Skip to main content

Advertisement

Log in

Evaluate the Effect of Topographic Factors and Lithology on Forest Cover Distribution: a Case Study of the Moroccan High Atlas

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

Understanding the relationship between the spatial distribution of forest vegetation and influencing factors provides valuable information to decision-makers in land planning, for the sustainable development of forests and efficient monitoring of environmental and ecological issues. This paper aims to understand the effect of topographic factors and lithology on forest cover distribution around Bin El Ouidane dam in the High Atlas Mountains of Morocco, using remote sensing, Geographical Information Systems (GIS), field observation, and statistical analysis. The forest vegetation was quantified by calculating the Normalized Vegetation Difference Index (NDVI) from Operational Land Imager (OLI) images. The NDVI was classified according to the density of forest vegetation into four levels: bare soil, low density of forest cover, moderate density of forest cover, and high density of forest cover. The correlation analysis between NDVI, interpreted as forest densities and topographic parameters (elevation, slope, and aspect), derived from the Digital Elevation Model (DEM), showed that elevation has the most significant positive correlation with forest density, with r = 0.563 and a p-value less than 0.05. Additionally, moderate and high densities of forest vegetation are optimal in the terrain aspect of the South-East and North-West, respectively. However, the NDVI variation cannot be interpreted only by altitude and terrain aspect. The Spectral Angle Mapper (SAM) classification has been used to map and to separate the forest vegetation types. The statistical results of the analysis of variance (ANOVA) showed that the altitude is the most important topographic factor affecting the distribution of forest species. The analysis of frequency histograms revealed that Holm oaks are increasing at high altitudes, and are more abundant in the North-West, while the Thuya species prefer moderate altitudes and are more abundant in the South-East-facing aspects. In our study area, the Holm oak develops on limestone formations. On the contrary, Thuya does not thrive in lithological conditions, and is found with a decreasing level of predominance on limestones, marls-limestones, and sandstones, respectively. The conclusion of the study shows that a combination of topographic factors and lithological conditions affects the spatial distribution of forest vegetation. The adaptation of the forest species to specific topography and lithological conditions should be considered for forest management. It can be helpful in selecting potential sites for reforestation of these species, for conservation of the natural resources, including water and soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Availability of Data and Materials

All data generated and analyzed during this study are included in this article.

References  

  1. Maimouni, S., El-Harti, A., Bannari, A., & Bachaoui, M. (2012a). Water erosion risk mapping using derived parameters from DEM and remotely sensed data. Geo-spatial Information Science, 15(3), 157–169. https://doi.org/10.1080/10095020.2012.715855

    Article  Google Scholar 

  2. Vásquez-Méndez, R., Ventura-Ramos, E., Oleschko, K., Hernández-Sandoval, L., Parrot, J. F., & Nearing, M. A. (2010). Soil erosion and runoff in different vegetation patches from semiarid Central Mexico. Catena, 80(3), 162–169. https://doi.org/10.1016/j.catena.2009.11.003

    Article  CAS  Google Scholar 

  3. Kogo, B. K., Kumar, L., & Koech, R. (2019). Forest cover dynamics and underlying driving forces affecting ecosystem services in western Kenya. Remote Sensing Applications: Society and Environment, 14, 75–83. https://doi.org/10.1016/j.rsase.2019.02.007

    Article  Google Scholar 

  4. Jin, X., Wan, L., Zhang, Y. K., Hu, G., Schaepman, M. E., Clevers, J. G. P. W., & Su, Z. B. (2009). Quantification of spatial distribution of vegetation in the Qilian Mountain area with MODIS NDVI. International Journal of Remote Sensing, 30(21), 5751–5766. https://doi.org/10.1080/01431160902736635

    Article  Google Scholar 

  5. Zhang, Z., Zinda, J. A., Yang, Z., Yin, M., Ou, X., Xu, Q., &Yu, Q. (2018). Effects of topographic attributes on landscape pattern metrics based on redundancy ordination gradient analysis. Landscape and Ecological Engineering, 14(1), 67–77. https://doi.org/10.1007/s11355-016-0322-6

