Skip to main content
Log in

Sustainability Assessment and Most Productive Scale Size: a Stochastic DEA Approach with Dual Frontiers

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

Sustainability performance analysis is a critical and significant aspect for organizations due to growing challenges in competitive industries. Finding the most productive scale size (MPSS) is also necessary for reorganizing. Conventional data envelopment analysis (DEA) models analyze the performance from the optimistic viewpoint. However, evaluating the efficiency from the pessimistic outlook and integrating optimistic and pessimistic efficiencies lead to more rational and reliable results. Because of the presence of random data in many real-world applications and the importance of the efficiency examination from optimistic and pessimistic standpoints, a double frontiers approach based on stochastic DEA (SDEA) is proposed in the current paper to assess the sustainability performance of decision making units (DMUs) where random and triple bottom line factors including economic, social and environmental ones are presented. To illustrate, the sustainability performance and MPSS are measured using SDEA from two aspects, optimistic and pessimistic. Also, the best and worst stochastic efficiency gains are unified by the Hurwicz criterion. A case study on Iranian gas enterprises is applied to illuminate and demonstrate the proposed methodology. The findings reveal that the introduced approach can provide a fair identification of the MPSS sustainable company where random and undesirable measures are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table 3
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

All data analyzed during this study are included in this article.

Code Availability

GAMS codes used for solving models are available upon request.

Notes

  1. The data set in Excel format and estimation codes will be shared with those who wish to replicate the results of this research.

References

  1. Büyüközkan, G., & Karabulut, Y. (2018). Sustainability performance evaluation: Literature review and future directions. Journal of Environmental Management, 217, 253–267.

    Article  Google Scholar 

  2. Zhou, H., Yang, Y., Chen, Y., & Zhu, J. (2018). Data envelopment analysis application in sustainability: The origins development and future directions. European Journal of Operational Research, 264(1), 1–16.

    Article  Google Scholar 

  3. Galán-Martín, Á., Guillén-Gosálbez, G., Stamford, L., & Azapagic, A. (2016). Enhanced data envelopment analysis for sustainability assessment: A novel methodology and application to electricity technologies. Computers & Chemical Engineering, 90, 188–200.

    Article  Google Scholar 

  4. Amirteimoori, H., Amirteimoori, A., & Amirteimoori, A. (2020). Sustainability assessment in the presence of undesirable factors over time: A case on gas companies. Expert Systems, 37(3), e12316.

  5. Jahani Sayyad Noveiri, M., & Kordrostami, S. (2019). Multi-period sustainability performance in the presence of discrete and bounded measures. International Journal of Industiral Engineering & Producion Research, 30(4), 507–528.

    Google Scholar 

  6. Mehta, K., Sharma, R., & Vyas, V. (2019). Efficiency and ranking of sustainability index of India using DEA-TOPSIS. Journal of Indian Business Research, 11(2), 179–199.

    Article  Google Scholar 

  7. Fallah, M., & Hosseinzadeh Lotfi, F. (2020). Sustainability assessment of Iranian petrochemical companies in stock exchange: A data envelopment analysis-based approach. Expert Systems, 37(3), e12359.

  8. Zhao, L., Zha, Y., Zhuang, Y., & Liang, L. (2019). Data envelopment analysis for sustainability evaluation in China: Tackling the economic environmental and social dimensions. European Journal of Operational Research, 275(3), 1083–1095.

    Article  Google Scholar 

  9. Tajbakhsh, A., & Shamsi, A. (2019). Sustainability performance of countries matters: A non-parametric index. Journal of Cleaner Production, 224, 506–522.

    Article  Google Scholar 

  10. Sarkhosh-Sara, A., Tavassoli, M., & Heshmati, A. (2020). Assessing the sustainability of high- middle- and low-income countries: A network DEA model in the presence of both zero data and undesirable outputs. Sustainable Production and Consumption, 21, 252–268.

    Article  Google Scholar 

  11. Jahani Sayyad Noveiri, M., & Kordrostami, S. (2020). Trade-offs analysis of sustainability dimensions using integer-valued DEA. Croatian Operational Research Review, 275–289.

  12. Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 2(6), 429–444.

    Article  Google Scholar 

  13. Cooper, W. W., Deng, H., Huang, Z., & Li, S. X. (2002). Chance constrained programming approaches to technical efficiencies and inefficiencies in stochastic data envelopment analysis. Journal of the Operational Research Society, 53(12), 1347–1356.

    Article  Google Scholar 

  14. Cooper, W. W., Deng, H., Huang, Z., & Li, S. X. (2004). Chance constrained programming approaches to congestion in stochastic data envelopment analysis. European Journal of Operational Research, 155(2), 487–501.

