Skip to main content

Advertisement

Log in

A Critical Review of Applications of QMRA for Healthy and Safe Reclaimed Water Management

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

Reclaimed water use is being propounded as the best alternative source to address water demand concerns. Apprehensions exist concerning the microbial risks to the environment and public health. However, there is a growing interest in the risk assessment approach that can assimilate scientific and statistical programs to predict microbial risks in reclaimed water and ensure safe reuse. Quantitative microbial risk assessment (QMRA) is a systematic framework for predicting this risk in either infection, illness or death. The present review provides insight into the current state of knowledge about the reclaimed water, its potential reuse applications, components of the QMRA framework and its application for reclaimed water management. The emphasis is placed on fundamental ideas and how the QMRA framework is applied to ensure the safe use of reclaimed water. This paper summarizes the challenges and knowledge gaps that require brainstorming and better understanding. The focus is to view the QMRA framework as a corresponding discipline that creates value for achieving sustainable reclaimed water reuse, not as a barrier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

As this is a review, all data was collated from peer-reviewed studies. No additional data was collected in this review.

References

  1. Jing, L., Chen, B., Zhang, B., & Li, P. (2013). A hybrid stochastic-interval analytic hierarchy process approach for prioritizing the strategies of reusing treated wastewater. Mathematical Problems Engineering, 2013, 1–10. https://doi.org/10.1155/2013/874805

    Article  CAS  Google Scholar 

  2. Anderson, J., Adin, A., Crook, J., Davis, C., Hultquist, R., Jimenez-Cisneros, B., et al. (2001). Climbing the ladder: A step by step approach to international guidelines for water recycling. Water Science and Technology, 43, 1–8. https://doi.org/10.2166/wst.2001.0565

    Article  CAS  Google Scholar 

  3. Huertas, E., Salgot, M., Hollender, J., Weber, S., Dott, W., Khan, S., et al. (2008). Key objectives for water reuse concepts. Desalination, 218, 120–131. https://doi.org/10.1016/j.desal.2006.09.032

    Article  CAS  Google Scholar 

  4. Angelakis, A. N., Asano, T., Bahri, A., Jimenez, B. E., & Tchobanoglous, G. (2018). Water Reuse: From Ancient to Modern Times and the Future. Frontiers in Environmental Science, 6https://doi.org/10.3389/fenvs.2018.00026

  5. Lyu, S., Chen, W., Zhang, W., Fan, Y., & Jiao, W. (2016). Wastewater reclamation and reuse in China: Opportunities and challenges. Journal of Environmental Sciences (China), 39, 86–96. https://doi.org/10.1016/j.jes.2015.11.012

    Article  Google Scholar 

  6. Li, J., Cao, Y. M., & Li, M. (2007). Current situation and development direction of municipal wastewater reuse. China Water Transport, 113–114.

  7. NRMMC, EPHC, AHMC. (2008). AHMC. Australian guidelines for water recycling: Managing health and environmental risks (Phase 2): Augmentation of drinking water supplies. Natural Resource Management and Ministerial Council and Environment Protection and Heritage Council. Biotext Pty Ltd, Canberra.

  8. NRMMC, E. (2006). National Guidelines for Water Recycling: Managing Health and Environmental Risks Natural. Natural Resource Management Ministerial Council and Environment Protection and Heritage Council of Australia, Canberra.

  9. Rodrigues, S. (2015). China Reclaimed Water Reuse Regulations. IWA Network.

  10. Marin. P., Tal, S., Yeres, J., & Ringskog, K. B. (2017). Water Management in Israel Key Innovations and Lessons Learned for Water-Scarce Countries. World Bank.

  11. Ministy of Foreign Affairs. (2015). Israel : A Global Leader in Water Management and Technology. 1–24.

  12. Ogoshi, M., Suzuki, Y., & Asano, T. (1998). Water reuse in Japan. Water Science and Technology, 3, 17–24.

    Google Scholar 

  13. Public Utilities Board Singapore P. (2014). Technical guideline for greywater recycling system. Singapore.

  14. US Environmental Protection Agency. (2004). Guidelines for Water reuse. U.S. Agency for International Development Washington, DC EPA/625/R-04/108.

  15. Water Reuse California. (2019). California Water Reuse Action Plan. 1–12.

  16. California Environmental Protection Agency. (2018). Policy for Water Quality Control for Recycled Water.

  17. Medema, G. (2012). Microbial Risk Assessment of Pathogens pathogen in Water pathogen in water. Encyclopedia Sustainability Science Technology, 6605–6633. https://doi.org/10.1007/978-1-4419-0851-3_38

  18. Adegoke, A. A., Amoah, I. D., Stenström, T. A., Verbyla, M. E., & Mihelcic, J. R. (2018). Epidemiological evidence and health risks associated with agricultural reuse of partially treated and untreated wastewater: A review. Frontiers in Public Health, 6, 1–20. https://doi.org/10.3389/fpubh.2018.00337

    Article  Google Scholar 

  19. Nguyen, M. T., Allemann, L., Ziemba, C., Larivé, O., Morgenroth, E., & Julian, T. R. (2017). Controlling bacterial pathogens in water for reuse: Treatment technologies for water recirculation in the Blue Diversion Autarky Toilet. Frontiers in Environmental Science, 5, 90. https://doi.org/10.3389/fenvs.2017.00090

