resources, 104, 1–14.

    Article  Google Scholar 

  • Vyas, K. N., & Subbaiah, R. (2016). Application of artificial neural network approach for estimating reference evapotranspiration. Current World Environment, 11(2), 637.

    Article  Google Scholar 

  • Wang, X., Li, L., Lockington, D., Pullar, D., & Jeng, D. S. (2005). Self-organizing polynomial neural network for modelling complex hydrological processes. Research Report No R861, Department of Civil Engineering.

  • Wilhite, D. A., & Glantz, M. H. (1985). Understanding: the drought phenomenon: the role of definitions. Water international, 10(3), 111–120.

    Article  Google Scholar 

  • Yakowitz, D. S., Lane, L. J., & Szidarovszky, F. (1993). Multi-attribute decision making: Dominance with respect to an importance order of the attributes. Applied Mathematics and Computation, 54(2–3), 167–181.

    Article  Google Scholar 

  • Yannopoulos, S. I., Lyberatos, G., Theodossiou, N., Li, W., Valipour, M., Tamburrino, A., et al. (2015). Evolution of water lifting devices (pumps) over the centuries worldwide. Water, 7(9), 5031–5060.

    Article  Google Scholar 

  • Yin, H.Y., Huang, C.J., Chen, C.Y., Fang, Y.M., Lee, B.J. and Chou, T.Y., (2011). The present development of debris flow monitoring technology in Taiwan—A case study presentation. In Genevois, R., Hamilton, D. L., & Prestininzi, A. (Eds.) 5th International conference on debris-flow hazards mitigation: Mechanics, prediction and assessment. Casa Editrice Universita La Sapienza, Roma (pp. 623–631). http://www.interpraevent.at. Accessed November 20, 2016.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amaresh Sarkar.

