Skip to main content
Log in

Ecosystem-level Impacts of Oil Spills: A Review of Available Data with Confidence Metrics for Application to Ecosystem Models

  • Review
  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

Oil spills remain a persistent threat to marine life, but their long-term effects across different taxonomic groups are poorly understood. Few ecosystem models can predict the long-term effects of oil spills in marine systems due to data gaps and complexity of both marine systems and oil as a contaminant mixture. To support the development of regional ecosystem models, we reviewed the available data on the effects of oil spills on the marine ecosystem, and present and apply a process for selecting and assessing data on contaminant stressors. Our region of interest is the Salish Sea, a marginal sea in the Pacific Ocean, spanning the USA and Canada. We collate and present the data currently available on the impacts of polycyclic aromatic hydrocarbons (PAHs), oil-derived persistent organic pollutants, across multiple ecological groups within the Salish Sea. We then apply a scoring system to gauge the usefulness of those data for modelling the ecosystem impacts of these contaminant stressors. Within the available data on ecological processes and impacts of PAH, we identify data gaps in PAH uptake rates and metabolism across most biological groups, and in the overall effects of contaminants on marine mammals, sharks, and seabirds. These data gaps highlight research priorities that can enhance long-term risk assessments of oil-related contaminants on the marine ecosystem, and support broader modelling efforts and environmental management efforts in the Salish Sea and beyond.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of Data and Materials

All datasets generated within the study have been provided with the manuscript. Datasets referenced in the text are listed in the reference list.

References

  1. Chen, J., Zhang, W., Wan, Z., Li, S., Huang, T., & Fei, Y. (2019). Oil spills from global tankers: Status review and future governance. Journal of Cleaner Production, 227, 20–32. https://doi.org/10.1016/j.jclepro.2019.04.020

    Article  Google Scholar 

  2. Martins, F., Felgueiras, C., Smitkova, M., & Caetano, N. (2019). Analysis of fossil fuel energy consumption and environmental impacts in European countries. Energies, 12(6), Article 6. https://doi.org/10.3390/en12060964

  3. Yin, X., Chen, W., Eom, J., Clarke, L. E., Kim, S. H., Patel, P. L., Yu, S., & Kyle, G. P. (2015). China’s transportation energy consumption and CO2 emissions from a global perspective. Energy Policy, 82, 233–248. https://doi.org/10.1016/j.enpol.2015.03.021

    Article  CAS  Google Scholar 

  4. Hook, S. E. (2020). Beyond thresholds: A holistic approach to impact assessment is needed to enable accurate predictions of environmental risk from oil spills. Integrated Environmental Assessment and Management, 16(6), 813–830. https://doi.org/10.1002/ieam.4321

    Article  CAS  Google Scholar 

  5. Ainsworth, C. H., Chassignet, E. P., French-McCay, D., Beegle-Krause, C. J., Berenshtein, I., Englehardt, J., Fiddaman, T., Huang, H., Huettel, M., Justic, D., Kourafalou, V. H., Liu, Y., Mauritzen, C., Murawski, S., Morey, S., Özgökmen, T., Paris, C. B., Ruzicka, J., Saul, S., & Zheng, Y. (2021). Ten years of modeling the Deepwater Horizon oil spill. Environmental Modelling & Software, 142, 105070. https://doi.org/10.1016/j.envsoft.2021.105070

    Article  Google Scholar 

  6. Solo-Gabriele, H. M., Fiddaman, T., Mauritzen, C., Ainsworth, C., Abramson, D. M., Berenshtein, I., Chassignet, E. P., Chen, S. S., Conmy, R. N., Court, C. D., Dewar, W. K., Farrington, J. W., Feldman, M. G., Ferguson, A. C., Fetherston-Resch, E., French-McCay, D., Hale, C., He, R., Kourafalou, V. H., & Yoskowitz, D. (2021). Towards integrated modeling of the long-term impacts of oil spills. Marine Policy, 131, 104554. https://doi.org/10.1016/j.marpol.2021.104554

    Article  Google Scholar 

  7. Wang, Z., An, C., Lee, K., Owens, E., Chen, Z., Boufadel, M., Taylor, E., & Feng, Q. (2021). Factors influencing the fate of oil spilled on shorelines: A review. Environmental Chemistry Letters, 19(2), 1611–1628. https://doi.org/10.1007/s10311-020-01097-4

    Article  CAS  Google Scholar 

  8. Jørgensen, S. E., & Fath, B. D. (2011). Ecotoxicological models. In Developments in Environmental Modelling (Vol. 23, pp. 229–290). Elsevier. https://doi.org/10.1016/B978-0-444-53567-2.00008-9

  9. Ainsworth, C. H., Paris, C. B., Perlin, N., Dornberger, L. N., Iii, W. F. P., Chancellor, E., Murawski, S., Hollander, D., Daly, K., Romero, I. C., Coleman, F., & Perryman, H. (2018). Impacts of the Deepwater Horizon oil spill evaluated using an end-to-end ecosystem model. PLoS One, 13(1), e0190840. https://doi.org/10.1371/journal.pone.0190840

    Article  CAS  Google Scholar 

  10. Larsen, L.-H., Sagerup, K., & Ramsvatn, S. (2016). The mussel path – Using the contaminant tracer, Ecotracer, in Ecopath to model the spread of pollutants in an Arctic marine food web. Ecological Modelling, 331, 77–85. https://doi.org/10.1016/j.ecolmodel.2015.10.011

    Article  CAS  Google Scholar 

  11. Walters, W. J., & Christensen, V. (2018). Ecotracer: Analyzing concentration of contaminants and radioisotopes in an aquatic spatial-dynamic food web model. Journal of Environmental Radioactivity, 181, 118–127. https://doi.org/10.1016/j.jenvrad.2017.11.008

    Article  CAS  Google Scholar 

  12. Olsen, E., Hansen, C., Nilsen, I., Perryman, H., & Vikebø, F. (2019). Ecological effects and ecosystem shifts caused by mass mortality events on early life stages of fish. Frontiers in Marine Science, 6. https://doi.org/10.3389/fmars.2019.00669

  13. Gaydos, J. K., Thixton, S., & Donatuto, J. (2015). Evaluating threats in multinational marine ecosystems: A coast salish first nations and tribal perspective. PLoS One, 10(12), e0144861. https://doi.org/10.1371/journal.pone.0144861

    Article  CAS  Google Scholar 

  14. McWhinnie, L. H., O’Hara, P. D., Hilliard, C., Le Baron, N., Smallshaw, L., Pelot, R., & Canessa, R. (2021). Assessing vessel traffic in the Salish Sea using satellite AIS: An important contribution for planning, management and conservation in southern resident killer whale critical habitat. Ocean & Coastal Management, 200, 105479. https://doi.org/10.1016/j.ocecoaman.2020.105479