    Article  Google Scholar 

  20. Mok, H. F., & Hamilton, A. J. (2014). Exposure factors for wastewater-irrigated Asian vegetables and a probabilistic rotavirus disease burden model for their consumption. Risk Analysis, 34, 602–613. https://doi.org/10.1111/risa.12178

    Article  Google Scholar 

  21. Shi, K. W., Wang, C. W., & Jiang, S. C. (2018). Quantitative microbial risk assessment of Greywater on-site reuse. Science of the Total Environment, 635, 1507–1519. https://doi.org/10.1016/j.scitotenv.2018.04.197

    Article  CAS  Google Scholar 

  22. Wang, Z., Li, J., & Li, Y. (2017). Using reclaimed water for agricultural and landscape irrigation in China: A review. Irrigation and Drainage, 66, 672–686. https://doi.org/10.1002/ird.2129

    Article  Google Scholar 

  23. NRC. (1998). Issues in Potable Reuse: The Viability of Augmenting Drinking Water Supplies with Reclaimed Water.

  24. Ahmed, S. A., Tewfik, S. R., & Talaat, H. A. (2002). Development and verification of a decision support system for the selection of optimum water reuse schemes., 152, 339–352.

    Google Scholar 

  25. Haas, C. N., Rose, J. B., & Gerba, C. P. (1999). Quantitative Microbial Risk Assessment, 1st ed. Wiley.

  26. Petterson, S. R. (2016). Application of a QMRA framework to inform selection of drinking water interventions in the developing context. Risk Analysis, 36, 203–214. https://doi.org/10.1111/risa.12452

    Article  CAS  Google Scholar 

  27. Howard, G., Pedley, S., & Tibatemwa, S. (2006). Quantitative microbial risk assessment to estimate health risks attributable to water supply: Can the technique be applied in developing countries with limited data? Journal of Water and Health, 4, 49–65. https://doi.org/10.2166/wh.2005.058

    Article  Google Scholar 

  28. Schijven, J., Rutjes, S., Smeets, P., & Teunis, P. (2014). QMRAspot: a tool for quantitative microbial risk assessment for drinking water Manual QMRAspot version 2.0. National Institute for Public Health and Environment, 71.

  29. Alcalde-Sanz., & Gawlik. (2017). Minimum quality requirements for water reuse in agricultural irrigation and aquifer recharge - Towards a water reuse regulatory instrument at EU level.

  30. Petterson, S. R., & Ashbolt, N. J. (2016). QMRA and water safety management: Review of application in drinking water systems. Journal of Water and Health, 14, 571–589. https://doi.org/10.2166/wh.2016.262

    Article  CAS  Google Scholar 

  31. Haering, K., Evanylo, G., BB, & GM. (2009). Water Reuse: Using reclaimed water for Irrigation.

  32. Jiménez, B., & Asano, T. (2008). Water reuse: An international survey of current practice, issues and needs. 3–26.

  33. Levine, A. D., & Leverenz, H. L. (2010). Water Reclamation and Reuse.

  34. Toor, G. S., & Rainey, D. P. (2009). History and Current Status of Reclaimed Water Use in History of Reclaimed Water Use in. Institute Food Agricultural Sciences, 2–5.

  35. Tchobanoglous, G., Cotruvo, J., Crook, J., McDonald, E., Olivieri, A., Salveson, A., & Shane Trussell, R. (2015). Framework for Direct Potable Reuse. Alexandria: WateReuse Research Foundation.

    Google Scholar 

  36. Marsalek, J. (2014). Urban Water Cycle Processes and Interactions. CRC press.

  37. Hamilton, A., Stagnitti, F., Xiong, X., Kreidl, S., Benke, K., & Maher, P. (2007). Wastewater irrigation: the state of play. Vadose Zone Journal, 6, 823–840.

    Article  Google Scholar 

  38. PwC International network. (2016). Closing the water loop: Reuse of treated wastewater in urban India.

  39. Jai Krishna, R., & Fernandes, A. (2017). Pipe dreams Treated sewage will not solve coal power’ s water problems. Chennai: Gopalapuram.

    Google Scholar 

  40. Connor, R., Renata, A., Ortigara, C., Koncagül, E., Uhlenbrook, S., Lamizana-Diallo, B.M., Zadeh, S.M., Qadir, M., Kjellén, M., Sjödin, J., & Hendry, S. (2017). The united nations world water development report 2017. wastewater: The untapped resource. The United Nations World Water Development Report. 1st ed. UN water.

  41. Campbell, A. C., & Scott, C. A. (2011). Water reuse: Policy implications of a decade of residential reclaimed water use in Tucson, Arizona. Water International, 36, 908–923. https://doi.org/10.1080/02508060.2011.621588

    Article  Google Scholar 

  42. WHO. (2006). WHO | Guidelines for the safe use of wastwater, excreta and greywater. Volume 3: Wastewater and excreta use in aquaculture. World Health Organization, Geneva, Switzerland.

  43. Silva, M., & Naik, T. R. (2010). Sustainable Use of Resources – Recycling of Sewage Treatment Plant Water in Concrete. In: Proceedings of the Second International Conference on Sustainable Construction Materials and Technologies. Ancona, Italy.

  44. Van der Bruggen, B. (2010). The Global Water Recycling Situation. In: Escobar IC, Schäfer AI (eds) Sustainability Science and Engineering. Elsevier, 41–62.