    Article  Google Scholar 

  6. Mesev, V. (2007). Integration of GIS and Remote Sensing Florida. USA: Wiley, p.312

  7. Zellweger, F., De Frenne, P., Lenoir, J., Rocchini, D., & Coomes, D. (2019). Advances in Microclimate Ecology Arising from Remote Sensing. Trends in Ecology & Evolution, 34 (4), 327-341,  https://doi.org/10.1016/j.tree.2018.12.012

    Article  Google Scholar 

  8.  Zuo, X.A., Zhao, X.Y., Zhao, H.L., Zhang, T.H., Li, Y.L., Wang, S.K., Li, W.J., & Powers, R. (2012) Scale dependent effects of environmental factors on vegetation pattern and composition in Horqin Sandy Land, Northern China. Geoderma 173-174, 1-9. https://doi.org/10.1016/j.geoderma.2011.10.0032

    Article  Google Scholar 

  9. Riihimäki, H., Heiskanen, J., & Luoto, M. (2017). The effect of topography on arctic-alpine aboveground biomass and NDVI patterns. International Journal of Applied Earth Observation and Geoinformation, 56, 44-53. https://doi.org/10.1016/j.jag.2016.11.005

    Article  Google Scholar 

  10. Greiser, C., Meineri, E., Luoto, M., Ehrlén, J., & Hylander, K. (2018). Monthly microclimate models in a managed boreal forest landscape. Agricultural and Forest Meteorology, 250–251, 147-158. https://doi.org/10.1016/j.agrformet.2017.12.252

    Article  Google Scholar 

  11. Huang, K.Y. (2002). Evaluation of the topographic sheltering effects on the spatial pattern of Taiwan fir using aerial photography and GIS. International Journal of Remote Sensing,  23(10), 2051-2069. https://doi.org/10.1080/01431160110076207

    Article  Google Scholar 

  12. Lafon, C. W., Hanson, A. A., & Dwight, R. A. (2019). Geographic variations in fine-scale vegetation patterns: aspect preferences of montane pine stands over Southern Appalachian landscapes. Physical Geography , 40 (5), 433-460. https://doi.org/10.1080/02723646.2019.1576013

    Article  Google Scholar 

  13. Busing, R. T., White, P. S., & McKenzie, M. D. (1993). Gradient analysis of old spruce-fir forest of the Great Smokey Mountains circa. Canadian Journal of Botany, 71(7), 951–958. https://doi.org/10.1139/b93-107

    Article  Google Scholar 

  14. Zhan, Z. Z., Liu, H. B., Li, H. M., Wu, W., & Zhong, B. (2012). The relationship between NDVI and terrain factors—a case study of Chongqing. Procedia Environmental Sciences, 12, 765–771. https://doi.org/10.1016/j.proenv.2012.01.347

    Article  Google Scholar 

  15. Wang, Y., Hou, X., Wang, M., Wu, L., Ying, L., & Feng, Y. (2013). Topographic controls on vegetation index in a hilly landscape: A case study in the Jiaodong Peninsula, eastern China. Environmental Earth Sciences, 70(2), 625–634. https://doi.org/10.1007/s12665-012-2146-5

    Article  Google Scholar 

  16. Fu, B. J., Liu, S. L., Ma, K. M., & Zhu, Y. G. (2004). Relationships between soil characteristics, topography and plant diversity in a heterogeneous deciduous broad-leaved forest near Beijing. China. Plant Soil, 261(1–2), 47–54. https://doi.org/10.1023/B:PLSO.0000035567.97093.48

    Article  CAS  Google Scholar 

  17. Ohwawa, T., Saito, Y., Sawada, H., & Ide, Y. (2008). Impact of altitude and topography on the genetic diversity of Quercus serrata populations in the Chichibu Mountains, central Japan. Flora, 203(3), 187–196. https://doi.org/10.1016/j.flora.2007.02.007

    Article  Google Scholar 

  18. Zhang, Z., Hu, G., & Ni, J. (2013). Effects of topographical and edaphic factors on the distribution of plant communities in two subtropical karst forests, southwestern China. Journal of Mountain Science, 10(1), 95–104. https://doi.org/10.1007/s11629-013-2429-7

    Article  CAS  Google Scholar 

  19. Zeng, X. H., Zhang, W. J., Song, Y. G., & Shen, H. T. (2014). Slope aspect and slope position have effects on plant diversity and spatial distribution in the hilly region of Mount Taihang, North China. Journal of Food Agriculture and Environment, 12(1), 391–397.