    Article  Google Scholar 

  15. Keramea, P., Spanoudaki, K., Zodiatis, G., Gikas, G., & Sylaios, G. (2021). Oil spill modeling: A critical review on current trends, perspectives, and challenges. Journal of Marine Science and Engineering, 9(2), Article 2. https://doi.org/10.3390/jmse9020181

  16. Fingas, M. (2011). Introduction to spill modeling. In Oil Spill Science and Technology (pp. 187–200). Elsevier. https://doi.org/10.1016/B978-1-85617-943-0.10008-5

  17. Meador, J. P., & Nahrgang, J. (2019). Characterizing crude oil toxicity to early-life stage fish based on a complex mixture: Are we making unsupported assumptions? Environmental Science & Technology, 53(19), 11080–11092. https://doi.org/10.1021/acs.est.9b02889

    Article  CAS  Google Scholar 

  18. Rust, A. J., Burgess, R. M., Brownawell, B. J., & McElroy, A. E. (2004). Relationship between metabolism and bioaccumulation of benzo[α]pyrene in benthic invertebrates. Environmental Toxicology and Chemistry, 23(11), 2587–2593. https://doi.org/10.1897/03-354

    Article  CAS  Google Scholar 

  19. Jonsson, G., Bechmann, R. K., Bamber, S. D., & Baussant, T. (2004). Bioconcentration, biotransformation, and elimination of polycyclic aromatic hydrocarbons in sheepshead minnows (Cyprinodon variegatus) exposed to contaminated seawater. Environmental Toxicology and Chemistry, 23(6), 1538–1548. https://doi.org/10.1897/03-173

    Article  CAS  Google Scholar 

  20. Apostolopoulou, M.-V., Monteyne, E., Krikonis, K., Pavlopoulos, K., Roose, P., & Dehairs, F. (2014). Monitoring polycyclic aromatic hydrocarbons in the Northeast Aegean Sea using Posidonia oceanica seagrass and synthetic passive samplers. Marine Pollution Bulletin, 87(1), 338–344. https://doi.org/10.1016/j.marpolbul.2014.07.051

    Article  CAS  Google Scholar 

  21. Whyte, J. J., Jung, R. E., Schmitt, C. J., & Tillitt, D. E. (2000). Ethoxyresorufin-O-deethylase (EROD) activity in fish as a biomarker of chemical exposure. Critical Reviews in Toxicology, 30(4), 347–570. https://doi.org/10.1080/10408440091159239

    Article  CAS  Google Scholar 

  22. Velando, A., Munilla, I., López-Alonso, M., Freire, J., & Pérez, C. (2010). EROD activity and stable isotopes in seabirds to disentangle marine food web contamination after the Prestige oil spill. Environmental Pollution, 158(5), 1275–1280. https://doi.org/10.1016/j.envpol.2010.01.029

    Article  CAS  Google Scholar 

  23. Barros, Á., Álvarez, D., & Velando, A. (2014). Long-term reproductive impairment in a seabird after the Prestige oil spill. Biology Letters, 10(4), 20131041. https://doi.org/10.1098/rsbl.2013.1041

    Article  Google Scholar 

  24. Busch, D. S., & McElhany, P. (2016). Estimates of the direct effect of seawater ph on the survival rate of species groups in the California current ecosystem. PLoS One, 11(8), e0160669. https://doi.org/10.1371/journal.pone.0160669

    Article  CAS  Google Scholar 

  25. Schlenger, A. J., Beas-Luna, R., & Ambrose, R. F. (2021). Forecasting ocean acidification impacts on kelp forest ecosystems. PLoS One, 16(4), e0236218. https://doi.org/10.1371/journal.pone.0236218

    Article  CAS  Google Scholar 

  26. Christensen, V., Walters, C. J., & Pauly, D. (2005). Ecopath with Ecosim: A user’s guide. Fisheries Centre, University of British Columbia, Vancouver., November 2005 edition, 155. www.ecopath.org

  27. Pethybridge, H. R., Weijerman, M., Perrymann, H., Audzijonyte, A., Porobic, J., McGregor, V., Girardin, R., Bulman, C., Ortega-Cisneros, K., Sinerchia, M., Hutton, T., Lozano-Montes, H., Mori, M., Novaglio, C., Fay, G., Gorton, R., & Fulton, E. (2019). Calibrating process-based marine ecosystem models: An example case using Atlantis. Ecological Modelling, 412, 108822. https://doi.org/10.1016/j.ecolmodel.2019.108822

    Article  Google Scholar 

  28. Steenbeek, J., Corrales, X., Platts, M., & Coll, M. (2018). Ecosampler: A new approach to assessing parameter uncertainty in Ecopath with Ecosim. SoftwareX, 7, 198–204. https://doi.org/10.1016/j.softx.2018.06.004

    Article  Google Scholar 

  29. Wan, Y., Jin, X., Hu, J., & Jin, F. (2007). Trophic dilution of polycyclic aromatic hydrocarbons (PAHs) in a marine food web from Bohai Bay. North China. Environmental Science & Technology, 41(9), 3109–3114. https://doi.org/10.1021/es062594x

    Article  CAS  Google Scholar 

  30. Le Dû-Lacoste, M., Akcha, F., Dévier, M.-H., Morin, B., Burgeot, T., & Budzinski, H. (2013). Comparative study of different exposure routes on the biotransformation and genotoxicity of PAHs in the flatfish species, Scophthalmus maximus. Environmental Science and Pollution Research, 20(2), 690–707. https://doi.org/10.1007/s11356-012-1388-9

    Article  CAS  Google Scholar 

  31. Nakata, H., Sakai, Y., Miyawaki, T., & Takemura, A. (2003). Bioaccumulation and toxic potencies of polychlorinated biphenyls and polycyclic aromatic hydrocarbons in tidal flat and coastal ecosystems of the Ariake Sea. Japan. Environmental Science & Technology, 37(16), 3513–3521. https://doi.org/10.1021/es021083h

    Article  CAS  Google Scholar 

  32. Huesemann, M. H., Hausmann, T. S., Fortman, T. J., Thom, R. M., & Cullinan, V. (2009). In situ phytoremediation of PAH- and PCB-contaminated marine sediments with eelgrass (Zostera marina). Ecological Engineering, 35(10), 1395–1404. https://doi.org/10.1016/j.ecoleng.2009.05.011

    Article  Google Scholar 

  33. Baussant, T., Sanni, S., Jonsson, G., Skadsheim, A., & Børseth, J. F. (2001). Bioaccumulation of polycyclic aromatic compounds: 1. Bioconcentration in two marine species and in semipermeable membrane devices during chronic exposure to dispersed crude oil. Environmental Toxicology and Chemistry, 20(6), 1175–1184. https://doi.org/10.1002/etc.5620200606