  45. Ravishankar, C., Nautiyal, S., & Seshaiah, M. (2018). Social acceptance for reclaimed water use: A case study in Bengaluru. Recycling, 3, 4. https://doi.org/10.3390/recycling3010004

    Article  Google Scholar 

  46. Fielding, K. S., Dolnicar, S., & Schultz, T. (2018). Public acceptance of recycled water. International Journal of Water Resources Development, 0627, 1–36. https://doi.org/10.1080/07900627.2017.1419125

    Article  Google Scholar 

  47. Garcia, X., & Pargament, D. (2015). Reusing wastewater to cope with water scarcity: Economic, social and environmental considerations for decision-making. Resources, Conservation and Recycling, 101, 154–166. https://doi.org/10.1016/j.resconrec.2015.05.015

    Article  Google Scholar 

  48. McNeilla, L. S., Almasrib, M. N., & Mizyedb, N. (2010). A sustainable approach for reusing treated wastewater in agricultural irrigation in the West Bank – Palestine. Desalination, 251, 315–321.

    Google Scholar 

  49. Knudsen, L. G., Phuc, P. D., Hiep, N. T., Samuelsen, H., Jensen, P. K., Dalsgaard, A., et al. (2008). The fear of awful smell: Risk perceptions among farmers in Vietnam using wastewater and human excreta in agriculture. Southeast Asian Journal of Tropical Medicine and Public Health, 39, 341–352.

    Google Scholar 

  50. Tyagi, V. K., Chopra, A., Kazmi, A., & Kumar, A. (2006). Alternative microbial indicators of faecal pollution: Current perspective. Journal of Environmental Health Science and Engineering, 3, 205–216.

    CAS  Google Scholar 

  51. Arnold, B. F., Wade, T. J., Benjamin-chung, J., Schiff, K. C., Grif, J. F., Dufour, A. P., et al. (2016). Acute Gastroenteritis and Recreational Water : Highest Burden Among Young US Children., 106, 1690–1697. https://doi.org/10.2105/AJPH.2016.303279

    Article  Google Scholar 

  52. Shannon, K. E., Lee, D., Trevors, J. T., & Beaudette, L. A. (2007). Application of real-time quantitative PCR for the detection of selected bacterial pathogens during municipal wastewater treatment.  Science of the Total Environment, 382, 121-129. https://doi.org/10.1016/j.scitotenv.2007.02.0392007.02.039

  53. Lu, X., Zhang, X. X., Wang, Z., Huang, K., Wang, Y., Liang, W., et al. (2015). Bacterial pathogens and community composition in advanced sewage treatment systems revealed by metagenomics analysis based on high-throughput sequencing. PLoS One, 10, 1–15. https://doi.org/10.1371/journal.pone.0125549

    Article  CAS  Google Scholar 

  54. Kool, J. L., Bergmire-Sweat, D., JayButler, Ellen, W., Brown, Deborah, J., Peabody, D. S. M., Joseph, C.,Carpenter, Janet, M., Pruckler, Robert, F., & Benson, B. S. F. C. (1999). Hospital characteristics associated with colonization of water systems by Legionella and risk of nosocomial Legionnaires’ disease: A cohort study of 15 hospitals. Infection Control and Hospital Epidemiology, 21, 798–805. https://doi.org/10.1086/503229

  55. Toplitsch, D., Platzer, S., Pfeifer, B., Hautz,  J., Mascher, F., & Kittinger, C. (2018). Legionella detection in environmental samples as an example for successful implementation of qPCR Water (Switzerland) 10. https://doi.org/10.3390/w10081012

  56. Olsen, J. S., Aarskaug, T., Thrane, I., Pourcel, C., Ask, E., Johansen, G., et al. (2010). Alternative routes for dissemination of legionella pneumophila causing three outbreaks in Norway. Environmental Science and Technology, 44, 8712–8717. https://doi.org/10.1021/es1007774

    Article  CAS  Google Scholar 

  57. Liu, H., Whitehouse, C. A., & Li, B. (2018). Presence and persistence of Salmonella in water: The impact on microbial quality of water and food safety. Frontier in Public Health, 6, 159. https://doi.org/10.3389/fpubh.2018.00159

    Article  Google Scholar 

  58. El Boulani, A., Mimouni, R., Mannas, H., Hamadi, F., & Chaouqy, N. (2016) Salmonella in Wastewater: Identification, Antibiotic Resistance and the Impact on the Marine Environment. In: Mares, M. (ed.) Current Topics in Salmonella and Salmonellosis. InTech, p 13.

  59. Santiago, P., Jiménez-Belenguer, A., García-Hernández, J., Estellés, R. M., Hernández Pérez, M., Castillo López, M. A., et al. (2018). High prevalence of Salmonella spp. in wastewater reused for irrigation assessed by molecular methods. International Journal of Hygiene and Environmental Health, 221, 95–101. https://doi.org/10.1016/J.IJHEH.2017.10.007

    Article  CAS  Google Scholar 

  60. DuPont, H. L., Chappell, C. L., Sterling, C. R., Okhuysen, P. C., Rose, J. B., & Jakubowski, W. (1995). The infectivity of Cryptosporidium parvum in healthy volunteers. Journal of Medicine, 332, 855–859.