    Article  Google Scholar 

  15. Khodabakhshi, M. (2009). Estimating most productive scale size with stochastic data in data envelopment analysis. Economic Modelling, 26(5), 968–973.

    Article  Google Scholar 

  16. Chin, K. S., & Yang, J. B. (2007). Measuring the performances of decision-making units using geometric average efficiency AU - Wang Y M. Journal of the Operational Research Society, 58(7), 929–937.

    Article  Google Scholar 

  17. Wang, Y. M., & Lan, Y. X. (2011). Measuring Malmquist productivity index: A new approach based on double frontiers data envelopment analysis. Mathematical and Computer Modelling, 54(11), 2760–2771.

    Article  Google Scholar 

  18. Azadi, M., & Saen, R. F. (2011). Developing a WPF-CCR model for selecting suppliers in the presence of stochastic data. OR Insight, 24(1), 31–48.

    Article  Google Scholar 

  19. Banker, R. D. (1984). Estimating most productive scale size using data envelopment analysis. European Journal of Operational Research, 17(1), 35–44.

    Article  Google Scholar 

  20. Cooper, W. W., Thompson, R. G., & Thrall, R. M. (1996). Chapter 1 Introduction: Extensions and new developments in DEA. Annals of Operations Research, 66(1), 1–45.

  21. Johnson, A. L. (2017). STOCHASTIC DEA. In K. Tone (Ed.), Advances in DEA Theory and Applications (pp. 85–99).

  22. Olesen, O. B., & Petersen, N. C. (2016). Stochastic data envelopment analysis—A review. European Journal of Operational Research, 251(1), 2–21.

    Article  Google Scholar 

  23. Cooper, W. W., Huang, Z., Lelas, V., Li, S. X., & Olesen, O. B. (1998). Chance constrained programming formulations for stochastic characterizations of efficiency and dominance in DEA. Journal of Productivity Analysis, 9(1), 53–79.

    Article  Google Scholar 

  24. Cooper, W. W., Huang, Z., & Li, S. X. (1996). Chapter 13 Satisficing DEA models under chance constraints. Annals of Operations Research, 66(4), 279–295.

  25. Huang, Z., & Li, S. X. (2001). Stochastic DEA models with different types of input-output disturbances. Journal of Productivity Analysis, 15(2), 95–113.

    Article  Google Scholar 

  26. Korhonen, P. J., & Luptacik, M. (2004). Eco-efficiency analysis of power plants: An extension of data envelopment analysis. European Journal of Operational Research, 154(2), 437–446.

    Article  Google Scholar 

  27. Cooper, W. W., Seiford, L. M., & Tone, K. (2007). Data envelopment analysis: A comprehensive text with models, applications, references and DEA-solver software. US: Springer.

    Google Scholar 

  28. Hurwicz, L. (1951). Optimality criteria for decision making under ignorance (p. 370). Chicago: Cowles Commission Discussion Paper.

    Google Scholar 

  29. Wang, Y. M., & Lan, Y. X. (2013). Estimating most productive scale size with double frontiers data envelopment analysis. Economic Modelling, 33, 182–186.

    Article  Google Scholar 

  30. Wen, M. (2015). Uncertain data envelopment analysis. Berlin Heidelberg: Springer.

    Book  Google Scholar 

  31. lo Storto, C. (2013). Gas distribution in Italy: A non parametric analysis of companies operational efficiency. Advanced Materials Research, 838–841, 1972–1978.

    Article  Google Scholar 

  32. Sadjadi, S. J., Omrani, H., Abdollahzadeh, S., Alinaghian, M., & Mohammadi, H. (2011). A robust super-efficiency data envelopment analysis model for ranking of provincial gas companies in Iran. Expert Systems with Applications, 38(9), 10875–10881.

    Article  Google Scholar 

  33. Amirteimoori, A., Despotis, D. K., & Kordrostami, S. (2014). Variables reduction in data envelopment analysis. Optimization, 63(5), 735–745.

    Article  Google Scholar 

  34. Hollas, D. R., Macleod, K. R., & Stansell, S. R. (2002). A data envelopment analysis of gas utilities’ efficiency. Journal of Economics and Finance, 26(2), 123–137.

    Article  Google Scholar 

  35. Vikas, V., & Bansal, R. (2019). Efficiency evaluation of Indian oil and gas sector: Data envelopment analysis. International Journal of Emerging Markets, 14(2), 362–378.

    Article  Google Scholar 

  36. Ghazi, A., & Hosseinzadeh Lotfi, F. (2019). Assessment and budget allocation of Iranian natural gas distribution company- A CSW DEA based model. Socio-Economic Planning Sciences, 66, 112–118.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally in this research.