    Article  CAS  Google Scholar 

  34. Cailleaud, K., Forget-Leray, J., Souissi, S., Hilde, D., LeMenach, K., & Budzinski, H. (2007). Seasonal variations of hydrophobic organic contaminant concentrations in the water-column of the Seine Estuary and their transfer to a planktonic species Eurytemora affinis (Calanoïda, copepoda). Part 1: PCBs and PAHs. Chemosphere, 70(2), 270–280. https://doi.org/10.1016/j.chemosphere.2007.05.095

    Article  CAS  Google Scholar 

  35. Jenssen, B. M. (1994). Review article: Effects of oil pollution, chemically treated oil, and cleaning on thermal balance of birds. Environmental Pollution, 86(2), 207–215. https://doi.org/10.1016/0269-7491(94)90192-9

    Article  CAS  Google Scholar 

  36. Vidal, M., & Domínguez, J. (2015). Did the Prestige oil spill compromise bird reproductive performance? Evidences from long-term data on the Kentish Plover (Charadrius alexandrinus) in NW Iberian Peninsula. Biological Conservation, 191, 178–184. https://doi.org/10.1016/j.biocon.2015.06.031

    Article  Google Scholar 

  37. Carls, M. G., Rice, S. D., Marty, G. D., & Naydan, D. K. (2004). Pink Salmon Spawning Habitat is Recovering a Decade after the Exxon Valdez Oil Spill. Transactions of the American Fisheries Society, 133(4), 834–844. https://doi.org/10.1577/T03-125.1

    Article  Google Scholar 

  38. Incardona, J. P., Carls, M. G., Holland, L., Linbo, T. L., Baldwin, D. H., Myers, M. S., Peck, K. A., Tagal, M., Rice, S. D., & Scholz, N. L. (2015). Very low embryonic crude oil exposures cause lasting cardiac defects in salmon and herring. Scientific Reports, 5(1), 1. https://doi.org/10.1038/srep13499

    Article  Google Scholar 

  39. Short, J. (2003). Long-term effects of crude oil on developing fish: Lessons from the Exxon Valdez oil spill. Energy Sources, 25(6), 509–517. https://doi.org/10.1080/00908310390195589

    Article  CAS  Google Scholar 

  40. Esbaugh, A. J., Mager, E. M., Stieglitz, J. D., Hoenig, R., Brown, T. L., French, B. L., Linbo, T. L., Lay, C., Forth, H., Scholz, N. L., Incardona, J. P., Morris, J. M., Benetti, D. D., & Grosell, M. (2016). The effects of weathering and chemical dispersion on Deepwater Horizon crude oil toxicity to mahi-mahi (Coryphaena hippurus) early life stages. Science of The Total Environment, 543, 644–651. https://doi.org/10.1016/j.scitotenv.2015.11.068

    Article  CAS  Google Scholar 

  41. Venn-Watson, S., Colegrove, K. M., Litz, J., Kinsel, M., Terio, K., Saliki, J., Fire, S., Carmichael, R., Chevis, C., Hatchett, W., Pitchford, J., Tumlin, M., Field, C., Smith, S., Ewing, R., Fauquier, D., Lovewell, G., Whitehead, H., Rotstein, D., & Rowles, T. (2015). Adrenal gland and lung lesions in Gulf of Mexico common bottlenose dolphins (Tursiops truncatus) found dead following the Deepwater Horizon oil spill. PLoS One, 10(5), e0126538. https://doi.org/10.1371/journal.pone.0126538

  42. Kellar, N. M., Speakman, T. R., Smith, C. R., Lane, S. M., Balmer, B. C., Trego, M. L., Catelani, K. N., Robbins, M. N., Allen, C. D., Wells, R. S., Zolman, E. S., Rowles, T. K., & Schwacke, L. H. (2017). Low reproductive success rates of common bottlenose dolphins Tursiops truncatus in the northern Gulf of Mexico following the Deepwater Horizon disaster (2010–2015). Endangered Species Research, 33, 143–158. https://doi.org/10.3354/esr00775

    Article  Google Scholar 

  43. French-McCay, D. P. (2004). Oil spill impact modeling: Development and validation. Environmental Toxicology and Chemistry, 23(10), 2441–2456. https://doi.org/10.1897/03-382

    Article  CAS  Google Scholar 

  44. Gin, K. Y. H., Kamrul Huda, Md., Kiat Lim, W., & Tkalich, P. (2001). An oil spill–food chain interaction model for coastal waters. Marine Pollution Bulletin, 42(7), 590–597. https://doi.org/10.1016/S0025-326X(00)00205-8

    Article  CAS  Google Scholar 

  45. Di Toro, D. M., McGrath, J. A., & Hansen, D. J. (2009). Technical basis for narcotic chemicals and polycyclic aromatic hydrocarbon criteria. I water and tissue. Environmental Toxicology and Chemistry, 19(8), 1951–1970. https://doi.org/10.1002/etc.5620190803

    Article  Google Scholar 

  46. Morales-Caselles, C., Yunker, M. B., & Ross, P. S. (2017). Identification of spilled oil from the MV Marathassa (Vancouver, Canada 2015) using alkyl PAH isomer ratios. Archives of Environmental Contamination and Toxicology, 73(1), 118–130. https://doi.org/10.1007/s00244-017-0390-0

    Article  CAS  Google Scholar 

  47. Hellou, J., Stenson, G., Ni, I.-H., & Payne, J. F. (1990). Polycyclic aromatic hydrocarbons in muscle tissue of marine mammals from the Northwest Atlantic. Marine Pollution Bulletin, 21(10), 469–473. https://doi.org/10.1016/0025-326X(90)90065-G

    Article  CAS  Google Scholar 

  48. Lourenço, R. A., Taniguchi, S., da Silva, J., Gallotta, F. D. C., & Bícego, M. C. (2021). Polycyclic aromatic hydrocarbons in marine mammals: A review and synthesis. Marine Pollution Bulletin, 171, 112699. https://doi.org/10.1016/j.marpolbul.2021.112699

    Article  CAS  Google Scholar 

  49. Wolfe, M. F., Schwartz, G. J. B., Singaram, S., Mielbrecht, E. E., Tjeerdema, R. S., & Sowby, M. L. (1998). Influence of dispersants on the bioavailability of naphthalene from the water-accommodated fraction crude oil to the golden-brown algae, Isochrysis galbana. Archives of Environmental Contamination and Toxicology, 35(2), 274–280. https://doi.org/10.1007/s002449900376

    Article  CAS  Google Scholar 

  50. Wolfe, M. F., Schlosser, J. A., Schwartz, G. J. B., Singaram, S., Mielbrecht, E. E., Tjeerdema, R. S., & Sowby, M. L. (1998). Influence of dispersants on the bioavailability and trophic transfer of petroleum hydrocarbons to primary levels of a marine food chain. Aquatic Toxicology, 42(3), 211–227. https://doi.org/10.1016/S0166-445X(97)00096-9