    CAS  Google Scholar 

  61. Mayer, B. T., Koopman, J. S., Ionides, E. L., Pujol, J. M., Eisenberg, J. N. S., Mayer, B. T., Koopman, J. S., & Ionides, E. L. (2010). A dynamic dose − response model to account for exposure patterns in risk assessment : a case study in inhalation anthrax. Journal of the Royal Society Interface, 8(57), 506–517. https://doi.org/10.1098/rsif.2010.0491

  62. Pujol, J. M., Eisenberg, J. E., Haas, C. N., & Koopman, J. S. (2009). The effect of ongoing exposure dynamics in dose response relationships. PLoS Computational Biology, 5, 1–12. https://doi.org/10.1371/journal.pcbi.1000399

    Article  CAS  Google Scholar 

  63. Rangel, J. M., Sparling, P. H., Crowe, C., Griffin, P. M., & Swerdlow, D. L. (2005). Epidemiology of Escherichia coli O157:H7 outbreaks, United States, 1982–2002. Emerging Infectious Diseases, 11, 603–609. https://doi.org/10.3201/eid1104.040739

    Article  Google Scholar 

  64. Smith, K. P., Handelsman, J., & Goodman, R. M. (1997). Modeling dose-response relationships in biological control: Partitioning host responses to the pathogen and biocontrol agent. Phytopathology, 87, 720–729. https://doi.org/10.1094/PHYTO.1997.87.7.720

    Article  CAS  Google Scholar 

  65. Bonadonna, L., Briancesco, R., Ottaviani, M., Veschetti, E., Epa, U. S., For, G., et al. (2002). Estimation of risk due to low doses of microorganisms: A comparison of alternative methodologies. Water, 118, 573–582. https://doi.org/10.1023/A:1014852201424

    Article  Google Scholar 

  66. Mezo, M., Castro-Hermida, J. A., González-Warleta, M., Correia Da Costa, J. M., García-Presedo, I., & Almeida, A. (2008). Contribution of treated wastewater to the contamination of recreational river areas with Cryptosporidium spp. and Giardia duodenalis. Water Research, 42, 3528–3538. https://doi.org/10.1016/j.watres.2008.05.001

    Article  CAS  Google Scholar 

  67. Wallis, P. M., Erlandsen, S. L., Olson, M. E., Robertson, W. J., & Keulen, H. V. A. N. (1996). Prevalence of Giardia cysts and Cryptosporidium oocysts and characterization of Giardia spp. isolated from drinking water in Canada -- Wallis et al. 62 (8): 2789 - Applied Environmental Microbiology, 62, 2789–2797.

  68. Betancourt, W. Q., Querales, L., Sulbaran, Y. F., Rodriguez-Diaz, J., Caraballo, L., & Pujol, F. H. (2010). Molecular characterization of sewage-borne pathogens and detection of sewage markers in an urban stream in Caracas, Venezuela. Applied and Environment Microbiology, 76, 2023–2026. https://doi.org/10.1128/AEM.02752-09

    Article  CAS  Google Scholar 

  69. LeChevallier, M. W., Gullick, R. W., Karim, M. R., Friedman, M., & Funk, J. E. (2003). The potential for health risks from intrusion of contaminants into the distribution system from pressure transients. Journal of Water and Health, 1, 3–14.

    Article  Google Scholar 

  70. Toze, S. (2005). Water reuse and health risks-real vs. perceived. Desalination, 187, 41–51. https://doi.org/10.1016/j.desal.2005.04.066

    Article  CAS  Google Scholar 

  71. Cabral, J. P. S. (2010). Water microbiology. Bacterial pathogens and water. International Journal of Environmental Research and Public Health, 7, 3657–3703. https://doi.org/10.3390/ijerph7103657

    Article  Google Scholar 

  72. Harwood, V. J., Levine, A. D., Scott, T. M., Chivukula, V., Lukasik, J., Farrah, SR., Rose, J. B., &  Icrobiol APPLENM. (2005). Validity of the Indicator Organism Paradigm for Pathogen Reduction in Reclaimed Water and Public Health Protection. Applied and Environmental Microbiology, 71(6), 3163–3170. https://doi.org/10.1128/AEM.71.6.3163

  73. Liang, L., Goh, S. G., Vergara, G. G. R. V., Fang, H. M., Rezaeinejad, S., Chang, S. Y., et al. (2015). Alternative fecal indicators and their empirical relationships with enteric viruses, Salmonella enterica, and Pseudomonas aeruginosa in surface waters of a tropical urban catchment. Applied and Environment Microbiology, 81, 850–860. https://doi.org/10.1128/AEM.02670-14

    Article  CAS  Google Scholar 

  74. Wilkes, G., Edge, T., Gannon, V., Jokinen, C., Lyautey, E., Medeiros, D., Neumann, N., Ruecker, N., Topp, E., & Lapen, D. R. (2009). Seasonal relationships among indicator bacteria , pathogenic bacteria , Cryptosporidium oocysts , Giardia cysts , and hydrological indices for surface waters within an agricultural landscape. 1–20.

