Skip to main content
Log in

CFD Modeling of Near-Roadway Air Pollution

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

Currently, there is an increasing interest in modeling the dispersion of atmospheric pollutants using computational fluid dynamics (CFD), to characterize the influence of the traffic-generated emissions on the temporal and spatial variability in air pollutant concentrations in the near-roadway environment. To advance in this task, we modeled the dispersion of total suspended particles (TSP), over a flat terrain, within a neutrally stratified and fully developed atmospheric boundary layer. We included the effect of turbulence and deposition on particle size distribution downstream. We found that TSP concentration downwind exhibits a single profile when expressed in terms of three dimensionless numbers: normalized concentration, normalized distance, and emission speed ratio. Using this generic character of the results, we determined the average short- and long-term TSP concentration, modeling successive short-term intervals in which it could be assumed a pseudo-steady-state behavior. Results exhibited correlation levels of R2 > 0.85 for daily and R2 > 0.94 for monthly averages when compared with measured TSP concentrations downwind two unpaved roadways. Results also showed that the implemented CFD model resolved the two main issues with Gaussian models (currently the most used air quality model): over-prediction of pollutant concentrations near the roadway and problems dealing with wind speeds < 1 ms−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ABL:

Atmospheric boundary layer

SL :

Surface layer

CFD:

Computational fluid dynamics

DW:

Downwind

NR-CFD:

Near-roadway CFD model

PSD:

Particle size distribution

DRW:

Discrete random walk model

TSP:

Total suspended particles (particles with aerodynamic diameter d < ~ 30 μm)

UW:

Upwind

C :

TSP concentration μg m−3

C e :

Emitted TSP concentration kg m−3

C d :

Drag coefficient

C i(x) :

TSP concentration for i hour and distances x from the roadway kg m−3

\( \overline{C_x} \) :

Average TSP concentration at a distance x from the roadway kg m−3

C* :

Normalized concentration

d, \( \overline{d} \) :

Particle diameter and average particle diameter μm

E :

Emission rate g s−1 m−2

E fj :

Emission factor of TSP for vehicles of size j. Mass of TSP emitted per vehicle kilometer traveled kg vkt−1

F D :

Drag force per mass unit in the particle

g z :

Gravity m s2

k :

Turbulent kinetic energy m2 s2

K :

Von Karman universal constant

M j :

Average weight of the vehicles of size j traveling on the roadway tons

n :

Spread parameter of the Rosin-Rammler particle size distribution function

N j :

Number of vehicles of size j

R 2 :

Coefficient of determination

R e :

Reynolds number

s :

Roadway surface silt content %

T :

Characteristic lifetime of the eddies s

u :

Local wind speed at height z m s−1

u′ :

Instantaneous fluctuating random speed of the continuous phase m s−1

u p :

Local particle speed in the x direction m s−1

u* :

Friction speed m s−1

U :

Mean wind speed in the x direction m s−1

U* :

Normalized wind speed in the x direction

w p :

TSP emission speed from the roadway in the vertical direction m s−1

W :

Roadway width m

x :

Distance to the edge of the roadway (downwind) m

x* :

Normalized distance to the roadway edge

x e :

Equivalent distance to the roadway edge m

y+ :

Dimensionless wall distance

Y d :

Cumulative, mass fraction, particle size distribution

z :

Height m

z o :

Surface roughness m

β :

Wind direction

ε :

Eddy viscosity m2 s−3

ζ :

Normally distributed random number

γ :

Angle between the geographical coordinate and the roadway local coordinate system

ρ, ρ p :

Fluid and particle density kg m−3

μ :

Fluid molecular viscosity kg m−1s−1

References

  1. Andersson, B., Andersson, R., Hakansson, L., Mortensen, M., Sudiyo, R., & Van Wachem, B. (2012). Computational fluid dynamics for engineers. Cambridge: Cambridge University Press.