    Article  CAS  Google Scholar 

  51. Hansen, B. H., Tarrant, A. M., Salaberria, I., Altin, D., Nordtug, T., & Øverjordet, I. B. (2017). Maternal polycyclic aromatic hydrocarbon (PAH) transfer and effects on offspring of copepods exposed to dispersed oil with and without oil droplets. Journal of Toxicology and Environmental Health, Part A, 80(16–18), 881–894. https://doi.org/10.1080/15287394.2017.1352190

    Article  CAS  Google Scholar 

  52. Hansen, B. H., Olsen, A. J., Salaberria, I., Altin, D., Øverjordet, I. B., Gardinali, P., Booth, A., & Nordtug, T. (2018). Partitioning of PAHs between crude oil microdroplets, water, and copepod biomass in oil-in-seawater dispersions of different crude oils. Environmental Science & Technology, 52(24), 14436–14444. https://doi.org/10.1021/acs.est.8b04591

    Article  CAS  Google Scholar 

  53. Han, J., Won, E.-J., Kim, H.-S., Nelson, D. R., Lee, S.-J., Park, H. G., & Lee, J.-S. (2015). Identification of the full 46 cytochrome P450 (CYP) complement and modulation of CYP expression in response to water-accommodated fractions of crude oil in the cyclopoid copepod Paracyclopina nana. Environmental Science & Technology, 49(11), 6982–6992. https://doi.org/10.1021/acs.est.5b01244

    Article  CAS  Google Scholar 

  54. Hsieh, H.-Y., Huang, K.-C., Cheng, J.-O., Lo, W.-T., Meng, P.-J., & Ko, F.-C. (2019). Environmental effects on the bioaccumulation of PAHs in marine zooplankton in Gaoping coastal waters, Taiwan: Concentration, distribution, profile, and sources. Marine Pollution Bulletin, 144, 68–78. https://doi.org/10.1016/j.marpolbul.2019.04.048

    Article  CAS  Google Scholar 

  55. Atlas, R. M. (1995). Bioremediation of petroleum pollutants. International Biodeterioration & Biodegradation, 35(1), 317–327. https://doi.org/10.1016/0964-8305(95)00030-9

    Article  CAS  Google Scholar 

  56. Hazen, T. C., Dubinsky, E. A., DeSantis, T. Z., Andersen, G. L., Piceno, Y. M., Singh, N., Jansson, J. K., Probst, A., Borglin, S. E., Fortney, J. L., Stringfellow, W. T., Bill, M., Conrad, M. E., Tom, L. M., Chavarria, K. L., Alusi, T. R., Lamendella, R., Joyner, D. C., Spier, C., & Mason, O. U. (2010). Deep-sea oil plume enriches indigenous oil-degrading bacteria. Science, 330(6001), 204–208. https://doi.org/10.1126/science.1195979

    Article  CAS  Google Scholar 

  57. Kostka, J. E., Teske, A. P., Joye, S. B., & Head, I. M. (2014). The metabolic pathways and environmental controls of hydrocarbon biodegradation in marine ecosystems. Frontiers in Microbiology, 5. https://doi.org/10.3389/fmicb.2014.00471

  58. Wang, X., & Wang, W.-X. (2006). Bioaccumulation and transfer of benzo(a)pyrene in a simplified marine food chain. Marine Ecology Progress Series, 312, 101–111. https://doi.org/10.3354/meps312101

    Article  CAS  Google Scholar 

  59. Carls, M. G., Harris, P. M., & Rice, S. D. (2004). Restoration of oiled mussel beds in Prince William Sound. Alaska. Marine Environmental Research, 57(5), 359–376. https://doi.org/10.1016/j.marenvres.2003.11.002

    Article  CAS  Google Scholar 

  60. Pie, H. V., Heyes, A., & Mitchelmore, C. L. (2015). Investigating the use of oil platform marine fouling invertebrates as monitors of oil exposure in the Northern Gulf of Mexico. Science of The Total Environment, 508, 553–565. https://doi.org/10.1016/j.scitotenv.2014.11.050

    Article  CAS  Google Scholar 

  61. Goldberg, E. D., & Bertine, K. K. (2000). Beyond the mussel watch—New directions for monitoring marine pollution. Science of The Total Environment, 247(2), 165–174. https://doi.org/10.1016/S0048-9697(99)00488-X

    Article  CAS  Google Scholar 

  62. Bocquené, G., Chantereau, S., Clérendeau, C., Beausir, E., Ménard, D., Raffin, B., Minier, C., Burgeot, T., Leszkowicz, A. P., & Narbonne, J.-F. (2004). Biological effects of the “Erika” oil spill on the common mussel (Mytilus edulis). Aquatic Living Resources, 17(3), 309–316. https://doi.org/10.1051/alr:2004033

    Article  Google Scholar 

  63. Gomes, F., Oliveira, M., Ramalhosa, M. J., Delerue-Matos, C., & Morais, S. (2013). Polycyclic aromatic hydrocarbons in commercial squids from different geographical origins: Levels and risks for human consumption. Food and Chemical Toxicology, 59, 46–54. https://doi.org/10.1016/j.fct.2013.05.034

    Article  CAS  Google Scholar 

  64. Semedo, M., Oliveira, M., Gomes, F., Reis-Henriques, M. A., Delerue-Matos, C., Morais, S., & Ferreira, M. (2014). Seasonal patterns of polycyclic aromatic hydrocarbons in digestive gland and arm of octopus (Octopus vulgaris) from the Northwest Atlantic. Science of The Total Environment, 481, 488–497. https://doi.org/10.1016/j.scitotenv.2014.02.088

    Article  CAS  Google Scholar 

  65. Valdez Domingos, F. X., Oliveira Ribeiro, C. A., Pelletier, É., & Rouleau, C. (2011). Tissue distribution and depuration kinetics of waterborne 14C-labeled light PAHs in mummichog (Fundulus heteroclitus). Environmental Science & Technology, 45(7), 2684–2690. https://doi.org/10.1021/es103133h

    Article  CAS  Google Scholar 

  66. Basu, N., Billiard, S., Fragoso, N., Omoike, A., Tabash, S., Brown, S., & Hodson, P. (2001). Ethoxyresorufin-O-deethylase induction in trout exposed to mixtures of polycyclic aromatic hydrocarbons. Environmental Toxicology and Chemistry, 20(6), 1244–1251. https://doi.org/10.1002/etc.5620200613

    Article  CAS  Google Scholar 

  67. Huggett, R. J., Stegeman, J. J., Page, D. S., Parker, K. R., Woodin, B., & Brown, J. S. (2003). Biomarkers in fish from Prince William Sound and the Gulf of Alaska: 1999–2000. Environmental Science & Technology, 37(18), 4043–4051. https://doi.org/10.1021/es0342401