  75. Prüss-Ustün, A., Bartram, J., Clasen, T., Colford, J. M., Cumming, O., Curtis, V., et al. (2014). Burden of disease from inadequate water, sanitation and hygiene in low- and middle-income settings: A retrospective analysis of data from 145 countries. Tropical Medicine and International Health, 19, 894–905. https://doi.org/10.1111/tmi.12329

    Article  Google Scholar 

  76. Fewtrell, L., Kaufmann, R. B., Kay, D., Enanoria, W., Haller, L., & Colford, J. M. (2005). Water, sanitation, and hygiene interventions to reduce diarrhoea in less developed countries: A systematic review and meta-analysis. The Lancet Infectious Diseases, 5, 42–52. https://doi.org/10.1016/S1473-3099(04)01253-8

    Article  Google Scholar 

  77. Cheng, H. W., Broaders, M. A., Lucy, F. E., Mastitsky, S. E., & Graczyk, T. K. (2012). Determining potential indicators of Cryptosporidium oocysts throughout the wastewater treatment process. Water Science and Technology, 65, 875–882.

    Article  CAS  Google Scholar 

  78. Ottoson, J. (2004). Comparative analysis of pathogen occurence in wastewater -management strategies for barrier function and microbial control

  79. Payment, P., & Franco, E. (1993). Clostridium perfringens and somatic coliphages as indicators of the efficiency of drinking water treatment for viruses and protozoan cysts. Applied and Environment Microbiology, 59, 2418–2424.

    Article  CAS  Google Scholar 

  80. Escamilla, V., Yunus, M., Mailloux, B. J., Emch, M., Arbit, T., Ahmed, K. M., Feighery, J., McKay, L. D., Layton, A. C., Ferguson, A. S., Culligan, P. J., Sayler, G. S., Knappett,  P. S. K., Smartt, A. E., Alexandrova, E., Williams, D. E., Streatfield, P. K., van Geen, A., Alam,  M. J. (2012). Comparison of fecal indicators with pathogenic bacteria and Rotavirus in groundwater. Science of the Total Environment 314–322. https://doi.org/10.1016/j.scitotenv.2012.05.060

  81. Efstratiou, M. A., Mavridou, A., Richardson, S. C., & Papadakis, J. A. (1998). Correlation of bacterial indicator organisms with Salmonella spp, Staphylococcus aureus. Letters in Applied Microbiology, 26, 342–346.

    Article  CAS  Google Scholar 

  82. Moriñigo, M. A., Córnax, R., Muñoz, M. A., Romero, P., & Borrego, J. J. (1990). Relationships between Salmonella spp and indicator microorganisms in polluted natural waters. Water Research, 24, 117–120. https://doi.org/10.1016/0043-1354(90)90073-F

    Article  Google Scholar 

  83. Williams, M. S., & Ebel, E. D. (2014). Estimating the correlation between concentrations of two species of bacteria with censored microbial testing data. International Journal of Food Microbiology, 1–5.

  84. Abia, A. L. K., Ubomba-Jaswa, E., Genthe, B., & Momba, M. N. B. (2016). Quantitative microbial risk assessment (QMRA) shows increased public health risk associated with exposure to river water under conditions of riverbed sediment resuspension. Science of the Total Environment, 566–567, 1143–1151. https://doi.org/10.1016/j.scitotenv.2016.05.155

    Article  CAS  Google Scholar 

  85. Abdelzaher, A. M., Wright, M. E., Ortega, C., Solo-gabriele, H. M., Miller, G., Elmir, S., Newman, X., Shih, P., Bonilla, J. A., Bonilla, T. D., Palmer, C. J., Scott, T., Lukasik, J., Harwood, V. J., Mcquaig, S., Sinigalliano, C., Gidley, M., Plano, L. R. W., Zhu, X., Wang, J. D., & Fleming, L. E. (2010). Presence of Pathogens and Indicator Microbes at a Non-Point Source Subtropical Recreational Marine Beach. Applied and Environmental Microbiology, 76, 724–732. https://doi.org/10.1128/AEM.02127-09

  86. McMinn, B. R., Ashbolt, N. J., & Korajkic, A. (2017). Bacteriophages as indicators of faecal pollution and enteric virus removal. Letters in Applied Microbiology, 65, 11–26.

    Article  CAS  Google Scholar 

  87. Costán-Longares, A., Montemayor, M., Payán, A., Méndez, J., Jofre, J., Mujeriego, R., & Lucena, F. (2008). Microbial indicators and pathogens: Removal, relationships and predictive capabilities in water reclamation facilities. Water Research, 42, 4439–4448. https://doi.org/10.1016/j.watres.2008.07.037

    Article  CAS  Google Scholar 

  88. DWR. (2014). California Water Plan Update 2013, Volume 3 – Resource Management Strategies Chapter 12: Municipal Recycled Water, 3.

  89. Radcliffe, J. C. (2006). Future directions for water recycling in Australia. Desalination, 187, 77–87. https://doi.org/10.1016/j.desal.2005.04.069

    Article  CAS  Google Scholar 

  90. Angelakis, A. N., & Bontoux, L. (2001). Wastewater reclamation and reuse in Eureau countries. Water Policy, 3, 47–59. https://doi.org/10.1016/S1366-7017(00)00028-3

    Article  Google Scholar 

  91. Surendran, S., & Wheatley, A. D. (1998). Grey-water reclamation for non-potable re-use. Water Environment Journal, 12, 406–413.

