Skip to main content
Log in

Combined Newton–Raphson and Streamlines-Upwind Petrov–Galerkin iterations for nanoparticles transport in buoyancy-driven flow

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

The present study deals with the finite element discretization of nanofluid convective transport in an enclosure with variable properties. We study the Buongiorno model, which couples the Navier–Stokes equations for the base fluid, an advective-diffusion equation for the heat transfer, and an advection-dominated nanoparticle fraction concentration subject to thermophoresis and Brownian motion forces. We develop an iterative numerical scheme that combines Newton’s method (dedicated to the resolution of the momentum and energy equations) with the transport equation that governs the nanoparticles concentration in the enclosure. We show that the Stream-Upwind Petrov–Galerkin regularization approach is required to solve properly the transport equation in Buongiorno’s model, in the Finite Element framework. Indeed, we formulate this ill-posed equation as a variational problem under mean value constraint. Numerical analysis and computations are reported to show the effectiveness of our proposed numerical approach in its ability to provide reasonably good agreement with the experimental results available in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Kleinstreuer C, Xu Z (2016) Mathematical modeling and computer simulations of nanofluid flow with applications to cooling and lubrication. Fluids 1(2):16

    Article  Google Scholar 

  2. Manca O, Jaluria Y, Poulikakos D (2010) Heat transfer in nanofluids Adv Mech Eng

  3. Minkowycz W, Sparrow EM, Abraham JP (2012) Nanoparticle heat transfer and fluid flow, vol 4. CRC Press, New York

    Google Scholar 

  4. Sarkar S, Ganguly S, Biswas G, Saha P (2016) Effect of cylinder rotation during mixed convective flow of nanofluids past a circular cylinder. Comput Fluids 127:47–64

    Article  MathSciNet  MATH  Google Scholar 

  5. Sun XH, Yan H, Massoudi M, Chen ZH, Wu WT (2018) Numerical simulation of nanofluid suspensions in a geothermal heat exchanger. Energies 11(4):919

    Article  Google Scholar 

  6. Ardahaie SS, Amiri AJ, Amouei A, Hosseinzadeh K, Ganji D (2018) Investigating the effect of adding nanoparticles to the blood flow in presence of magnetic field in a porous blood arterial. Inf Med Unlocked 10:71–81

    Article  Google Scholar 

  7. Salloum M, Ma R, Weeks D, Zhu L (2008) Controlling nanoparticle delivery in magnetic nanoparticle hyperthermia for cancer treatment: experimental study in agarose gel. Int J Hypertherm 24(4):337–345

    Article  Google Scholar 

  8. Baïri A (2018) Effects of ZnO–H\(_2\)O nanofluid saturated porous medium on the thermal behavior of cubical electronics contained in a tilted hemispherical cavity. an experimental and numerical study. Appl Therm Eng 138:924–933

    Article  Google Scholar 

  9. Baïri A, Laraqi N, Adeyeye K (2018) Thermal behavior of an active electronic dome contained in a tilted hemispherical enclosure and subjected to nanofluidic Cu-water free convection. Eur Phys J Plus 133(3):1–11

    Article  Google Scholar 

  10. Buongiorno J (2005) Convective transport in nanofluids. J Heat Transf 128(3):240–250

    Article  Google Scholar 

  11. Mahian O, Kianifar A, Kalogirou SA, Pop I, Wongwises S (2013) A review of the applications of nanofluids in solar energy. Int J Heat Mass Transf 57(2):582–594

    Article  Google Scholar 

  12. Li J, Kleinstreuer C (2008) Thermal performance of nanofluid flow in microchannels. Int J Heat Fluid Flow 29(4):1221–1232

    Article  Google Scholar 

  13. Li Q, Wang J, Wang J, Baleta J, Min C, Sundén B (2018) Effects of gravity and variable thermal properties on nanofluid convective heat transfer using connected and unconnected walls. Energy Convers Manag 171:1440–1448

    Article  Google Scholar 

  14. Xu Z, Kleinstreuer C (2014) Computational analysis of nanofluid cooling of high concentration photovoltaic cells. J Therm Sci Eng Appl 6:3

    Article  Google Scholar 

  15. Jabbari F, Rajabpour A, Saedodin S (2017) Thermal conductivity and viscosity of nanofluids: a review of recent molecular dynamics studies. Chem Eng Sci 174:67–81

    Article  Google Scholar 

  16. Addad Y, Abutayeh M, Abu-Nada E (2017) Effects of nanofluids on the performance of a pcm-based thermal energy storage system. J Energy Eng 143(4):04017006

