Skip to main content
Log in

Water Quality Modeling of Phytoplankton and Nutrient Cycles of a Complex Cold-Region River-Lake System

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

Linking elemental processes in integrated modeling provides a means of handling emerging issues related to aquatic system management. In this study, an integral modeling strategy was used to develop a water quality model of the Qu’Appelle River, particularly for under-ice conditions, which is a topic that has not received much attention in the literature. Phytoplankton and nutrient cycles of the river and lake were coupled using the Water Quality Analysis Simulation Program (WASP) 7.52. Model calibration and validation were based on samples taken from six water quality stations during the period 2013 to 2016. The calibration and validation results show good agreement between model predictions and observed data for oxygen, organic nitrogen, and ammonium. This study demonstrates the development and use of a model connecting riverine and lake sections to study under-ice conditions and can be applied to similar systems in cold regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Harris, G. (2002). Integrated assessment and modelling: an essential way of doing science. Environmental Modelling & Software, 17(3), 201–207.

    Article  Google Scholar 

  2. Gal, G., Hipsey, M., Rinke, K., & Robson, B. (2014). Novel approaches to address challenges in modelling aquatic ecosystems. Environmental Modelling & Software, 61, 246–248.

    Article  Google Scholar 

  3. Cho, E., Arhonditsis, G. B., Khim, J., Chung, S., & Heo, T. Y. (2016). Modeling metal-sediment interaction processes: parameter sensitivity assessment and uncertainty analysis. Environmental Modelling & Software, 80, 159–174.

    Article  Google Scholar 

  4. Sadeghian, A., Chapra, S. C., Hudson, J., Wheater, H., & Lindenschmidt, K. E. (2018). Improving in-lake water quality modeling using variable chlorophyll a/algal biomass ratios. Environmental Modelling & Software, 101, 73–85.

    Article  Google Scholar 

  5. Hamilton, S. H., ElSawah, S., Guillaume, J. H. A., Jakeman, A. J., & Pierce, S. A. (2015). Integrated assessment and modelling: overview and synthesis of salient dimensions. Environmental Modelling & Software, 64, 215–229. https://doi.org/10.1016/j.envsoft.2014.12.005.

    Article  Google Scholar 

  6. Voinov, A., & Shugart, H. H. (2013). Integronsters, integral and integrated modeling. Environmental Modelling & Software, 39, 149–158.

    Article  Google Scholar 

  7. Lung, W. S., & Larson, C. E. (1995). Water quality modeling of upper Mississippi River and Lake Pepin. Journal of Environmental Engineering, 121(10), 691–699.

    Article  Google Scholar 

  8. Kneis, D. (2007). A water quality model for shallow river-lake systems and its application in river basin management. Ph.D. thesis, University of Potsdam, Germany.

  9. Fragoso, C. R., Jr., van Nes, E. H., Janse, J. H., & da Motta Marques, D. (2009). IPH-TRIM3D-PCLake: a three-dimensional complex dynamic model for subtropical aquatic ecosystems. Environmental Modelling & Software, 24(11), 1347–1348.

    Article  Google Scholar 

  10. Smol, J. P. (2009). Pollution of lakes and rivers: a paleoenvironmental perspective. Wiley.

  11. Lindenschmidt, K. E., & Hosseini, N. (2016). Numerical modelling of surface water quality under river ice conditions. 23nd IAHR International Symposium on Ice. Michigan, USA. Ann Arbor.

  12. Saskatchewan (WSA) (2005). Qu’Appelle River water resources management model water supply study. Internal report.

  13. Authority, S. W., Kulshreshtha, S. N., Bogdan, A., & Nagy, C. (2012). Present and future water demand in the Qu’Appelle River Basin.

  14. Wiens, L. H. (1987). The South Saskatchewan-Qu’Appelle diversion: history and future prospects, the. IWD.

  15. Hall, R. I., Leavitt, P. R., Quinlan, R., Dixit, A. S., & Smol, J. P. (1999). Effects of agriculture, urbanization, and climate on water quality in the northern Great Plains. Limnology and Oceanography, 44(3part2), 739–756. https://doi.org/10.4319/lo.1999.44.3_part_2.0739.