Appendices

Appendix 1

1.1 Model neurons (N) of WRI predicted from the priority value of the six parameters by POT

N2 = − 0.0037091 + N508*0.00495644 − N508*N3*0.00301011 + N3*0.999539 + N3^2*0.00164896

N3 = − 0.0039168 + N461*0.00790544 + N461*N4*0.00186553 − N461^2*0.00323974 + N4*0.996757

N4 = − 0.000361218 + N137*0.167544 − N137*N5*2.64512 + N137^2*1.27105 + N5*0.832876 + N5^2*1.37394

N5 = 0.000107192 − N77*0.145892 − N77*N6*8.01513 + N77^2*4.05907 + N6*1.14576 + N6^2*3.9561

N6 = 8.48733e − 05 − N338*0.0240165 + N338*N7*0.230432 − N338^2*0.109388 + N7*1.02395 − N7^2*0.121027

N7 = 0.000438486 − N21*0.895279 − N21*N8*13.2617 + N21^2*6.86142 + N8*1.89476 + N8^2*6.40045

N8 = − 0.000435001 + N193*0.13457 + N193*N9*0.0771467 − N193^2*0.0772959 + N9*0.865943

N9 = 0.000108749 − N353*0.0215273 − N353*N10*0.770688 + N353^2*0.392258 + N10*1.02136 + N10^2*0.378469

N10 = − 0.000593288 + N65*0.417577 + N65*N11*63.6771 − N65^2*31.9716 + N11*0.583198 − N11^2*31.7058

N11 = 0.000680251 − N386*0.00883072 − N386*N12*0.180307 + N386^2*0.0928166 + N12*1.008 + N12^2*0.0876999

N12 = − 0.00027115 + N145*0.130827 + N145*N13*12.3217 − N145^2*6.19352 + N13*0.869432 − N13^2*6.12825

N13 = − 0.000752158 − N436*N14*0.0341339 + N436^2*0.0172391 + N14*1.00074 + N14^2*0.0166723

N14 = 0.00557981 − N494*0.0126478 − N494*N15*0.0106495 + N494^2*0.00941449 + N15*1.00548 + N15^2*0.0034839

N15 = − 0.0105196 + N472*0.0129413 − N472*N16*0.0180706 + N472^2*0.00507432 + N16*0.999841 + N16^2*0.00909668

N16 = − 0.0314905 + N536*0.0539354 + N536*N21*0.0150584 − N536^2*0.0235075 + N21*0.983852 − N21^2*0.00278746

N472 = − 0.00984 + N552*N573*0.6025

N494 = 0.764551 + BI*N552*0.199409 − BI^2*0.0320372 + N552^2*0.266527

N436 = − 0.00293989 + N560*N565*0.600008

N386 = 0.264407 − BI*0.0212425 + BI*N439*0.197976 + N439*0.595578 + N439^2*0.0902778

N439 = 0.0443094 + N552*N565*0.582957

N353 = 0.0120957 + N481*0.220049 + N481*N547*0.547528 − N481^2*0.0454973 − N547*0.188109 + N547^2*0.0733046

N547 = 0.00511224 + ISP*N569*0.164629 + N569*0.916385

N481 = − 0.0476773 + BI*0.12854 + BI*N558*0.134965 − BI^2*0.045682 + N558*0.930781

N193 = 0.0699362 + N286*1.22134 − N286*N428*0.220668 + N286^2*0.0208005 − N428*0.315333 + N428^2*0.230589

N428 = 0.251899 + N521*N524*0.507865

N524 = 0.494324 + N565*N568*0.420615

N21 = − 0.000126664 + N79*N25*0.158902 − N79^2*0.158955 + N25*1.00017

N25 = 0.00186519 − FI*N30*0.00329646 + FI^2*0.00571429 + N30*0.997298 + N30^2*0.00126368

N30 = 0.000350786 + N46*0.541845 − N46*N65*41.5701 + N46^2*20.7975 + N65*0.457635 + N65^2*20.7727

N46 = − 0.00175349 − ISP*0.0173879 + ISP*N79*0.00219865 + ISP^2*0.0157769 + N79*1.006 − N79^2*0.00238992

N338 = − 0.508748 − N469*0.08218 + N469*N561*0.557738 + N469^2*0.04166 + N561*0.7197 − N561^2*0.199047