    Article  CAS  Google Scholar 

  92. WHO. (2006). Safe use of wastewater , excreta and greywater guidelines. Wastewater Use in Agriculture, 2.

  93. Kellis, M,. Kalavrouziotis, I. K., & Gikas, P. (2013). Review of wastewater reuse in Mediterranean countries, focusing on regulations and policies for municipal and industrial applications. Global NEST Journal, 15, 333–350.

  94. Asian Development Bank. (2017). Urban wastewater management in Indonesia: Key principles and issues in drafting local regulations (1st ed.). Manila, Philippines: Asian Development Bank.

    Google Scholar 

  95. Van der Bruggen, B. (2010). The Global Water Recycling Situation. In: I. C. Escobar, & A. I. Schäfer (Eds.), Current Topics in Salmonella and Salmonellosis. Elsevier, 41–62.

  96. International Water Management Institute IWMI. (2010). Wastewater irrigation and health: Assessing and mitigating risk in low-income countries. IWMI, IDRC, London and Sterling, VA: Earthscan.

    Google Scholar 

  97. Keremane, G. (2017). Water Governance and Wastewater Reuse in Australia and India. In: Springer Briefs in Water Science and Technology. (Ed.), Governance of Urban Wastewater Reuse for Agriculture. Springer Cham, 23–37.

  98. Parsons, L. R. (2019). Agricultural use of reclaimed water in Florida: Food for thought. Journal of Contemporary Water Research and Education, 165, 20–27. https://doi.org/10.1111/j.1936-704x.2018.03290.x

    Article  Google Scholar 

  99. Bixio, D., Thoeye, C., Wintgens, T., Ravazzini, A., Miska, V., & Muston, M. (2008). Water reclamation and reuse : implementation and management issues., 218, 13–23. https://doi.org/10.1016/j.desal.2006.10.039

    Article  CAS  Google Scholar 

  100. Dolnicar, S., & Hurlimann, A. (2009). Drinking water from alternative water sources: Differences in beliefs, social norms and factors of perceived behavioural control across eight Australian locations. Water Science and Technology, 60, 1433–1444. https://doi.org/10.2166/wst.2009.325

    Article  CAS  Google Scholar 

  101. Leong, C., & Lebel, L. (2020). Can conformity overcome the yuck factor ? Explaining the choice for recycled drinking water. Journal of Cleaner Production, 242, 118196. https://doi.org/10.1016/j.jclepro.2019.118196

    Article  Google Scholar 

  102. Mekala, G. D., Davidson, B., Samad, M., & Boland, A. M. (2008). A Framework for Efficient Wastewater Treatment and Recycling Systems. Sri Lanka: Colombo.

    Google Scholar 

  103. Dolnicar, S., & Hurlimann, A. (2011). Water alternatives-who and what influences public acceptance? Journal of Public Affairs, 11, 49–59. https://doi.org/10.1002/pa.378

    Article  Google Scholar 

  104. CDM Smith Inc. (2012). Guidelines for Water Reuse. USA.

  105. Petterson, S. R., Stenström, T. A., & Ottoson, J. (2016). A theoretical approach to using faecal indicator data to model norovirus concentration in surface water for QMRA: Glomma River, Norway. Water Research, 91, 31–37. https://doi.org/10.1016/j.watres.2015.12.037

    Article  CAS  Google Scholar 

  106. Codex Alimentarius Commission. (1999). Principles and guidelines for the conduct of microbiological risk assessment. CAC/GL-30.

  107. Brady, J. (2015). Risk assessment: Issues and challenges. Pharmaceutical Engineering, 35, 1–8. https://doi.org/10.1016/j.yebeh.2014.12.005

    Article  Google Scholar 

  108. Westrell, T., Schönning, C., Stenström, T. A., & Ashbolt, N. J. (2004). QMRA (quantitative microbial risk assessment) and HACCP (hazard analysis and critical points) for management of pathogens in wastewater and sewage sludge treatment and reuse. Water Science and Technology, 50, 23–30.

    Article  CAS  Google Scholar 

  109. Carducci, A., Donzelli, G., Cioni, L., Verani, M. (2016). Quantitative microbial risk assessment in occupational settings applied to the airborne human adenovirus infection. International Journal of Environmental Research and Public Health, 13, https://doi.org/10.3390/ijerph13070733

  110. Antwi-Agyei, P., Biran, A., Peasey, A., Bruce, J., & Ensink, J. (2016). A faecal exposure assessment of farm workers in Accra, Ghana: A cross sectional study. BMC Public Health, 16, 1–13. https://doi.org/10.1186/s12889-016-3266-8

    Article  Google Scholar 

  111. Rice, S. A., Van Den Akker, B., Pomati, F., & Roser, D. (2012). A risk assessment of Pseudomonas aeruginosa in swimming pools: A review. Journal of Water and Health, 10, 181–196. https://doi.org/10.2166/wh.2012.020

    Article  Google Scholar 

  112. Fuhrimann, S., Winkler, M. S., Stalder, M., Niwagaba, C. B., Babu, M., Kabatereine, N. B., et al. (2016). Disease burden due to gastrointestinal pathogens in a wastewater system in Kampala, Uganda. Microbial Risk Analysis, 4, 16–28. https://doi.org/10.1016/j.mran.2016.11.003