    Google Scholar 

  20. Oke, O. A., & Thompson, K. A. (2015). Distribution models for mountain plant species: The value of elevation. Ecological Modelling, 301, 72–77. https://doi.org/10.1016/j.ecolmodel.2015.01.019

    Article  Google Scholar 

  21. Wang, B., Zhang, G., & Duan, J. (2015). Relationship between topography and the distribution of understory vegetation in a Pinus massoniana forest in Southern China. International Soil and Water Conservation Research, 3(4), 291–304. https://doi.org/10.1016/j.iswcr.2015.10.002

    Article  Google Scholar 

  22. Cui, W., & Zheng, X. X. (2016). Spatial heterogeneity in tree diversity and forest structure of evergreen broadleaf forests in southern China along an altitudinal gradient. Forests, 7(10), 216. https://doi.org/10.3390/f7100216

    Article  Google Scholar 

  23. Gokhale, B & Weber, K.T (2009). Spatial pattern of NDVI in semiarid ecosystems of northern Spain. Pages 149–156 in K.T. Weber and K. Davis (Eds.), Final Report: Comparing Effects of Management Practices on Rangeland Health with Geospatial Technologies (NNX06AE47G), p. 168.

  24. Dai, S. P., Zhang, B., Wang, H. J., Wang, Y. M., Guo, L. X., Wang, X. M., & Li, D. (2011). Vegetation cover change and the driving factors over northwest China. Journal of Arid land, 3(1), 5–33. https://doi.org/10.3724/sp.j.1227.2011.00025

    Article  Google Scholar 

  25. Zhu, W., Lv, A., & Jia, S. (2011). Spatial distribution of vegetation and the influencing factors in Qaidam Basin based on NDVI. Journal of Arid Land, 3(2), 85–93. https://doi.org/10.3724/SP.J.1227.2011.00085

    Article  Google Scholar 

  26. Qiu, B., Zeng, C., Chen, C., Zhang, C., & Zhong, M. (2013). Vegetation distribution pattern along altitudinal gradient in subtropical mountainous and hilly river basin China. Journal of Geographical Sciences, 23(2), 247–257. https://doi.org/10.1007/s11442-013-1007-9

    Article  Google Scholar 

  27. Zhang, H., Chi, T., Fan, J., Hu, K., & Peng, L. (2015). Spatial analysis of Wenchuan earthquake-damaged vegetation in the mountainous basins and its applications. Remote Sensing, 7(5), 5785–5804. https://doi.org/10.3390/rs70505785

    Article  Google Scholar 

  28. Kayiranga, A., Ndayisaba, F., Nahayo, L., Karamage, F., Nsengiyumva, J. B., Mupenzi, C., & Nyesheja, E. M. (2017). Analysis of climate and topography impacts on the spatial distribution of vegetation in the Virunga Volcanoes massif of east-central Africa. Geosciences, 17(1), 1–18. https://doi.org/10.3390/geosciences7010017

    Article  Google Scholar 

  29. Morley P.J. , Donoghue D.N.M., Chen J.C, Jump A.S. (2018) Integrating remote sensing and demography for more efficient and effective assessment of changing mountain forest distribution, Ecological Informatics, 43,106-115. https://doi.org/10.1016/j.ecoinf.2017.12.002

    Article  Google Scholar 

  30. de Klerk, H. M., Burgess, N. D., & Visser, V. (2018). Probabilistic description of vegetation ecotones using remote sensing. Ecological Informatics, 46, 125–132. https://doi.org/10.1016/j.ecoinf.2018.06.001

    Article  Google Scholar 

  31. Rouse, J.W., Haas, R.W., Schell, J.A., Deering, D.W., & Harlan, J.C. (1974) Monitoring the vernal advancement and retrogradation (Greenwave effect) of natural vegetation. NASA/GSFCT Type III Final Report, Greenbelt, MD, USA, p.164.