N561 = 0.794239 − ISP*0.248056 + ISP*N572*0.316633 + ISP^2*0.00759002 + N572^2*0.263134

N469 = − 0.113206 + FNA*0.270402 + FNA^2*0.0535125 + N558*0.973131

N77 = 0.0111536 − N426*0.0689968 − N426*N91*0.125064 + N426^2*0.088076 + N91*1.05385 + N91^2*0.0419257

N91 = − 0.000358474 + N135*0.634337 + N152*0.365878

N152 = − 0.0598308 + N468*0.0614455 − N468*N273*0.150855 + N468^2*0.0402472 + N273*1.03078 + N273^2*0.0767423

N273 = − 0.0216226 + N496*N532*0.539258 + N496^2*0.0181688 + N532*0.111676 − N532^2*0.0178257

N532 = 0.763437 + FI*N569*0.187531 + N569^2*0.26636

N468 = 0.76759 + FNA*N551*0.195406 + N551^2*0.261482

N135 = 0.00421704 − N456*0.056665 − N456*N200*0.0845467 + N456^2*0.0446756 + N200*1.0683 + N200^2*0.0313136

N456 = 0.0482176 + N536*N572*0.581564

N426 = − 0.171017 + N520*0.489749 + N520*N527*0.511145 − N520^2*0.143684

N527 = 0.51093 + N566*N568*0.414632

N520 = 0.0376921 − N551*0.131702 + N551*N558*0.466055 + N558*0.795413 − N558^2*0.278007

N558 = 1.39289 + FI*0.240055 + FI*CWR*0.133805 + CWR*0.174474 + CWR^2*0.0921372

N137 = − 0.0028943 + N172*0.310891 − N172*N250*0.165166 + N172^2*0.164457 + N250*0.692038

N250 = 0.0412712 + N299*1.14758 − N299*N448*0.294427 + N299^2*0.123629 − N448*0.176873 + N448^2*0.173116

N448 = 0.380812 + N521*N533*0.46132

N533 = 0.225503 + N569*N570*0.517743

N570 = 1.45457 + WA*0.0851159 + WA*CWR*0.0752131 + CWR*0.304722

N521 = 0.561037 + N552*N564*0.396441

N299 = − 0.0380339 + N486*N542*0.542782 + N486^2*0.0198416 + N542*0.114457 − N542^2*0.0187811

N542 = 0.730136 + FI*N572*0.196011 + N572^2*0.275922

N572 = 1.467 + WA*0.0978413 + WA*BI*0.0568265 + BI*0.275975

N486 = 0.762829 + ISP*N536*0.16509 + N536^2*0.275064

N172 = 0.366485 − N528*0.521139 + N528*N286*0.0360894 + N528^2*0.153862 + N286*1.05209 − N286^2*0.0413008

N286 = 0.737386 − N571*0.788406 + N571*N437*0.524843 + N571^2*0.250905 + N437^2*0.0294622

N437 = 0.935933 − N536*1.1027 + N536*N568*0.590174 + N536^2*0.331202

N528 = 0.502214 + N567*N568*0.417799

N461 = 0.0241524 + N536*N573*0.590248

N573 = 1.48446 + ISP*0.235073 + ISP*WA*0.0854765 + WA*0.0990649

N536 = 1.32542 + FNA*0.335478 + CWR*0.33977

N508 = − 0.0331815 + BI*N567*0.192263 + N567*0.922893

N35 = 0.000334684 + N47*0.682962 − N47*N65*37.1172 + N47^2*18.5291 + N65*0.316543 + N65^2*18.5883

N65 = − 0.0239747 + N522*0.0250211 − N522*N85*0.0216281 + N85*1.00903 + N85^2*0.00986259

N85 = 0.00047052 + N145*0.776536 − N145*N166*4.75125 + N145^2*2.32489 + N166*0.222677 + N166^2*2.42661

N166 = − 0.0135148 + N275*0.979491 + N275*N427*0.0363146 − N275^2*0.0352749 + N427*0.0269437

N427 = 0.25083 + N522*N525*0.508256

N525 = 0.508999 + N565*N567*0.415314

N565 = 1.37062 + ISP*0.252011 + ISP*CWR*0.0515355 + CWR*0.323582

N275 = 0.0727772 + N496*N531*0.536594 + N496^2*0.0192729 + N531^2*0.0165073