    Article  CAS  Google Scholar 

  68. Wilson, J. Y., Cooke, S. R., Moore, M. J., Martineau, D., Mikaelian, I., Metner, D. A., Lockhart, W. L., & Stegeman, J. J. (2005). Systemic effects of arctic pollutants in beluga whales indicated by CYP1A1 expression. Environmental Health Perspectives, 113(11), 1594–1599. https://doi.org/10.1289/ehp.7664

    Article  CAS  Google Scholar 

  69. Wilson, J. Y., Wells, R., Aguilar, A., Borrell, A., Tornero, V., Reijnders, P., Moore, M., & Stegeman, J. J. (2007). Correlates of cytochrome P450 1A1 expression in bottlenose dolphin (Tursiops truncatus) integument biopsies. Toxicological Sciences, 97(1), 111–119. https://doi.org/10.1093/toxsci/kfm031

    Article  CAS  Google Scholar 

  70. Trust, K. A., Esler, D., Woodin, B. R., & Stegeman, J. J. (2000). Cytochrome P450 1A induction in sea ducks inhabiting nearshore areas of Prince William Sound. Alaska. Marine Pollution Bulletin, 40(5), 397–403. https://doi.org/10.1016/S0025-326X(99)00236-2

    Article  CAS  Google Scholar 

  71. Valentine, D. L., Fisher, G. B., Bagby, S. C., Nelson, R. K., Reddy, C. M., Sylva, S. P., & Woo, M. A. (2014). Fallout plume of submerged oil from Deepwater Horizon. Proceedings of the National Academy of Sciences, 111(45), 15906–15911. https://doi.org/10.1073/pnas.1414873111

    Article  CAS  Google Scholar 

  72. Passow, U., Sweet, J., Francis, S., Xu, C., Dissanayake, A. L., Lin, Y.-Y., Santschi, P. H., & Quigg, A. (2019). Incorporation of oil into diatom aggregates. Marine Ecology Progress Series, 612, 65–86. https://doi.org/10.3354/meps12881

    Article  CAS  Google Scholar 

  73. Kim, C. J., Hong, G. H., Kim, H. E., & Yang, D. B. (2014). Polycyclic aromatic hydrocarbons (PAHs) in starfish body and bottom sediments in Mohang Harbor (Taean). South Korea. Environmental Monitoring and Assessment, 186(7), 4343–4356. https://doi.org/10.1007/s10661-014-3703-z

    Article  CAS  Google Scholar 

  74. Harvey, H. R., & Taylor, K. A. (2017). Alkane and polycyclic aromatic hydrocarbons in sediments and benthic invertebrates of the northern Chukchi Sea. Deep Sea Research Part II: Topical Studies in Oceanography, 144, 52–62. https://doi.org/10.1016/j.dsr2.2017.08.011

    Article  CAS  Google Scholar 

  75. Batista, D., Tellini, K., Nudi, A. H., Massone, T. P., Scofield, A. D. L., & de LR Wagener, A. (2013). Marine sponges as bioindicators of oil and combustion derived PAH in coastal waters. Marine Environmental Research, 92, 234–243. https://doi.org/10.1016/j.marenvres.2013.09.022

    Article  CAS  Google Scholar 

  76. Mahaut, M.-L., Basuyaux, O., Baudinière, E., Chataignier, C., Pain, J., & Caplat, C. (2013). The porifera Hymeniacidon perlevis (Montagu, 1818) as a bioindicator for water quality monitoring. Environmental Science and Pollution Research, 20(5), 2984–2992. https://doi.org/10.1007/s11356-012-1211-7

    Article  CAS  Google Scholar 

  77. Jupp, B. P., Fowler, S. W., Dobretsov, S., van der Wiele, H., & Al-Ghafri, A. (2017). Assessment of heavy metal and petroleum hydrocarbon contamination in the Sultanate of Oman with emphasis on harbours, marinas, terminals and ports. Marine Pollution Bulletin, 121(1), 260–273. https://doi.org/10.1016/j.marpolbul.2017.05.015

    Article  CAS  Google Scholar 

  78. Soares-Gomes, A., Neves, R. L., Aucélio, R., Van Der Ven, P. H., Pitombo, F. B., Mendes, C. L. T., & Ziolli, R. L. (2010). Changes and variations of polycyclic aromatic hydrocarbon concentrations in fish, barnacles and crabs following an oil spill in a mangrove of Guanabara Bay. Southeast Brazil. Marine Pollution Bulletin, 60(8), 1359–1363. https://doi.org/10.1016/j.marpolbul.2010.05.013

    Article  CAS  Google Scholar 

  79. Viñas, L., Franco, M. A., Soriano, J. A., González, J. J., Ortiz, L., Bayona, J. M., & Albaigés, J. (2009). Accumulation trends of petroleum hydrocarbons in commercial shellfish from the Galician coast (NW Spain) affected by the Prestige oil spill. Chemosphere, 75(4), 534–541. https://doi.org/10.1016/j.chemosphere.2008.12.003

    Article  CAS  Google Scholar 

  80. Keshavarzifard, M., Moore, F., Keshavarzi, B., & Sharifi, R. (2017). Polycyclic aromatic hydrocarbons (PAHs) in sediment and sea urchin (Echinometra mathaei) from the intertidal ecosystem of the northern Persian Gulf: Distribution, sources, and bioavailability. Marine Pollution Bulletin, 123(1), 373–380. https://doi.org/10.1016/j.marpolbul.2017.09.008

    Article  CAS  Google Scholar 

  81. Colavecchia, M. V., Backus, S. M., Hodson, P. V., & Parrott, J. L. (2004). Toxicity of oil sands to early life stages of fathead minnows (Pimephales promelas). Environmental Toxicology and Chemistry, 23(7), 1709–1718. https://doi.org/10.1897/03-412

    Article  CAS  Google Scholar 

  82. Greer, C. D., Hodson, P. V., Li, Z., King, T., & Lee, K. (2012). Toxicity of crude oil chemically dispersed in a wave tank to embryos of Atlantic herring (Clupea harengus). Environmental Toxicology and Chemistry, 31(6), 1324–1333. https://doi.org/10.1002/etc.1828

    Article  CAS  Google Scholar 

  83. McIntosh, S., King, T., Wu, D., & Hodson, P. V. (2010). Toxicity of dispersed weathered crude oil to early life stages of Atlantic herring (Clupea harengus). Environmental Toxicology and Chemistry, 29(5), 1160–1167. https://doi.org/10.1002/etc.134