    Article  Google Scholar 

  16. Dixit, S. S., Dixit, A., Smol, J. P., Hughes, R., & Paulsen, S. (2000). Water quality changes from human activities in three northeastern USA lakes. Lake and Reservoir Management, 16, 305–321.

    Article  Google Scholar 

  17. Donald, D. B., Parker, B. R., Davies, J. M., & Leavitt, P. R. (2015). Nutrient sequestration in the Lake Winnipeg watershed. Journal of Great Lakes Research, 41(2), 630–642.

    Article  Google Scholar 

  18. Davies, J. M. (2006). Application and tests of the Canadian water quality index for assessing changes in water quality in lakes and rivers of central North America. Lake and Reservoir Management, 22(4), 308–320.

    Article  Google Scholar 

  19. Phillips, I.D., Davies, J.-M., Bowman, M.F., & Chivers, D.P. (2016). Macroinvertebrate communities in a Northern Great Plains River are strongly shaped by naturally occurring suspended sediments: implications for ecosystem health assessment. Freshwater Science 35(4),1354-1363. https://doi.org/10.1086/689013

  20. Prowse, T. D. (2001a). River-ice ecology I: hydrologic, geomorphic, and water-quality aspects. Journal of Cold Regions Engineering, 15(1), 1–16.

    Article  Google Scholar 

  21. Akomeah, E., Chun, K. P., & Lindenschmidt, K. E. (2015). Dynamic water quality modelling and uncertainty analysis of phytoplankton and nutrient cycles for the upper South Saskatchewan River. Environmental Science and Pollution Research, 22(22), 18239–18251.

    Article  Google Scholar 

  22. Akomeah, E., & Lindenschmidt, K. E. (2017). Seasonal variation in sediment oxygen demand in a Northern Chained River-Lake system. Water, 9(4), 254.

    Article  Google Scholar 

  23. Christiansen, E. A., Acton, D. F., Long, R. J., Meneley, W. A., & Sauer, E. K. (1977). Fort Qu’Appelle geology: the valleys, past, and present. Regina: Saskatchewan Museum of Natural History and Saskatchewan Culture and Youth.

    Google Scholar 

  24. Leavitt, P. R., Brock, C. S., Ebel, C., & Patoine, A. (2006). Landscape-scale effects of urban nitrogen on a chain of freshwater lakes in central North America. Limnology and Oceanography, 51(5), 2262–2277. https://doi.org/10.4319/lo.2006.51.5.2262.

    Article  Google Scholar 

  25. Wool, T. A., Ambrose, R. B., Martin, J. L., Comer, E. A., & Tech, T. (2006). Water quality analysis simulation program (WASP). User’s Manual, Version, 6.

  26. Toro, D.M.D., Fitzpatrick, J. J., & Thomann, R. V. (1983). Documentation for water quality analysis simulation program (WASP) and model verification program (MVP).

  27. Chapra, S. C. (2008). Surface water-quality modeling. Waveland press.

  28. Ji, Z. G. (2008). Hydrodynamics and water quality: modeling rivers, lakes, and estuaries. Wiley.

  29. Barica, J. (1987). Water quality problems associated with high productivity of prairie lakes in Canada: a review. Water Quality Bulletin, 12, 107–115.

    Google Scholar 

  30. Willmott, C. J., & Matsuura, K. (2005). Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Climate Research, 30(1), 79–82.

    Article  Google Scholar 

  31. Ji, Z.-G. (2017). Hydrodynamics and water quality: modeling rivers, lakes, and estuaries (2nd ed.). Hoboken: Wiley.

    Book  Google Scholar 

  32. Ziadat, A. H., & Berdanier, B. W. (2004). Stream depth significance during in-situ sediment oxygen demand measurements in shallow streams. Journal of the American Water Resources Association, 40(3), 631–638.

    Article  Google Scholar 

  33. Nakamura, Y., & Stefan, H. G. (1992). Sediment oxygen demand in lakes: Dependence on near-bottom flow velocities. Project Report no., 335, St. Anthony Falls Hydraulic Laboratory, University of Minnesota., 60.