N531 = 0.772625 + FNA*N571*0.197838 + N571^2*0.259637

N571 = 1.42857 + WA*0.149311 + FI*0.324743

N496 = 0.732202 + CWR*N568*0.167415 + CWR^2*0.070277 + N568^2*0.275896

N145 = 0.0169817 + N225*1.05986 − N225*N411*0.814908 + N225^2*0.365958 − N411*0.0862089 + N411^2*0.458093

N225 = 0.10314 − N510*0.0802385 + N510*N530*0.556123 + N510^2*0.0346692 + N530*0.0313163

N530 = 0.772188 + CWR*N569*0.200386 + N569^2*0.26038

N569 = 1.43269 + WA*0.132135 + FNA*0.313848 + FNA^2*0.026408

N510 = 0.73819 + FI*N568*0.194713 + N568^2*0.272856

N522 = 0.543648 + N560*N564*0.402739

N564 = 1.34279 + BI*0.342497 − BI^2*0.0325357 + FI*0.321287

N560 = 1.35867 + BI*0.274471 + BI*FNA*0.045937 + FNA*0.310689

N47 = 0.0274057 − N411*0.214954 − N411*N79*0.652305 + N411^2*0.393446 + N79*1.18125 + N79^2*0.268809

N79 = − 0.00303813 − CWR*0.013519 − CWR*N131*0.0077796 + CWR^2*0.0315479 + N131*1.00664 − N131^2*0.00176458

N131 = 0.0281574 − N567*0.0477562 + N567^2*0.0280885 + N200*0.983737

N200 = 0.14204 − N476*0.0712366 + N476*N563*0.58679 + N476^2*0.0248736 − N563*0.077578 + N563^2*0.0250458

N563 = 0.799049 + WA*N568*0.078715 + N568^2*0.287238

N568 = 1.36661 + ISP*0.302204 − ISP^2*0.0164261 + BI*0.317799

N476 = 0.76861 + CWR*N552*0.197059 + N552^2*0.262015

N552 = 1.34021 + FNA*0.332099 + FI*0.308174

N411 = 0.12873 + N438*0.15056 + N438*N554*0.423026 + N554*0.199339 − N554^2*0.0804334

N554 = − 0.0960636 + WA*0.152139 + N567*1.01213

N567 = 1.38017 + ISP*0.275495 + ISP*FI*0.0706918 − ISP^2*0.0333733 + FI*0.288203

N438 = 0.0154782 + N551*N566*0.359349 + N551^2*0.116819 + N566^2*0.1158

N566 = 1.37524 + ISP*0.243095 + ISP*FNA*0.0578374 + FNA*0.311751

N551 = 1.35497 + BI*0.347224 − BI^2*0.038534 + CWR*0.215886 + CWR^2*0.13079

Appendix 2

2.1 Model neurons (N) of WRI predicted from the priority value of the six parameters by MAUT

N2 = 0.010134 − N531*0.0177318 − N531*N3*0.00638773 + N531^2*0.00842899 + N3*1.00563 + N3^2*0.00153705

N3 = − 6.40471e − 05 + N271*N4*1.1221 − N271^2*0.561519 + N4*1.00012 − N4^2*0.560606

N4 = − 0.00048184 + N278*0.0325854 − N278*N5*1.13395 + N278^2*0.556869 + N5*0.967964 + N5^2*0.576894

N5 = − 0.00162377 + N417*0.0212435 + N417*N6*0.048693 − N417^2*0.0302319 + N6*0.980634 − N6^2*0.0189752

N6 = − 0.000340656 − N309*N7*0.90381 + N309^2*0.453298 + N7*1.00039 + N7^2*0.450371

N7 = − 0.00664834 + N465*0.0160335 + N465*N8*0.0105284 − N465^2*0.0101837 + N8*0.992161 − N8^2*0.00282932

N8 = 2.94945e − 05 − N149*0.117832 + N149^2*0.0284731 + N9*1.1178 − N9^2*0.0284652

N9 = − 0.000205705 + N76*0.0772266 − N76*N10*2.3276 + N76^2*1.15554 + N10*0.922961 + N10^2*1.17201

N10 = − 0.00792981 + N497*0.00578878 − N497*N11*0.0161286 + N497^2*0.00665682 + N11*1.00322 + N11^2*0.00689732

N497 = − 3.36814 + N534*1.26735 + N534*N561*0.907978 − N534^2*0.564645 + N561*3.11533 − N561^2*1.15144