    Article  CAS  Google Scholar 

  84. Wu, D., Wang, Z., Hollebone, B., McIntosh, S., King, T., & Hodson, P. V. (2012). Comparative toxicity of four chemically dispersed and undispersed crude oils to rainbow trout embryos. Environmental Toxicology and Chemistry, 31(4), 754–765. https://doi.org/10.1002/etc.1739

    Article  CAS  Google Scholar 

  85. Mager, E. M., Pasparakis, C., Schlenker, L. S., Yao, Z., Bodinier, C., Stieglitz, J. D., Hoenig, R., Morris, J. M., Benetti, D. D., & Grosell, M. (2017). Assessment of early life stage mahi-mahi windows of sensitivity during acute exposures to Deepwater Horizon crude oil. Environmental Toxicology and Chemistry, 36(7), 1887–1895. https://doi.org/10.1002/etc.3713

    Article  CAS  Google Scholar 

  86. Perrichon, P., Pasparakis, C., Mager, E. M., Stieglitz, J. D., Benetti, D. D., Grosell, M., & Burggren, W. W. (2017). Morphology and cardiac physiology are differentially affected by temperature in developing larvae of the marine fish mahi-mahi (Coryphaena hippurus). Biology Open, 6(6), 800–809. https://doi.org/10.1242/bio.025692

    Article  Google Scholar 

  87. Madison, B. N., Hodson, P. V., & Langlois, V. S. (2015). Diluted bitumen causes deformities and molecular responses indicative of oxidative stress in Japanese medaka embryos. Aquatic Toxicology, 165, 222–230. https://doi.org/10.1016/j.aquatox.2015.06.006

    Article  CAS  Google Scholar 

  88. Alderman, S. L., Lin, F., Farrell, A. P., Kennedy, C. J., & Gillis, T. E. (2017). Effects of diluted bitumen exposure on juvenile sockeye salmon: From cells to performance. Environmental Toxicology and Chemistry, 36(2), 354–360. https://doi.org/10.1002/etc.3533

    Article  CAS  Google Scholar 

  89. Philibert, D. A., Philibert, C. P., Lewis, C., & Tierney, K. B. (2016). Comparison of diluted bitumen (dilbit) and conventional crude oil toxicity to developing zebrafish. Environmental Science & Technology, 50(11), 6091–6098. https://doi.org/10.1021/acs.est.6b00949

    Article  CAS  Google Scholar 

  90. Alderman, S. L., Lin, F., Gillis, T. E., Farrell, A. P., & Kennedy, C. J. (2018). Developmental and latent effects of diluted bitumen exposure on early life stages of sockeye salmon (Oncorhynchus nerka). Aquatic Toxicology, 202, 6–15. https://doi.org/10.1016/j.aquatox.2018.06.014

    Article  CAS  Google Scholar 

  91. Heintz, R. A., Rice, S. D., Wertheimer, A. C., Bradshaw, R. F., Thrower, F. P., Joyce, J. E., & Short, J. W. (2000). Delayed effects on growth and marine survival of pink salmon Oncorhynchus gorbuscha after exposure to crude oil during embryonic development. Marine Ecology Progress Series, 208, 205–216. https://doi.org/10.3354/meps208205

    Article  Google Scholar 

  92. Hicken, C. E., Linbo, T. L., Baldwin, D. H., Willis, M. L., Myers, M. S., Holland, L., Larsen, M., Stekoll, M. S., Rice, S. D., Collier, T. K., Scholz, N. L., & Incardona, J. P. (2011). Sublethal exposure to crude oil during embryonic development alters cardiac morphology and reduces aerobic capacity in adult fish. Proceedings of the National Academy of Sciences, 108(17), 7086–7090. https://doi.org/10.1073/pnas.1019031108

    Article  Google Scholar 

  93. Mager, E. M., Esbaugh, A. J., Stieglitz, J. D., Hoenig, R., Bodinier, C., Incardona, J. P., Scholz, N. L., Benetti, D. D., & Grosell, M. (2014). Acute embryonic or juvenile exposure to deepwater horizon crude oil impairs the swimming performance of mahi-mahi (Coryphaena hippurus). Environmental Science & Technology, 48(12), 7053–7061. https://doi.org/10.1021/es501628k

    Article  CAS  Google Scholar 

  94. Nelson, D., Stieglitz, J. D., Cox, G. K., Heuer, R. M., Benetti, D. D., Grosell, M., & Crossley, D. A. (2017). Cardio-respiratory function during exercise in the cobia, Rachycentron canadum: The impact of crude oil exposure. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 201, 58–65. https://doi.org/10.1016/j.cbpc.2017.08.006

    Article  CAS  Google Scholar 

  95. Johansen, J. L., & Esbaugh, A. J. (2017). Sustained impairment of respiratory function and swim performance following acute oil exposure in a coastal marine fish. Aquatic Toxicology, 187, 82–89. https://doi.org/10.1016/j.aquatox.2017.04.002

    Article  CAS  Google Scholar 

  96. Bejarano, A. C., Farr, J. K., Jenne, P., Chu, V., & Hielscher, A. (2016). The Chemical Aquatic Fate and Effects database (CAFE), a tool that supports assessments of chemical spills in aquatic environments. Environmental Toxicology and Chemistry, 35(6), 1576–1586. https://doi.org/10.1002/etc.3289

    Article  CAS  Google Scholar 

  97. Barron, M. G., Conmy, R. N., Holder, E. L., Meyer, P., Wilson, G. J., Principe, V. E., & Willming, M. M. (2018). Toxicity of Cold Lake Blend and Western Canadian Select dilbits to standard aquatic test species. Chemosphere, 191, 1–6. https://doi.org/10.1016/j.chemosphere.2017.10.014

    Article  CAS  Google Scholar 

  98. Hook, S. E., Mondon, J., Revill, A. T., Greenfield, P. A., Stephenson, S. A., Strzelecki, J., Corbett, P., Armstrong, E., Song, J., Doan, H., & Barrett, S. (2018). Monitoring sublethal changes in fish physiology following exposure to a light, unweathered crude oil. Aquatic Toxicology, 204, 27–45. https://doi.org/10.1016/j.aquatox.2018.08.013

    Article  CAS  Google Scholar 

  99. Brown-Peterson, N. J., Krasnec, M. O., Lay, C. R., Morris, J. M., & Griffitt, R. J. (2017). Responses of juvenile southern flounder exposed to Deepwater Horizon oil-contaminated sediments. Environmental Toxicology and Chemistry, 36(4), 1067–1076. https://doi.org/10.1002/etc.3629

    Article  CAS  Google Scholar 

  100. Kennedy, C. J., & Smyth, K. R. (2015). Disruption of the rainbow trout reproductive endocrine axis by the polycyclic aromatic hydrocarbon benzo[a]pyrene. General and Comparative Endocrinology, 219, 102–111. https://doi.org/10.1016/j.ygcen.2015.03.013

    Article  CAS  Google Scholar 

  101. Sol, S. Y., Johnson, L. L., Horness, B. H., & Collier, T. K. (2000). Relationship between oil exposure and reproductive parameters in fish collected following the Exxon Valdez oil spill. Marine Pollution Bulletin, 40(12), 1139–1147. https://doi.org/10.1016/S0025-326X(00)00074-6

    Article  CAS  Google Scholar 

  102. Johnson, L. L., Arkoosh, M. R., Bravo, C. F., Collier, T. K., Krahn, M. M., Meador, J. P., Myers, M. S., Reichert, W. L., & Stein, J. E. (2008). The effects of polycyclic aromatic hydrocarbons in fish from Puget Sound, Washington. In R. T. Di Giulio & D. E. Hinton (Eds.), The Toxicology of Fishes (p. 1071). CPC Press.