    Google Scholar 

  2. ANSYS. (2012). ANSYS FLUENT Theory guide, Release 14.0. Southpointe 275 Technology Drive Canonsburg, PA. November 2011.

  3. ANSYS. (2012a). ANSYS FLUENT User’s guide, Release 14.0. Southpointe 275 Technology Drive Canonsburg, PA. November 2011.

  4. ANSYS. (2012b). ANSYS FLUENT Getting started guide, Release 14.0. Southpointe 275 Technology Drive Canonsburg, PA. November 2011.

  5. Barzyk, T. M., Isakov, V., Arunachalam, S., Venkatram, A., Cook, R., & Naess, B. (2015). A near-road modeling system for community-scale assessments of traffic-related air pollution in the United States. Environmental Modelling and Software., 66, 46–56. https://doi.org/10.1016/j.envsoft.2014.12.004.

    Article  Google Scholar 

  6. Blocken, B., & Carmeliet, J. (2004). Modelling atmospheric boundary-layer flow with Fluent: curing the wall function roughness incompatibility. Proceedings of the Fluent Benelux User Group Meeting, Leuven, Belgium.

  7. Blocken, B., & Gualtieri, C. (2012). Ten iterative steps for model development and evaluation applied to computational fluid dynamics for environmental fluid mechanics. Environmental Modelling and Software., 33, 1–22. https://doi.org/10.1016/j.envsoft.2012.02.001.

    Article  Google Scholar 

  8. Blocken, B., Janssen, W. D., & Van Hooff, T. (2012). CFD simulation for pedestrian wind comfort and wind safety in urban areas: general decision framework and case study for the Eindhoven University campus. Environmental Modelling and Software., 30, 15–34. https://doi.org/10.1016/j.envsoft.2011.11.009.

    Article  Google Scholar 

  9. Bonifacio, H. F., Maghirang, R. G., & Glasgow, L. A. (2015). Numerical simulation of transport of particles emitted from ground-level area source using AERMOD and CFD. Engineering applications of computational fluid Mechanics., 8(4), 488–502. https://doi.org/10.1080/19942060.2014.11083302.

    Article  Google Scholar 

  10. Casey, M., & Wintergerste, T. (2000). Quality and trust in industrial CFD: Best practice guidelines. London: ERCOFTAC.

    Google Scholar 

  11. Dhyani, R., Gulia, S., Sharma, N., & Singh, A. (2014). Air quality impact assessment of a highway corridor through vehicular pollution modeling. International Journal of Renewable Energy and Environmental Engineering, 2(2), 93–99.

    Google Scholar 

  12. Fallah Shorshani, M., Seigneur, C., Polo Rehn, L., Chanut, H., Pellan, Y., Jaffrezo, J. L., & André, M. (2015). Atmospheric dispersion modeling near a roadway under calm meteorological conditions. Transportation Research Part D: Transport and Environment., 34, 137–154. https://doi.org/10.1016/j.trd.2014.10.013.

    Article  Google Scholar 

  13. Gérardin, F., Gentric, C., & Midoux, N. (2014). Particle dispersion in the near-wake of an isolated rotating wheel: experimental and CFD study. Journal of Aerosol Science., 76, 56–71. https://doi.org/10.1016/j.jaerosci.2014.05.008.

    Article  CAS  Google Scholar 

  14. Gromke, C., Buccolieri, R., Di Sabatino, S., & Ruck, B. (2008). Dispersion study in a street canyon with tree planting by means of wind tunnel and numerical investigations—evaluation of CFD data with experimental data. Atmospheric Environment, 42(37), 8640–8650. https://doi.org/10.1016/j.atmosenv.2008.08.019.

    Article  CAS  Google Scholar 

  15. Hargreaves, D. M., & Wright, N. G. (2007). On the use of the k-ɛ model in commercial CFD software to model the neutral atmospheric boundary layer. Journal of wind engineering and industrial aerodynamics., 95, 355–369. https://doi.org/10.1016/j.jweia.2006.08.002.