N76 = 0.00419861 + BI*0.0300573 − BI*N103*0.024564 − BI^2*0.00154214 + N103*0.983904 + N103^2*0.0103151

N103 = 0.323389 − N484*0.633714 − N484*N153*0.259314 + N484^2*0.321433 + N153*1.24053 + N153^2*0.0559823

N153 = 0.0489021 + N234*1.2247 − N234*N413*1.99698 + N234^2*0.899733 − N413*0.292307 + N413^2*1.11894

N413 = 0.752731 + N453*0.213862 + N453*N542*0.541658 − N453^2*0.0596105 − N542*0.856698 + N542^2*0.233882

N542 = − 0.0336089 + N557*N568*0.615665

N453 = 0.061861 + N480*N533*0.471 + N533*0.601614 − N533^2*0.253283

N234 = 1.15089 − N458*0.194501 + N458*N554*0.612767 + N458^2*0.0588612 − N554*1.26238 + N554^2*0.38955

N554 = 0.706432 + BI*0.248074 + N565^2*0.300705

N465 = − 0.0278212 + N519*N541*0.489344 + N541*0.482593 − N541^2*0.166962

N417 = − 1.17522 + N472*0.276392 + N472*N551*0.532995 − N472^2*0.0497522 + N551*1.16075 − N551^2*0.317176

N551 = − 2.51873 + N561*2.76426 − N561^2*0.587481 + N566*0.732529

N472 = 1.82096 − N539*2.08511 + N539*N556*0.561467 + N539^2*0.633307

N278 = 0.341797 − N500*0.468034 + N500*N530*0.621081 + N500^2*0.13927

N500 = − 0.0219936 + FNA*N541*0.174992 + N541*0.925741

N271 = 0.0524544 + N303*N338*95.0424 − N303^2*46.9897 + N338*0.940993 − N338^2*48.0356

N338 = 0.807218 + N470*N549*0.613098 − N549*1.02544 + N549^2*0.313626

N549 = − 0.140385 + ISP*0.310689 − ISP*N552*0.0759528 − ISP^2*0.0667124 + N552*1.04228

N303 = 0.596461 + N470*N550*0.614324 − N550*0.775477 + N550^2*0.238704

N550 = − 0.248899 + FI*0.354423 + N568*1.04177

N470 = 0.0349349 − FNA*0.0812779 + FNA*N519*0.240573 − FNA^2*0.0276961 + N519*0.888716

N11 = 0.000809303 − N26*0.820682 + N26*N12*0.476779 + N12*1.81971 − N12^2*0.47649

N12 = 0.000280056 + N113*0.379364 − N113*N13*2.78022 + N113^2*1.28635 + N13*0.62025 + N13^2*1.49398

N13 = 0.000510525 − N53*0.328795 + N53*N14*18.4806 − N53^2*9.17358 + N14*1.32811 − N14^2*9.30675

N14 = 0.00219791 − N455*0.0188856 − N455*N15*0.0611826 + N455^2*0.0361027 + N15*1.0162 + N15^2*0.0257719

N15 = 0.00141856 + N147*0.278513 − N147*N16*0.130344 + N16*0.719828 + N16^2*0.130819

N16 = 0.0064392 − N416*0.0382656 − N416*N17*0.239932 + N416^2*0.132477 + N17*1.03019 + N17^2*0.109837

N17 = 0.000319305 − N274*0.0634488 + N19*1.06326

N19 = 0.0553525 − N463*0.125622 − N463*N21*0.0654624 + N463^2*0.0697848 + N21*1.05929 + N21^2*0.0152742

N21 = 0.150601 − N531*0.22485 − N531*N25*0.0257296 + N531^2*0.0799868 + N25*1.04347

N25 = − 0.000185643 + N32*0.558015 + N47*0.442097

N47 = 0.00693562 − N430*0.0597018 − N430*N58*0.429731 + N430^2*0.238847 + N58*1.04799 + N58^2*0.194915

N58 = − 0.00268542 + N87*1.37106 + N87*N111*9.0184 − N87^2*4.74194 − N111*0.368171 − N111^2*4.27712

N111 = 0.00432513 − N359*0.448674 + N165*1.44606

N165 = 0.0166606 + N272*0.365521 + N272*N309*4.00338 − N272^2*1.94083 + N309*0.61239 − N309^2*2.05516