    Article  Google Scholar 

  17. Khodadadi H, Aghakhani S, Majd H, Kalbasi R, Wongwises S, Afrand M (2018) A comprehensive review on rheological behavior of mono and hybrid nanofluids: effective parameters and predictive correlations. Int J Heat Mass Transf 127:997–1012

    Article  Google Scholar 

  18. Fan J, Wang L (2011) Review of heat conduction in nanofluids. J Heat Transf 133:4

    Article  Google Scholar 

  19. Kakaç S, Pramuanjaroenkij A (2009) Review of convective heat transfer enhancement with nanofluids. Int J Heat Mass Transf 52(13–14):3187–3196

    Article  MATH  Google Scholar 

  20. Buongiorno J, Venerus DC, Prabhat N, McKrell T, Townsend J, Christianson R, Tolmachev YV, Keblinski P, Lw Hu, Alvarado JL et al (2009) A benchmark study on the thermal conductivity of nanofluids. J Appl Phys 106(9):094312

    Article  Google Scholar 

  21. Kumar LH, Kazi S, Masjuki H, Zubir M (2021) A review of recent advances in green nanofluids and their application in thermal systems. Chem Eng J 429:132321

    Article  Google Scholar 

  22. Wen D, Ding Y (2004) Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions. Int J Heat Mass Transf 47(24):5181–5188

    Article  Google Scholar 

  23. Li CH, Peterson G (2010) Experimental studies of natural convection heat transfer of Al\(_2\)O\(_3\)/Di water nanoparticle suspensions (nanofluids). Adv Mech Eng 2:742739

    Article  Google Scholar 

  24. Ho C, Liu W, Chang Y, Lin C (2010) Natural convection heat transfer of alumina-water nanofluid in vertical square enclosures: an experimental study. Int J Therm Sci 49(8):1345–1353

    Article  Google Scholar 

  25. Putra N, Roetzel W, Das SK (2003) Natural convection of nano-fluids. Heat Mass Transf 39(8–9):775–784

    Article  MATH  Google Scholar 

  26. Chon CH, Kihm KD, Lee SP, Choi SU (2005) Empirical correlation finding the role of temperature and particle size for nanofluid (Al\(_2\)O\(_3\)) thermal conductivity enhancement. Appl Phys Lett 87(15):153107

    Article  Google Scholar 

  27. Amidu MA, Addad Y, Riahi MK, Abu-Nada E (2021) Numerical investigation of nanoparticles slip mechanisms impact on the natural convection heat transfer characteristics of nanofluids in an enclosure. Sci Rep 11(1):1–24

    Article  Google Scholar 

  28. Galeão AC, Do Carmo EGD (1988) A consistent approximate upwind Petrov–Galerkin method for convection-dominated problems. Comput Methods Appl Mech Eng 68(1):83–95

    Article  MathSciNet  MATH  Google Scholar 

  29. Yurun F (1997) A comparative study of the discontinuous Galerkin and continuous supg finite element methods for computation of viscoelastic flows. Comput Methods Appl Mech Eng 141(1):47–65

    Article  MATH  Google Scholar 

  30. Erath C, Praetorius D (2019) Optimal adaptivity for the supg finite element method. Comput Methods Appl Mech Eng 353:308–327

    Article  MathSciNet  MATH  Google Scholar 

  31. ten Eikelder M, Akkerman I (2018) Correct energy evolution of stabilized formulations: the relation between vms, supg and gls via dynamic orthogonal small-scales and isogeometric analysis. ii: The incompressible Navier–Stokes equations. Comput Methods Appl Mech Eng 340:1135–1154

    Article  MathSciNet  MATH  Google Scholar 

  32. Bänsch E, Faghih-Naini S, Morin P (2020) Convective transport in nanofluids: the stationary problem. J Math Anal Appl 489(1):124151

    Article  MathSciNet  MATH  Google Scholar 

  33. Bänsch E (2019) A thermodynamically consistent model for convective transport in nanofluids: existence of weak solutions and fem computations. J Math Anal Appl 477(1):41–59

    Article  MathSciNet  MATH  Google Scholar 

  34. Shekar BC, Kishan N (2015) Finite element analysis of natural convective heat transfer in a porous square cavity filled with nanofluids in the presence of thermal radiation. J Phys 662:012017

    Google Scholar 

  35. Balla CS, Naikoti K (2016) Finite element analysis of magnetohydrodynamic transient free convection flow of nanofluid over a vertical cone with thermal radiation. Proc Inst Mech Eng N 230(3):161–173