  103. Bravo, C. F., Curtis, L. R., Myers, M. S., Meador, J. P., Johnson, L., & l., Buzitis, J., Collier, T. K., Morrow, J. D., Laetz, C. A., Loge, F. J., & Arkoosh, M. R. (2011). Biomarker responses and disease susceptibility in juvenile rainbow trout Oncorhynchus mykiss fed a high molecular weight PAH mixture. Environmental Toxicology and Chemistry, 30(3), 704–714. https://doi.org/10.1002/etc.439

    Article  CAS  Google Scholar 

  104. Frost, K. J., Lowry, L. F., & Ver Hoef, J. M. (1999). Monitoring the trend of harbor seals in Prince William Sound, Alaska, after the Exxon Valdez oil spill. Marine Mammal Science, 15(2), 494–506. https://doi.org/10.1111/j.1748-7692.1999.tb00815.x

    Article  Google Scholar 

  105. Alloy, M. M., Boube, I., Griffitt, R. J., Oris, J. T., & Roberts, A. P. (2015). Photo-induced toxicity of Deepwater Horizon slick oil to blue crab (Callinectes sapidus) larvae. Environmental Toxicology and Chemistry, 34(9), 2061–2066. https://doi.org/10.1002/etc.3026

    Article  CAS  Google Scholar 

  106. Cajaraville, M. P., Garmendia, L., Orbea, A., Werding, R., Gómez-Mendikute, A., Izagirre, U., Soto, M., & Marigómez, I. (2006). Signs of recovery of mussels health two years after the Prestige oil spill. Marine Environmental Research, 62, S337–S341. https://doi.org/10.1016/j.marenvres.2006.04.048

    Article  CAS  Google Scholar 

  107. Bellas, J., Saco-Álvarez, L., Nieto, Ó., & Beiras, R. (2008). Ecotoxicological evaluation of polycyclic aromatic hydrocarbons using marine invertebrate embryo–larval bioassays. Marine Pollution Bulletin, 57(6), 493–502. https://doi.org/10.1016/j.marpolbul.2008.02.039

    Article  CAS  Google Scholar 

  108. Bellas, J., Saco-Álvarez, L., Nieto, Ó., Bayona, J. M., Albaigés, J., & Beiras, R. (2013). Evaluation of artificially-weathered standard fuel oil toxicity by marine invertebrate embryogenesis bioassays. Chemosphere, 90(3), 1103–1108. https://doi.org/10.1016/j.chemosphere.2012.09.015

    Article  CAS  Google Scholar 

  109. Castège, I., Milon, E., & Pautrizel, F. (2014). Response of benthic macrofauna to an oil pollution: Lessons from the “Prestige” oil spill on the rocky shore of Guéthary (south of the Bay of Biscay, France). Deep Sea Research Part II: Topical Studies in Oceanography, 106, 192–197. https://doi.org/10.1016/j.dsr2.2013.09.035

    Article  Google Scholar 

  110. Gómez Gesteira, J. L., & Dauvin, J.-C. (2005). Impact of the Aegean Sea oil spill on the subtidal fine sand macrobenthic community of the Ares-Betanzos Ria (Northwest Spain). Marine Environmental Research, 60(3), 289–316. https://doi.org/10.1016/j.marenvres.2004.11.001

    Article  CAS  Google Scholar 

  111. Jung, Y.-H., Yoon, K.-T., Shim, W.-J., & Park, H.-S. (2014). Short-term variation of the macrobenthic fauna structure on rocky shores after the Hebei Spirit oil spill, west coast of Korea. Journal of Coastal Research, 31(1), 177–183. https://doi.org/10.2112/JCOASTRES-D-13-00161.1

    Article  Google Scholar 

  112. Cebrian, E., & Uriz, M. J. (2007). Contrasting effects of heavy metals and hydrocarbons on larval settlement and juvenile survival in sponges. Aquatic Toxicology, 81(2), 137–143. https://doi.org/10.1016/j.aquatox.2006.11.010

    Article  CAS  Google Scholar 

  113. Lee, K.-W., Shim, W. J., Yim, U. H., & Kang, J.-H. (2013). Acute and chronic toxicity study of the water accommodated fraction (WAF), chemically enhanced WAF (CEWAF) of crude oil and dispersant in the rock pool copepod Tigriopus japonicus. Chemosphere, 92(9), 1161–1168. https://doi.org/10.1016/j.chemosphere.2013.01.080

    Article  CAS  Google Scholar 

  114. Olsen, A. J., Nordtug, T., Altin, D., Lervik, M., & Hansen, B. H. (2013). Effects of dispersed oil on reproduction in the cold water copepod Calanus finmarchicus (Gunnerus). Environmental Toxicology and Chemistry, 32(9), 2045–2055. https://doi.org/10.1002/etc.2273

    Article  CAS  Google Scholar 

  115. Peckol, P., Levings, S. C., & Garrity, S. D. (1990). Kelp response following the World Prodigy oil spill. Marine Pollution Bulletin, 21(10), 473–476. https://doi.org/10.1016/0025-326X(90)90066-H

    Article  Google Scholar 

  116. Dean, T. A., Stekoll, M. S., & Smith, R. O. (1996). Kelps and oil: The effects of the Exxon Valdez oil spill on subtidal algae. In S. D. Rice, R. B. Spies, D. A. Wolfe, & B. A. Wright (Eds.), American Fisheries Society Symposium: Proceedings of the Exxon Valdez oil spill symposium 18, 412–423.

  117. Stekoll, M. S., & Deysher, L. (2000). Response of the dominant alga Fucus gardneri (Silva) (Phaeophyceae) to the Exxon Valdez oil spill and clean-up. Marine Pollution Bulletin, 40(11), 1028–1041. https://doi.org/10.1016/S0025-326X(00)00047-3

    Article  CAS  Google Scholar 

  118. Houghton, J. P., Lees, D. C., Driskell, W. B., Lindstrom, S. C., & Mearns, A. J. (1996). Recovery of Prince William Sound intertidal epibiota from Exxon Valdez oiling and shoreline treatments, 1989 through 1992. In S. D. Rice, R. B. Spies, D. A. Wolfe, & B. A. Wright (Eds.), American Fisheries Society Symposium: Proceedings of the Exxon Valdez oil spill symposium 18, 379–411.