  32. Buddenbaum, H., Schlerf, M., & Hill, J. (2005). Classification of coniferous tree species and age classes using hyperspectral data and geostatistical methods. International Journal of Remote Sensing, 26, 5453-5465. https://doi.org/10.1080/01431160500285076

  33. Bahri, E., Haboudane, D., Bannari, A., Bonn, F., & Chillasse, L. (2007). Essai de cartographie des espèces forestières dominantes dans le Moyen Atlas (Maroc) à l’aide des données. Revue Télédétection, 7(1-2-3-4), 283-301.

  34. Mohajane, M., Essahlaoui, A., Oudija, F., El Hafyani, M., & Cláudia Teodoro, A. (2017). Mapping forest species in the central middle atlas of Morocco (Azrou Forest) through remote sensing techniques.  ISPRS International Journal of Geo-Information, 6(9), 275.  https://doi.org/10.3390/ijgi6090275

  35. DEF. (2019). Département des Eaux et Forêts http://www.eauxetforets.gov.ma/ForetsMarocaines/Formations/Pages/Formations-Forestieres.aspx

  36. Khatouri, M. (1992).  Growth and yield of young Quercus ilex coppice stands in the Tafferte forest (Morocco). Vegetatio, 99, 77-82. https://doi.org/10.1007/BF00118212

    Article  Google Scholar 

  37. USGG (2018) https://www.usgs.gov/core-science-systems/nli/landsat/landsat-8?qt-science_support_page_related_con=0#qt-science_support_page_related_con

  38. NASA (2018) https://landsat.gsfc.nasa.gov/landsat-data-continuity-mission/

  39. Moore, I.D., Gessler, P.E., Nielson, G.A., & Peterson, G.A. (1993). Soil attribute prediction using terrain analysis. Soil Science Society of America Journal, 75, 443-452.  https://doi.org/10.2136/sssaj1993.03615995005700020026x

  40. Chavez, Jr., P.S., (1988). An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data. Remote Sensing of Environment  24(3), 459–479. https://doi.org/10.1016/0034-4257(88)90019-3

    Article  Google Scholar 

  41. El Harti, A. Lhissou, R., Chokmani, K., Ouzemou, J.E., Hassouna M., Bachaoui, E.M., & El Ghmari, A. (2016). Spatiotemporal monitoring of soil salinization in irrigated Tadla Plain (Morocco) using satellite spectral indices. The International Journal of Applied Earth Observation and Geoinformation, 50, 64-73. https://doi.org/10.1016/j.jag.2016.03.008

    Article  Google Scholar 

  42. NASA (2000) https://earthobservatory.nasa.gov/features/MeasuringVegetation.

  43. Kruse, F.A., Lefkoff, A.B., Boardman, J.W., Heidebrecht, K.B., Shapiro, P.J. & Goetz, A.F.H. (1993). The Spectral Image Processing System (SIPS)-Interactive Visualization and Analysis of Imaging Spectrometer Data. Remote Sensing of Environment,  44 (2-3), 145-163. https://doi.org/10.1016/0034-4257(93)90013-N

    Article  Google Scholar 

  44. Lillesand, T.M., Kiefer, R.W., & Chipman, J.W. (2014). Remote Sensing and Image Interpretation; John Wiley & Sons: Hoboken, NJ, USA, p. 763, ISBN 9781118343289

  45. Boardman, J.W., Kruse, F.A., & Green, R.O. (1995). Mapping target signatures via partial unmixing of AVIRIS data. Summaries of the Fifth JPL Airborne Earth Sciences Workshop, Pasadena (CA), USA, JPL Publication 95-1, 1, 23-26..