    Article  Google Scholar 

  113. Yapo, R. I., Koné, B., Bonfoh, B., Cissé, G., Zinsstag, J., & Nguyen-Viet, H. (2014). Quantitative microbial risk assessment related to urban wastewater and lagoon water reuse in Abidjan, Côte d’Ivoire. Journal of Water and Health, 12, 301–309. https://doi.org/10.2166/wh.2013.051

    Article  CAS  Google Scholar 

  114. Kouamé, P. K., Nguyen-Viet, H., Dongo, K., Zurbrügg, C., Biémi, J., & Bonfoh, B. (2017). Microbiological risk infection assessment using QMRA in agriculture systems in Côte d’Ivoire, West Africa. Environmental Monitoring and Assessment, 189, 1–11. https://doi.org/10.1007/s10661-017-6279-6

    Article  CAS  Google Scholar 

  115. Shin, S. J., & Ghosh, S. K. (2017). A comparative study of the dose-response analysis with application to the target dose estimation. Journal of Statistical Theory and Practice, 11, 145–162. https://doi.org/10.1080/15598608.2016.1261260

    Article  Google Scholar 

  116. Food Safety W. (2008). Dose-response assessment. In: World Health Organization & Food and Agriculture Organization of the United Nations (ed.), Principles and methods for the risk assessment in chemicals in food.

  117. Hazlett, L. D., Rosen, D. D., & Berk, R. S. (1978). Age-related susceptibility to Pseudomonas aeruginosa ocular infections in mice. Infection and Immunity, 20, 25–29.

    Article  CAS  Google Scholar 

  118. Altboum, Z., Gozes, Y., Barnea, A., Pass, A., White, M., & Kobiler, D. (2002). Postexposure prophylaxis against anthrax: Evaluation of various treatment regimens in intranasally infected guinea pigs. Infection and Immunity, 70, 6231–6241. https://doi.org/10.1128/IAI.70.11.6231-6241.2002

    Article  CAS  Google Scholar 

  119. Haas, C. N. (2015). Microbial dose response modeling: Past, present, and future. Environmental Science and Technology, 49, 1245–1259. https://doi.org/10.1021/es504422q

    Article  CAS  Google Scholar 

  120. Mitchell, J., Weir, M. H., & Rose, J. (2014). The QMRA Wiki : A Social Media Tool for Interdisciplinary and Interagency Collaboration for Quantitative Microbial Risk Assessment

  121. World Health Organization. (2008). Dose-response assessment. In: World Health Organization, Nations F and AO of the U (eds.), Principles and methods for the risk assessment in chemicals in food. World Health Organization.

  122. Haas, C., & Eisenberg, J., N., S. (2001). Risk Assessment. In: Guidelines, Standards and Health: Assessment of risk and risk management for water-related infectious disease

  123. Teunis, P. F. M., Nagelkerke, N. J. D., & Haas, C. N. (1999). Dose response models for infectious gastroenteritis. Risk Analysis, 19, 1251–1260. https://doi.org/10.1023/A:1007055316559

    Article  CAS  Google Scholar 

  124. Smeets, P. W. M. H., Rietveld, L. C., Van Dijk, J. C., & Medema, G. J. (2010). Practical applications of quantitative microbial risk assessment (QMRA) for water safety plans. Water Science and Technology, 61, 1561–1568. https://doi.org/10.2166/wst.2010.839

    Article  CAS  Google Scholar 

  125. Food and Agriculture Organization of the United Nations World Health Organization. (2003). Hazard Characterization for Pathogens in Food and Water, 3rd ed. World Health Organization.

  126. Hamilton, A. J., Boland, A.-M., Hale, G., Stagnitti, F., & Premier, R. (2006). Quantitative microbial risk assessment models for consumption of raw vegetables irrigated with reclaimed water. Applied and Environment Microbiology, 72, 3284–3290. https://doi.org/10.1128/aem.72.5.3284-3290.2006

    Article  CAS  Google Scholar 

  127. MacGillivray, B.H., Hamilton, P.D., Strutt, J.E. & Pollard SJT. (2006). Risk Analysis Strategies in the Water Utility Sector : An Inventory of Applica ... Risk Analysis 36, 85-139.

  128. Dürig, W. (2013). Microbial risks of reclaimed water uses in agriculture : Development of a QMRA model. KWR - water recycle institute.

  129. Barbagallo, S., Cirelli, G. L., Consoli, S., Licciardello, F., Marzo, A., & Toscano, A. (2012). Analysis of treated wastewater reuse potential for irrigation in Sicily. Water Science and Technology, 65, 2024–2033. https://doi.org/10.2166/wst.2012.102

    Article  CAS  Google Scholar 

  130. Natural Resource Management Ministerial Council, Environment Protection and Heritage Council, Australian Health Ministers’ Conference. (2006). Australian Guidelines For Water Recycling: Managing Health And Environmental Risks (Phase1). Canberra.

  131. Iglesias, R., Ortega, E., Batanero, G., & Quintas, L. (2010). Water reuse in spain: Data overview and costs estimation of suitable treatment trains. Desalination, 263, 1–10. https://doi.org/10.1016/j.desal.2010.06.038

    Article  CAS  Google Scholar 

  132. Rahman, M. M., Hagare, D., & Maheshwari, B. (2016). Use of Recycled Water for Irrigation of Open Spaces: Benefits and Risks. In: Balanced Urban Development: Options and Strategies for Liveable Cities, WSTL. Springer Link, 7, 261–288.