  119. Kenworthy, W. J., Durako, M. J., Fatemy, S. M. R., Valavi, H., & Thayer, G. W. (1993). Ecology of seagrasses in northeastern Saudi Arabia one year after the Gulf War oil spill. Marine Pollution Bulletin, 27, 213–222. https://doi.org/10.1016/0025-326X(93)90027-H

    Article  Google Scholar 

  120. Kenworthy, W. J., Cosentino-Manning, N., Handley, L., Wild, M., & Rouhani, S. (2017). Seagrass response following exposure to Deepwater Horizon oil in the Chandeleur Islands, Louisiana (USA). Marine Ecology Progress Series, 576, 145–161. https://doi.org/10.3354/meps11983

    Article  CAS  Google Scholar 

  121. Martin, C. W., Hollis, L. O., & Turner, R. E. (2015). Effects of oil-contaminated sediments on submerged vegetation: An experimental assessment of Ruppia maritima. PLoS One, 10(10), e0138797. https://doi.org/10.1371/journal.pone.0138797

    Article  CAS  Google Scholar 

  122. Hook, S. E., & Osborn, H. L. (2012). Comparison of toxicity and transcriptomic profiles in a diatom exposed to oil, dispersants, dispersed oil. Aquatic Toxicology, 124–125, 139–151. https://doi.org/10.1016/j.aquatox.2012.08.005

    Article  CAS  Google Scholar 

  123. Echeveste, P., Agustí, S., & Dachs, J. (2010). Cell size dependent toxicity thresholds of polycyclic aromatic hydrocarbons to natural and cultured phytoplankton populations. Environmental Pollution, 158(1), 299–307. https://doi.org/10.1016/j.envpol.2009.07.006

    Article  CAS  Google Scholar 

  124. Fulton, E. A., Hutton, T., van Putten, I. E., Lozano-Montes, H., & Gorton, R. (2017). Gladstone Atlantis model: Implementation and initial results. Report for Gladstone Healthy Harbour Partnership, 167.

  125. Gray, R., CSIRO (Australia), Division of Marine and Atmospheric Research, North West Shelf Joint Environmental Management Study, & Western Australia. (2006). Ecosystem model specification within an agent based framework. CSIRO Marine and Atmospheric Research: Government of Western Australia.

  126. De Laender, F., De Schamphelaere, K. A. C., Vanrolleghem, P. A., & Janssen, C. R. (2008). Validation of an ecosystem modelling approach as a tool for ecological effect assessments. Chemosphere, 71(3), 529–545. https://doi.org/10.1016/j.chemosphere.2007.09.052

  127. Wang, H., Xia, X., Wang, Z., Liu, R., Muir, D. C. G., & Wang, W.-X. (2021). Contribution of dietary uptake to PAH bioaccumulation in a simplified pelagic food chain: Modeling the influences of continuous vs intermittent feeding in zooplankton and fish. Environmental Science & Technology, 55(3), 1930–1940. https://doi.org/10.1021/acs.est.0c06970

    Article  CAS  Google Scholar 

  128. Pouch, A., Zaborska, A., Dąbrowska, A. M., & Pazdro, K. (2022). Bioaccumulation of PCBs, HCB and PAHs in the summer plankton from West Spitsbergen fjords. Marine Pollution Bulletin, 177,

    Article  CAS  Google Scholar 

  129. Ruberg, E. J., Elliott, J. E., & Williams, T. D. (2021). Review of petroleum toxicity and identifying common endpoints for future research on diluted bitumen toxicity in marine mammals. Ecotoxicology, 30(4), 537–551. https://doi.org/10.1007/s10646-021-02373-x

    Article  CAS  Google Scholar 

  130. Head, I. M., Jones, D. M., & Röling, W. F. M. (2006). Marine microorganisms make a meal of oil. Nature Reviews Microbiology, 4(3), 3. https://doi.org/10.1038/nrmicro1348

    Article  CAS  Google Scholar 

  131. Joye, S. B., Bracco, A., Özgökmen, T. M., Chanton, J. P., Grosell, M., MacDonald, I. R., Cordes, E. E., Montoya, J. P., & Passow, U. (2016). The Gulf of Mexico ecosystem, six years after the Macondo oil well blowout. Deep Sea Research Part II: Topical Studies in Oceanography, 129, 4–19. https://doi.org/10.1016/j.dsr2.2016.04.018

    Article  Google Scholar 

  132. Joye, S. B. (2015). Deepwater Horizon, 5 years on. Science, 349(6248), 592–593. https://doi.org/10.1126/science.aab4133

    Article  CAS  Google Scholar 

  133. Shen, W., Zhu, N., Cui, J., Wang, H., Dang, Z., Wu, P., Luo, Y., & Shi, C. (2016). Ecotoxicity monitoring and bioindicator screening of oil-contaminated soil during bioremediation. Ecotoxicology and Environmental Safety, 124, 120–128. https://doi.org/10.1016/j.ecoenv.2015.10.005

    Article  CAS  Google Scholar 

  134. Sobocinski, K. L. (2021). The state of the Salish sea. Salish Sea Institute, West Washington University. https://doi.org/10.25710/vfhb-3a69

Download references

Funding

This work was supported by funding from Fisheries and Oceans Canada Multi-Partner Research Initiative (MPRI); British Columbia Salmon Restoration and Innovation Fund (BCSRIF) to S.E.A. and D.L.; and Washington SeaGrant (R/HCE-25) Evaluating the effects of Southern Resident orcas recovery actions and external threats in the marine ecosystem of Puget Sound to H.M.L.

Author information

Authors and Affiliations

Authors

Contributions

R.L., S.M., J.P.G. and E.A.F. drafted the initial text. All authors contributed to the final manuscript text. S.M. prepared Figs. 1, 2 and 3. S.E.H. and H.P. conducted the data review and selection for Tables 2, 3 and S1. R.L. prepared Tables 4 and S2. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Raisha Lovindeer or Sara Mynott.

Ethics declarations

Ethics Approval

No human nor animal studies were conducted and no ethical approvals were required.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Raisha Lovindeer and Sara Mynott are joint first authors

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (ZIP 10 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lovindeer, R., Mynott, S., Porobic, J. et al. Ecosystem-level Impacts of Oil Spills: A Review of Available Data with Confidence Metrics for Application to Ecosystem Models. Environ Model Assess 28, 939–960 (2023). https://doi.org/10.1007/s10666-023-09905-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-023-09905-1

Keywords

Navigation