N309 = 1.39586 − N556*1.56744 + N556*N449*0.647717 + N556^2*0.457967 − N449*0.156712 + N449^2*0.0276558

N449 = − 1.16338 + N519*N561*0.606739 + N561*1.37527 − N561^2*0.408158

N359 = 0.32535 + N493*N526*0.608591 − N526*0.417776 + N526^2*0.127649

N526 = 0.675498 + FI*0.251464 + FI*N566*0.0596372 + N566^2*0.291986

N493 = 0.749607 + FNA*N539*0.231084 − FNA^2*0.0933153 + N539^2*0.270522

N87 = 0.151797 − N522*0.38086 − N522*N145*0.285053 + N522^2*0.247105 + N145*1.21379 + N145^2*0.0825366

N145 = 0.0707362 − N507*0.165757 − N507*N207*0.17198 + N507^2*0.151752 + N207*1.05301 + N207^2*0.0616925

N522 = − 0.00734815 + N552*N567*0.606077

N430 = − 0.266898 + N533*0.682927 + N533*N534*0.653069 − N533^2*0.22082 − N534*0.422982 + N534^2*0.112268

N32 = 0.0301788 + FI*0.0361389 − FI*N49*0.0417079 + FI^2*0.0342868 + N49*0.950485 + N49^2*0.0208526

N49 = − 0.00391871 − N490*0.072959 − N490*N80*0.301573 + N490^2*0.167148 + N80*1.08495 + N80^2*0.127859

N531 = 0.0214949 + CWR*N568*0.254534 + N568*0.861972

N463 = 0.604456 + N480*N541*0.27355 + N480^2*0.107764

N274 = 0.647776 − N534*0.405982 + N534*N491*0.634479 + N534^2*0.11198 − N491*0.409277 + N491^2*0.111434

N491 = 2.77903 + N541*N565*0.743725 − N541^2*0.063237 − N565*3.43307 + N565^2*0.98028

N416 = − 0.81295 + N452*0.850331 + N452*N540*0.363324 − N452^2*0.163203 + N540*0.417156 − N540^2*0.0638993

N540 = 0.0197661 + N561*N567*0.596179

N561 = 1.46858 + WA*FNA*0.0973923 + WA^2*0.138253 + FNA*0.240248

N452 = 0.794213 + N480*N505*0.761457 − N480^2*0.172702 − N505*0.187376 − N505^2*0.162599

N147 = − 0.00749375 + WA*0.0722731 + WA*N245*0.0199528 − WA^2*0.109779 + N245*0.994582

N245 = 0.329849 − N519*0.430333 + N519*N507*0.61346 + N519^2*0.12866

N507 = − 2.85607 + N533*N568*0.61671 + N568*3.31214 − N568^2*0.970672

N568 = 1.54295 + ISP*0.105423 + WA*0.0399154 + WA^2*0.129349

N455 = − 0.00862691 + N534*N556*0.60654

N534 = 1.38662 + WA*0.0796466 + WA*CWR*0.0435832 + WA^2*0.073648 + CWR*0.40125

N53 = 0.0448397 − N517*0.200958 − N517*N81*0.263814 + N517^2*0.188805 + N81*1.15227 + N81^2*0.0872933

N81 = 0.0097063 − FNA*0.0568162 − FNA*N198*0.0221634 + FNA^2*0.100503 + N198*0.99475 + N198^2*0.00461048

N198 = 0.00266957 + N230*1.62786 − N332*0.629466

N332 = 0.617154 − N503*0.204871 + N503*N524*0.64221 + N503^2*0.0479937 − N524*0.583773 + N524^2*0.162964

N503 = 0.0381785 + CWR*N566*0.251975 + N566*0.853119

N517 = 0.450662 + N541*N557*0.758162 − N541^2*0.142202 − N557^2*0.176459

N541 = 1.35645 + BI*0.251277 + FI*0.346121 + FI^2*0.00337906

N113 = 0.02973 − N415*0.280906 − N415*N157*0.0864398 + N415^2*0.0932358 + N157*1.25156

N157 = 0.0314636 + ISP*0.110236 + ISP*N272*0.00439145 − ISP^2*0.112535 + N272*0.938861 + N272^2*0.0173887

N272 = 0.032 + N498*N530*0.617914 − N530*0.0920599 + N530^2*0.0293031