  133. Chen, R., Gao, T., Wang, X., Zhou, J., & Xu, L. (2015). Health impact assessment of wastewater reuse for replenishing an urban landscape lake by disability-adjusted life year. Journal of Water Reuse and Desalination, 6, 371–381. https://doi.org/10.2166/wrd.2015.208

    Article  Google Scholar 

  134. Smeets, P. W. M. H., van Dijk, J. C., Stanfield, G., Rietveld, L. C., & Medema, G. J. (2007). How can the UK statutory Cryptosporidium monitoring be used for quantitative risk assessment of cryptosporidium in drinking water? Journal of Water and Health, 5, 107–118. https://doi.org/10.2166/wh.2007.140

    Article  Google Scholar 

  135. Hamilton, A. J., Versace, V. L., Stagnitti, F., Li, P., Yin, W., Maher, P., Hermon, K., Premier, R. R., & Ierodiaconou, D. (2006). Balancing Environmental Impacts and Benefits of Wastewater Reuse. 117–129.

  136. Navarro, I., & Jiménez, B. (2011). Evaluation of the WHO helminth eggs criteria using a QMRA approach for the safe reuse of wastewater and sludge in developing countries. Water Science and Technology, 63, 1499–1505. https://doi.org/10.2166/wst.2011.394

    Article  CAS  Google Scholar 

  137. Amha, Y. M., Kumaraswamy, R., & Ahmad, F. (2015). A probabilistic QMRA of Salmonella in direct agricultural reuse of treated municipal wastewater. Water Science and Technology, 71, 1203–1211. https://doi.org/10.2166/wst.2015.093

    Article  Google Scholar 

  138. Busgang, A., Friedler, E., Gilboa, Y., & Gross, A. (2018). Quantitative microbial risk analysis for various bacterial exposure scenarios involving greywater reuse for irrigation. Water (Switzerland), 10, 1–15. https://doi.org/10.3390/w10040413

    Article  CAS  Google Scholar 

  139. Godfrey, S., Singh, S., Labhasetwar, P., Dwivedi, H. B., Parihar, G., & Wate, S. R. (2010). Health-Based targets for greywater reuse in residential schools in Madhya Pradesh, India. Water Environment Journal, 24, 215–222. https://doi.org/10.1111/j.1747-6593.2009.00180.x

    Article  Google Scholar 

  140. Aiello, R., Cirelli, G. L., Consoli, S., Licciardello, F., & Toscano, A. (2013). Risk assessment of treated municipal wastewater reuse in Sicily. Water Science and Technology, 67, 89–98. https://doi.org/10.2166/wst.2012.535

    Article  CAS  Google Scholar 

  141. Blanky, M., Sharaby, Y., Rodríguez-Martínez, S., Halpern, M., & Friedler, E. (2017). Greywater reuse - Assessment of the health risk induced by Legionella pneumophila. Water Research, 125, 410–417. https://doi.org/10.1016/j.watres.2017.08.068

    Article  CAS  Google Scholar 

  142. Dong, Q. L., Barker, G. C., Gorris, L. G. M., Tian, M. S., Song, X. Y., & Malakar, P. K. (2015). Status and future of quantitative microbiological risk assessment in China. Trends in Food Science & Technology, 42, 70–80. https://doi.org/10.1016/j.tifs.2014.12.003

    Article  CAS  Google Scholar 

  143. WHO. (2016). Quantitative Microbial Risk Assessment: Application for Water Safety Management. World Health Organization., 1st ed. World Health Organization.

  144. Saxena, G., Bharagava, R. N., Kaithwas, G., & Raj, A. (2015). Microbial indicators, pathogens and methods for their monitoring in water environment. https://doi.org/10.2166/wh.2014.275

  145. Enger, K. S., Nelson, K. L., Clasen, T., Rose, J. B., & Eisenberg, J. N. S. (2012). Linking quantitative microbial risk assessment and epidemiological data: Informing safe drinking water trials in developing countries. Environmental Science and Technology, 46, 5160–5167. https://doi.org/10.1021/es204381e

    Article  CAS  Google Scholar 

  146. Buchanan, R. L., Havelaar, A. H., Smith, M. A., Whiting, R. C., & Julien, E. (2009). The key events dose-response framework: Its potential for application to foodborne pathogenic microorganisms. Critical Reviews in Food Science and Nutrition, 49, 718–728. https://doi.org/10.1080/10408390903116764

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Director, CSIR-National Environmental Engineering Research Institute (NEERI) and other colleagues for their support. The authors also wish to thank Dr. Nishita Dsouza for her invaluable help and guidance in reviewing the manuscript for English proficiency and framework.

Author information

Authors and Affiliations

Authors

Contributions

R.H. drafted the manuscript and did the literature review. P.N. was involved in conceptualizing and reviewing the document. P.L. contributed to reviewing and editing the drafts. All authors approved the final manuscript.

Corresponding author

Correspondence to Pranav Nagarnaik.

Ethics declarations

Consent for Publication

All authors approve the review article for publication (Institute K.R.C. No. 50877999).

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hajare, R., Labhasetwar, P. & Nagarnaik, P. A Critical Review of Applications of QMRA for Healthy and Safe Reclaimed Water Management. Environ Model Assess 26, 339–354 (2021). https://doi.org/10.1007/s10666-021-09757-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-021-09757-7

Keywords

Navigation