    Article  Google Scholar 

  16. HEI. (2010). Traffic related air pollution: A critical review of the literature on emissions, exposure and health effects. HEI Special Report 17. Boston: Health Effects Institute.

    Google Scholar 

  17. Heist, D. K., Perry, S. G., & Brixey, L. A. (2009). A wind tunnel study of the effect of roadway configurations on the dispersion of traffic-related pollution. Atmospheric Environment, 43, 5101–5111.

    Article  CAS  Google Scholar 

  18. Hider, Z. E., Hibberd, S., & Baker, C. J. (1997). Modelling particulate dispersion in the wake of a vehicle. Journal of wind engineering., 67(68), 733–744. https://doi.org/10.1016/j.atmosenv.2009.06.034.

    Article  CAS  Google Scholar 

  19. Holmes, N. S., & Morawska, L. (2006). A review of dispersion modelling and its application to the dispersion of particles: an overview of different dispersion models available. Atmospheric Environment, 40(30), 5902–5928. https://doi.org/10.1016/j.atmosenv.2006.06.003.

    Article  CAS  Google Scholar 

  20. Huertas, J. I., & Prato D. F. (2019). An experimental and numerical study of air pollution near unpaved roads. Air Quality, Atmosphere and Health, 12, 471. https://doi.org/10.1007/s11869-019-00678-9.

    Article  CAS  Google Scholar 

  21. Huertas, J. I., Huertas, M. E., & Solis, C. (2012). Characterization of airborne particles in an open pit mining region. Science of the total Environment., 423, 39–46. https://doi.org/10.1016/j.scitotenv.2012.01.065.

    Article  CAS  Google Scholar 

  22. Huertas, M. E., Huertas, J. I., & Valencia, A. (2017). Vehicular road influence areas. Atmospheric Environment, 151, 108–116. https://doi.org/10.1016/j.atmosenv.2016.12.006.

    Article  CAS  Google Scholar 

  23. INV E-123-13 Determinación de los tamaños de las partículas de los suelos. (2013). Instituto Nacional del Vías. Colombia: Bogotá.

    Google Scholar 

  24. Kakosimos, K. E., Assael, M. J., Lioumbas, J. S., & Spiridis, A. S. (2011). Atmospheric dispersion modelling of the fugitive TSP from overburden dumps with numerical and integral models. Atmospheric Pollution Research, 2(1), 24–33. https://doi.org/10.5094/APR.2011.004.

    Article  Google Scholar 

  25. Kwak, K.-H., Baik, J.-J., Lee, S.-H., & Ryu, Y.-H. (2011). Computational fluid dynamics modelling of the diurnal variation of flow in a street canyon. Boundary-Layer Meteorology, 141(1), 77–92. https://doi.org/10.1007/s10546-011-9630-4.

    Article  Google Scholar 

  26. Kwak, K.-H., Baik, J.-J., Ryu, Y.-H., & Lee, S.-H. (2015). Urban air quality simulation in a high-rise building area using a CFD model coupled with mesoscale meteorological and chemistry-transport models. Atmospheric Environment, 100, 167–177. https://doi.org/10.1016/j.atmosenv.2014.10.059.

    Article  CAS  Google Scholar 

  27. Launder, B. E., & Spalding, D. B. (1974). The numerical computation of turbulent flows. Computer methods in applied mechanics and engineering., 3, 269–289. https://doi.org/10.1016/0045-7825(74)90029-2.

    Article  Google Scholar 

  28. Li, T., Pannala, S., & Shahnam, M. (2014). CFD simulations of circulating fluidized bed risers, part II, evaluation of differences between 2D and 3D simulations. Powder Technology., 254, 115–124. https://doi.org/10.1016/j.powtec.2014.01.022.