  46. Plaza, A. & Chang, C. (2005). Fast implementation of pixel purity index algorithm. Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XI, 28 March 2005, Orlando, FL, USA, vol. 5806, p. 307-317.

  47. Hsueh, M. & Chang, C. (2008). Field Programmable Gate Arrays (FPGA) for Pixel Purity Index Using Blocks of Skewers for Endmember Extraction in Hyperspectral Imagery. The International Journal of High Performance Computing Applications, 22 (4), 408-423. https://doi.org/10.1177/1094342007088378

    Article  Google Scholar 

  48. Gürsoy, Ö. & Kaya, Ş. (2017). Detecting of Lithological Units by Using Terrestrial Spectral Data and Remote Sensing Image. Journal of the Indian Society of Remote Sensing, 45, 259–269. https://doi.org/10.1007/s12524-016-0586-1

  49. Margate, D.E. and Shrestha, D.P. (2001) The use of hyperspectral data in identifying ‘desert-like’ soil surface features in Tabernas area, southeast Spain. Proceedings of the 22nd Asian conference on remote sensing, 5-9 November 2001, Singapore CRISP, SISV, AARS. pp. 736-741

  50. Maimouni, S., Bannari, A., El-Harti, A., & El-Ghmari, A. (2012b). Indices spectraux et “Spectral Angle Mapper” pour la cartographie des risques d’érosion hydrique à partir des données ALI EO-1. Revue Télédétection ,10 (4): 213- 223

    Google Scholar 

  51. Girouard, G., Bannari, A., El-Harti, A. and Desrochers, A. (2004). Validated Spectral Angle Mapper Algorithm for Geological Mapping: Comparative Study between Quickbird and Landsat-TM, Geo-Imagery Bridging Continents Istanbul, Turkey, July 12–23, p. 599–604.

  52. Zhang, M., Qin, Z., Liu, X. & Ustin, S.L. (2003) Detection of stress in tomatoes induced by late blight disease in California, USA, using hyperspectral remote sensing. International Journal of Applied Earth Observation and Geoinformation, 4 (4), 295-310. https://doi.org/10.1016/S0303-2434(03)00008-4

    Article  Google Scholar 

  53. Green, A.A., Berman, M., Switzer, P. & Craig, M.D. (1988). A transformation for ordering multispectral data in terms of image quality with implications for noise removal. IEEE Transactions on Geoscience and Remote Sensing, 26 (1), 65-74, https://doi.org/10.1109/36.3001

  54. Congalton, R.G. (1991). A review assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment, 37, 35-46. https://doi.org/10.1016/0034-4257(91)90048-B

    Article  Google Scholar 

  55. Cohen, J. (1960) A coefficient of agreement for nominal scales.  Educational and Psychological Measurement, 20, 37-46. https://doi.org/10.1177/001316446002000104

    Article  Google Scholar 

  56. Bennie, J., Hill, M. O., Robert, B., & Brian, H. (2006). Influence of slope and aspect on long-term vegetation change in British chalk grasslands. Journal of Ecology, 94 (2), 355-368. https://doi.org/10.1111/j.1365-2745.2006.01104.x

    Article  Google Scholar 

Download references

Acknowledgements

We thank U.S. Geological Survey (USGS) for providing the Landsat OLI and ASTER images. As well, we gratefully acknowledge the anonymous referees for accepting to review the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All the authors participated in the elaboration of this article. Soufiane Maimouni developed the used methodology. The manuscript was written by Soufiane Maimouni, Lamia Daghor, and Rachid Lhissou. The obtained results were discussed in contribution with Mostafa Oukassou and Saida El Moutaki.

Corresponding author

Correspondence to Soufiane Maimouni.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maimouni, S., Daghor, L., Oukassou, M. et al. Evaluate the Effect of Topographic Factors and Lithology on Forest Cover Distribution: a Case Study of the Moroccan High Atlas. Environ Model Assess 26, 787–801 (2021). https://doi.org/10.1007/s10666-021-09785-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-021-09785-3

Keywords

Navigation