N530 = 0.783929 + WA*N539*0.0732531 + WA^2*0.0480505 + N539^2*0.288928

N539 = 1.41113 + ISP^2*0.112254 + CWR*0.425001

N498 = − 0.00670958 + BI*N533*0.151556 + N533*0.929132

N533 = 1.35404 + FNA*0.246137 + FNA*FI*0.0840072 + FI*0.313388

N415 = 0.0703519 + N485*0.113734 + N485*N521*0.480758 + N521^2*0.027791

N521 = 0.722606 + N556*N566*0.324115 + N556^2*0.136907 − N566*0.845148 + N566^2*0.387565

N485 = 0.567556 + N505*0.14996 + N505*N519*0.30466

N26 = 0.0118997 − N490*0.0737874 − N490*N33*0.166168 + N490^2*0.101821 + N33*1.06395 + N33^2*0.0655159

N33 = 0.0231602 + FI*0.0253713 − FI*N48*0.0349155 + FI^2*0.0340755 + N48*0.962213 + N48^2*0.016264

N48 = 0.00150098 + N80*0.998155 − N80*N82*9.6047 + N80^2*4.66393 + N82^2*4.94125

N82 = 0.0265586 + CWR*0.032695 − CWR*N127*0.0600444 + CWR^2*0.0645846 + N127*0.951378 + N127^2*0.024426

N127 = 0.00149185 + N207*0.990099 − N207*N406*0.62617 + N207^2*0.279482 + N406^2*0.351743

N406 = 0.473346 − N484*0.0644604 + N484*N548*0.654684 − N548*0.566512 + N548^2*0.156409

N548 = − 0.0412003 + WA^2*0.166588 + N556*0.992259

N556 = 1.39502 + ISP*0.21217 − ISP*FI*0.0238235 − ISP^2*0.0717801 + FI*0.36678

N484 = 0.786224 + N505*N557*0.50361 − N557*0.311041

N557 = 1.39308 + BI*0.250803 + FNA*0.280123

N505 = 1.32339 + FNA*0.29649 + FNA*CWR*0.138672 − FNA^2*0.0753913 + CWR*0.359755

N207 = 0.494021 − N458*0.245804 + N458*N553*0.633514 + N458^2*0.0640245 − N553*0.412067 + N553^2*0.121856

N553 = 0.751352 + FNA*N567*0.169638 + N567^2*0.277991

N458 = − 0.00325216 + WA*N480*0.107268 + N480*0.949252

N480 = 1.29357 + FI*0.302317 + FI*CWR*0.106423 + CWR*0.374647

N80 = − 0.0049329 + WA*0.0559295 + WA*N149*0.0105945 − WA^2*0.0677293 + N149*0.994343

N149 = − 0.00105471 − FNA*0.060467 − FNA*N230*0.019219 + FNA^2*0.0989634 + N230*1.0089

N230 = 0.770646 − N502*0.41054 + N502*N524*0.633049 + N502^2*0.11449 − N524*0.567106 + N524^2*0.163263

N524 = 0.697538 + FI*N565*0.217353 + N565^2*0.282221

N502 = − 0.0213614 + WA*N519*0.0629592 + WA^2*0.0709704 + N519*0.968054

N519 = 1.34347 + BI*0.217212 + BI*CWR*0.0570127 + CWR*0.391923

N490 = 0.33899 + N537*N555*0.521238 − N555*0.0692787

N555 = 0.229304 + N565*N567*0.519697

N567 = 1.46779 + ISP*0.133019 − ISP*BI*0.0451228 + BI*0.271361

N565 = 1.44172 + ISP*0.117649 + FNA*0.37689 − FNA^2*0.0959987

N537 = − 0.938183 + N552*0.856367 + N566*0.709727

N566 = 1.47709 + WA^2*0.172986 + BI*0.251029

N552 = 1.42365 + WA^2*0.173678 + FI*0.349751

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, A., Majumder, M. Real-time monitoring of water requirement in protected farms by using polynomial neural networks and image processing. Environ Dev Sustain 21, 1451–1483 (2019). https://doi.org/10.1007/s10668-018-0097-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-018-0097-z

Keywords

Navigation