    Article  CAS  Google Scholar 

  29. Monin, A. S., & Obukhov, A. M. (1954). Basic laws of turbulent mixing in the surface layer of the atmosphere. Contributions of the Geophysical Institute, Slovak Academy of Sciences, 24, 163–187.

    Google Scholar 

  30. O'Sullivan, J. P., Archer, R. A., & Flay, R. G. J. (2011). Consistent boundary conditions for flows within the atmospheric boundary layer. Journal of Wind Engineering and Industrial Aerodynamics, 99(1), 65–77. https://doi.org/10.1016/j.jweia.2010.10.009.

    Article  Google Scholar 

  31. Pieterse, J. E., & Harms, T. M. (2013). CFD investigation of the atmospheric boundary layer under different thermal stability conditions. Journal of Wind Engineering and Industrial Aerodynamics, 121(March), 82–97. https://doi.org/10.1016/j.jweia.2013.07.014.

    Article  Google Scholar 

  32. Richards, P. J., & Hoxey, R. P. (1993). Appropriate boundary conditions for computational wind engineering models using the k-ɛ turbulence model. Journal of wind engineering and industrial aerodynamics., 46, 145–153. https://doi.org/10.1016/j.jweia.2010.12.008.

    Article  Google Scholar 

  33. Richards, P. J., & Norris, S. E. (2011). Appropriate boundary conditions for computational wind engineering models revisited. Journal of Wind Engineering and Industrial Aerodynamics., 99, 257–266. https://doi.org/10.1016/j.jweia.2010.12.008.

    Article  Google Scholar 

  34. Sahlodin, A. M., Sotudeh – Gharebagh, R., & Zhu, Y. (2007). Modelling of dispersion near roadways based on the vehicle-induced turbulence concept. Atmospheric Environment., 41, 92–102. https://doi.org/10.1016/j.atmosenv.2006.08.004.

    Article  CAS  Google Scholar 

  35. Seinfeld, J. H., & Pandis, S. N. (2006). Atmospheric chemistry and physics. From air pollution to climate change. New York: Wiley ISBN: 978-1-118-94740-1.

    Google Scholar 

  36. Sharma, N., Chaudhry, K. K., & Chalapati Rao, C. V. (2004). Vehicular pollution prediction modelling: a review of highway dispersion models. Transport Reviews, 24(4), 409–435. https://doi.org/10.1080/0144164042000196071.

    Article  Google Scholar 

  37. Shen, Z., Cui, G., & Zhang, Z. (2017). Turbulent dispersion of pollutants in urban-type canopies under stable stratification conditions. Atmospheric Environment., 156, 1–14. https://doi.org/10.1016/j.atmosenv.2017.02.017.

    Article  CAS  Google Scholar 

  38. Steffens, J. T., Heist, D. K., Perry, S. G., Isakov, V., Baldauf, R. W., & Zhang, K. M. (2014). Effects of roadway configurations on near-road air quality and the implications on roadway designs. Atmospheric Environment, 94, 74–85. https://doi.org/10.1016/j.atmosenv.2014.05.015.

    Article  CAS  Google Scholar 

  39. Stull, R. (2005). The atmospheric boundary layer. An introduction to boundary layer meteorology. Berlin: Springer Science & Business Media ISBN-13: 978-9027727695.

    Google Scholar 

  40. Stull, R. (2011). Meteorology for Scientists & Engineers (3rd edn., pp. 938). Vancouver: Univ. of British Columbia.

  41. Tominaga, Y., & Stathopoulos, T. (2011). CFD modeling of pollution dispersion in a street canyon: comparison between LES and RANS. Journal of Wind Engineering and Industrial Aerodynamics, 99(4), 340–348. https://doi.org/10.1016/j.jweia.2010.12.005.

    Article  Google Scholar 

  42. USEPA. (1999) Sampling of ambient air for total suspended particulate matter (SPM) and PM10 using high volume (HV) sampler. Compendium method IO-2.1. US Environmental Protection Agency. Retrieved from https://www3.epa.gov/ttnamti1/files/ambient/inorganic/mthd-2-1.pdf. Accessed 18 Feb 2019.