Corresponding author

Correspondence to Sohrab Kordrostami.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

The deterministic equivalent form of stochastic model (4) is as follows:

$$\begin{array}{lll}{{OE}_{o}^{*}}^{\alpha }=Min& \frac{{\theta }_{o}^{\alpha }}{{\varphi }_{o}^{\alpha }}-\varepsilon \left(\sum\limits_{i=1}^{m}{s}_{i}^{-}+\sum\limits_{r=1}^{s}{s}_{r}^{+}+\sum\limits_{k=1}^{K}{\overline{s} }_{k}\right)& \\ subject\ to& \sum\limits_{j=1}^{n}{\lambda }_{j}{\overline{x} }_{ij}-{\theta }_{o}^{\alpha }{\overline{x} }_{io}+{s}_{i}^{-}-{\phi }^{-1}\left(\alpha \right){\sigma }_{i}^{I}\left({\theta }_{o}^{\alpha },\lambda \right)=0,& i=1,...,m,\\ & \sum\limits_{j=1}^{n}{\lambda }_{j}{\overline{y} }_{rj}-{\varphi }_{o}^{\alpha }{\overline{y} }_{ro}-{s}_{r}^{+}+{\phi }^{-1}\left(\alpha \right){\sigma }_{r}^{O}\left({\varphi }_{o}^{\alpha },\lambda \right)=0,& r=1,...,s,\\ & \sum\limits_{j=1}^{n}{\lambda }_{j}{\overline{z} }_{kj}-{\theta }_{o}^{\alpha }{\overline{z} }_{ko}+{\overline{s} }_{k}-{\phi }^{-1}\left(\alpha \right){\sigma }_{k}^{K}\left({\theta }_{o}^{\alpha },\lambda \right)=0,& k=1,...,K,\\ & \sum\limits_{j=1}^{n}{\lambda }_{j}=1,& \\ & {\lambda }_{j}\ge 0,\forall j, {\theta }_{o}^{\alpha },{\varphi }_{o}^{\alpha }\ge 0,& \end{array}$$
(10)

in which

$$\begin{aligned}{\left({\sigma }_{i}^{I}\left({\theta }_{o}^{\alpha },\lambda \right)\right)}^{2}&=\sum\limits_{j\ne o}\sum\limits_{b\ne o}{\lambda }_{j}{\lambda }_{b}Cov\left({\tilde{x }}_{ij},{\tilde{x }}_{ib}\right)\\&\quad+2\left({\lambda }_{o}-{\theta }_{o}^{\alpha }\right)\sum\limits_{j\ne o}{\lambda }_{j}Cov\left({\tilde{x }}_{ij},{\tilde{x }}_{io}\right)\\&\quad+{\left({\lambda }_{o}-{\theta }_{o}^{\alpha }\right)}^{2}Var\left({\tilde{x }}_{io}\right),\end{aligned}$$
$$ \begin{aligned}{\left({\sigma }_{r}^{O}\left({\varphi }_{o}^{\alpha },\lambda \right)\right)}^{2}&=\sum\limits_{j\ne o}\sum\limits_{b\ne o}{\lambda }_{j}{\lambda }_{b}Cov\left({\tilde{y }}_{rj},{\tilde{y }}_{rb}\right)\\&\quad+2\left({\lambda }_{o}-{\varphi }_{o}^{\alpha }\right)\sum\limits_{j\ne o}{\lambda }_{j}Cov\left({\tilde{y }}_{rj},{\tilde{y }}_{ro}\right)\\&\quad+{\left({\lambda }_{o}-{\varphi }_{o}^{\alpha }\right)}^{2}Var\left({\tilde{y }}_{ro}\right),\end{aligned}$$
$$\begin{aligned}{\left({\sigma }_{k}^{K}\left({\theta }_{o}^{\alpha },\lambda \right)\right)}^{2}&=\sum\limits_{j\ne o}\sum\limits_{b\ne o}{\lambda }_{j}{\lambda }_{b}Cov\left({\tilde{z }}_{kj},{\tilde{z }}_{kb}\right)\\&\quad+2\left({\lambda }_{o}-{\theta }_{o}^{\alpha }\right)\sum\limits_{j\ne o}{\lambda }_{j}Cov\left({\tilde{z }}_{kj},{\tilde{z }}_{ko}\right)\\&\quad+{\left({\lambda }_{o}-{\theta }_{o}^{\alpha }\right)}^{2}Var\left({\tilde{z }}_{ko}\right).\end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jahani Sayyad Noveiri, M., Kordrostami, S. & Amirteimoori, A. Sustainability Assessment and Most Productive Scale Size: a Stochastic DEA Approach with Dual Frontiers. Environ Model Assess 26, 723–735 (2021). https://doi.org/10.1007/s10666-021-09793-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-021-09793-3

Keywords

Navigation