  34. Mackenthun, A. A., & Stefan, H. G. (1993). Experimental analysis of sedimentary oxygen demand in lakes; dependence on near-bottom flow velocities and implications for aerator design. Project Report no., 358, St. Anthony Falls Hydraulic Laboratory, University of Minnesota., 60.

  35. Cerco, C., Gunnison, D., & Price, C. B. (1992). Proceedings, workshop on sediment oxygen demand, Providence, Rhode Island. 21-22 August 1990, U.S Army Corps of Engineers, Waterways Experiment Station, Water Quality Research Program, Misc, 195, 92–1.

  36. Cornett, R. J., & Rigler, F. H. (1979). Hypolinimetic oxygen deficits: their prediction and interpretation. Science, 205(4406), 580–581.

    Article  Google Scholar 

  37. Nürnberg, G. K., Shaw, M., Dillon, P. J., & McQueen, D. J. (1986). Internal phosphorus load in an oligotrophic Precambrian Shield lake with an anoxic hypolimnion. Canadian Journal of Fisheries and Aquatic Sciences, 43(3), 574–580.

    Article  Google Scholar 

  38. Catalan, J. (1992). Evolution of dissolved and particulate matter during the ice-covered period in a deep, high-mountain lake. Canadian Journal of Fisheries and Aquatic Sciences, 49(5), 945–955.

    Article  Google Scholar 

  39. Hampton, S. E., Galloway, A. W., Powers, S. M., Ozersky, T., Woo, K. H., Batt, R. D., & Stanley, E. H. (2017). Ecology under lake ice. Ecology Letters, 20(1), 98–111.

    Article  Google Scholar 

  40. Clifton Associates Ltd. (2012). Upper Qu’Appelle water supply project: economic impact and sensitivity analysis; water security agency: Regina. Canada: SK.

  41. MacPherson, T. A., Cahoon, L. B., & Mallin, M. A. (2007). Water column oxygen demand and sediment oxygen flux: patterns of oxygen depletion in tidal creeks. Hydrobiologia, 586(1), 235–248.

    Article  Google Scholar 

  42. Bunting, L., Leavitt, P. R., Hall, V. A., Gibson, C. E., & McGee, E. J. (2005). Nitrogen degradation of water quality in a phosphorus-saturated catchment: the case of Lough Neagh, Northern Ireland. Internationale Vereinigung für theoretische und angewandte Limnologie: Verhandlungen, 29(2), 1005–1010.

    Google Scholar 

  43. Dixit, A. S., Hall, R. I., Leavitt, P. R., Quinlan, R., & Smol, J. P. (2000). Effects of sequential depositional basins on lake response to urban and agricultural pollution: a palaeoecological analysis of the Qu’Appelle Valley, Saskatchewan, Canada. Freshwater Biology, 43(3), 319–337. https://doi.org/10.1046/j.1365-2427.2000.00516.

    Article  Google Scholar 

  44. Bennett, E. M., Carpenter, S. R., & Caraco, N. F. (2001). Human impact on erodable phosphorus and eutrophication: a global perspective: increasing accumulation of phosphorus in soil threatens rivers, lakes, and coastal oceans with eutrophication. AIBS Bulletin, 51(3), 227–234.

    Google Scholar 

Download references

Acknowledgments

We thank those that shared data with us including Saskatchewan Environment, Saskatchewan Water Security Agency, Environment Canada and Meteoblue, Switzerland.

Funding

This study received funding by the Canada Excellence Research Chair in Water Security at the University of Saskatchewan and through Environment and Climate Change Canada’s Environmental Damages Fund under the project “A water quality modeling system of the Qu’Appelle River catchment for long-term water management policy development”.

Author information

Authors and Affiliations

Authors

Contributions

K.E.L designed the research; E.A performed the research, analyzed the data and wrote the paper; J.M.D. contributed to the writing and in-house review of the paper.

Corresponding author

Correspondence to Eric Akomeah.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akomeah, E., Davies, JM. & Lindenschmidt, KE. Water Quality Modeling of Phytoplankton and Nutrient Cycles of a Complex Cold-Region River-Lake System. Environ Model Assess 25, 293–306 (2020). https://doi.org/10.1007/s10666-019-09681-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-019-09681-x

Keywords

Navigation