  43. USEPA. (2013). National storm water calculator, user’s guide. Retrieved from https://www.epa.gov/water-research/national-stormwater-calculator. Accessed 18 Feb 2019.

  44. USEPA. (2015). Technical support document (TSD) for replacement of CALINE3 with AERMOD for transportation related air quality analyses, EPA- 454/B-15-02. Retrieved from https://www3.epa.gov/scram001/appendix_w/2016/CAL3_AERMOD_Replacement_TSD.pdf. Accessed 18 Feb 2019.

  45. Vardoulakis, S., Fisher, B., Pericleous, K., & Gonzalez-Flesca, N. (2003). Modelling air quality in street canyons: a review. Atmospheric Environment., 37(2), 155–182. https://doi.org/10.1016/S1352-2310(02)00857-9.

    Article  CAS  Google Scholar 

  46. Venkatram, A., & Horst, T. W. (2006). Approximating dispersion from a finite line source. Atmospheric Environment., 40(13), 2401–2408. https://doi.org/10.1016/j.atmosenv.2005.12.014.

    Article  CAS  Google Scholar 

  47. Wang, Y. J., & Zhang, K. M. (2009). Modelling near-road air quality using a computational fluid dynamics model, CFD-VIT-RIT. Environmental Science Technology., 43, 7778–7783. https://doi.org/10.1021/es9014844.

    Article  CAS  Google Scholar 

  48. Wang, Y. J., DenBleyker, A., McDonald-Bullerb, E., Allenb, D., & Zhanga, K. M. (2011). Modeling the chemical evolution of nitrogen oxides near roadways. Atmospheric Environment, 45(1), 43–52. https://doi.org/10.1016/j.atmosenv.2010.09.050.

    Article  CAS  Google Scholar 

  49. WHO. (2005). Health effects of transport-related air pollution. Copenhagen: World Health Organization. Regional Office for Europe ISBN 92-890-1373-7.

    Google Scholar 

  50. WMO. (2008). Guide to meteorological instruments and methods of observation (7th ed.). Geneva: World Meteorological Organization -No. 8 ISBN: 978–92–63-10008-5.

    Google Scholar 

  51. Zhang, K. M., Wexler, A. S., Zhu, Y. F., Hinds, W. C., & Sioutas, C. (2004). Evolution of particle number distribution near roadways. Part II: the ‘Road-to-Ambient’ process. Atmospheric Environment, 38(38), 6655–6665. https://doi.org/10.1016/j.atmosenv.2004.06.044.

    Article  CAS  Google Scholar 

  52. Zhu, Y., Hinds, W. C., Kim, S., Shen, S., & Sioutas, C. (2002). Study of ultrafine particles near a major highway with heavy-duty diesel traffic. Atmospheric Environment, 36(27), 4323–4335. https://doi.org/10.1016/S1352-2310(02)00354-0.

    Article  CAS  Google Scholar 

  53. Zou, F. B., Zhan, B., Wilson, J. G., & Zeng, Y. (2009). Performance of AERMOD at different time scales. Simulation Modelling Practice and Theory, 18, 612–623. https://doi.org/10.1016/j.simpat.2010.01.005.

    Article  Google Scholar 

Download references

Funding

This study was partially financed by the Colombian oil association (Asociación Colombiana de Petróleos-ACP), the Mexican Council for Science and Technology (Consejo Nacional de Ciencia y Tecnología-CONACYT), and CAIA Engineering.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Ignacio Huertas.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huertas, J.I., Prato, D.F. CFD Modeling of Near-Roadway Air Pollution. Environ Model Assess 25, 129–145 (2020). https://doi.org/10.1007/s10666-019-09666-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-019-09666-w

Keywords

Navigation