    Google Scholar 

  36. Ullah N, Nadeem S, Khan AU (2020) Finite element simulations for natural convective flow of nanofluid in a rectangular cavity having corrugated heated rods. J Therm Anal Calorim 143:4169

    Article  Google Scholar 

  37. Girault V, Raviart PA (2012) Finite element methods for Navier–Stokes equations: theory and algorithms, vol 5. Springer, Berlin

    MATH  Google Scholar 

  38. Taylor C, Hood P (1973) A numerical solution of the Navier–Stokes equations using the finite element technique. Comput Fluids 1(1):73–100

    Article  MathSciNet  MATH  Google Scholar 

  39. Apel T, Randrianarivony HM (2003) Stability of discretizations of the stokes problem on anisotropic meshes. Math Comput Simul 61(3–6):437–447

    Article  MathSciNet  MATH  Google Scholar 

  40. Abu-Nada E, Chamkha AJ (2010) Effect of nanofluid variable properties on natural convection in enclosures filled with a CuO-Eg-water nanofluid. Int J Therm Sci 49(12):2339–2352

    Article  Google Scholar 

  41. Khanafer K, Vafai K (2017) A critical synthesis of thermophysical characteristics of nanofluids. Nanotechnology and energy. Springer, Berlin, pp 279–332

    Chapter  Google Scholar 

  42. Franca LP, Hauke G, Masud A (2004) Stabilized finite element methods. International Center for Numerical Methods in Engineering (CIMNE), Barcelona

  43. John V, Novo J (2013) A robust supg norm a posteriori error estimator for stationary convection–diffusion equations. Comput Methods Appl Mech Eng 255:289–305

    Article  MathSciNet  MATH  Google Scholar 

  44. ten Eikelder M, Akkerman I (2018) Correct energy evolution of stabilized formulations: the relation between vms, supg and gls via dynamic orthogonal small-scales and isogeometric analysis. i: The convective-diffusive context. Comput Methods Appl Mech Eng 331:259–280

    Article  MathSciNet  MATH  Google Scholar 

  45. Burman E (2010) Consistent supg-method for transient transport problems: stability and convergence. Comput Methods Appl Mech Eng 199(17):1114–1123

    Article  MathSciNet  MATH  Google Scholar 

  46. Bochev PB, Gunzburger MD, Shadid JN (2004) Stability of the supg finite element method for transient advection–diffusion problems. Comput Methods Appl Mech Eng 193(23):2301–2323

    Article  MathSciNet  MATH  Google Scholar 

  47. Russo A (2006) Streamline-upwind petrov/galerkin method (supg) vs residual-free bubbles (rfb). Comput Methods Appl Mech Eng 195(13):1608–1620 (a Tribute to Thomas J.R. Hughes on the Occasion of his 60th Birthday)

  48. Brooks AN, Hughes TJ (1982) Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput Methods Appl Mech Eng 32(1–3):199–259

    Article  MathSciNet  MATH  Google Scholar 

  49. Franca LP, Frey SL, Hughes TJ (1992) Stabilized finite element methods: I. application to the advective–diffusive model. Comput Methods Appl Mech Eng 95(2):253–276

    Article  MathSciNet  MATH  Google Scholar 

  50. Gelhard T, Lube G, Olshanskii MA, Starcke JH (2005) Stabilized finite element schemes with lbb-stable elements for incompressible flows. J Comput Appl Math 177(2):243–267

    Article  MathSciNet  MATH  Google Scholar 

  51. Burman E, Smith G (2011) Analysis of the space semi-discretized supg method for transient convection–diffusion equations. Math Models Methods Appl Sci 21(10):2049–2068

    Article  MathSciNet  MATH  Google Scholar 

  52. Burman E (2010) Consistent supg-method for transient transport problems: stability and convergence. Comput Methods Appl Mech Eng 199(17–20):1114–1123

    Article  MathSciNet  MATH  Google Scholar 

  53. John V, Novo J (2011) Error analysis of the supg finite element discretization of evolutionary convection–diffusion–reaction equations. SIAM J Numer Anal 49(3/4):1149–1176

    Article  MathSciNet  MATH  Google Scholar 

  54. Ciarlet PG (2002) The finite element method for elliptic problems. Society for Industrial and Applied Mathematics

  55. Ern A, Guermond JL (2013) Theory and practice of finite elements, vol 159. Springer, Berlin

    MATH  Google Scholar 

  56. Astanina MS, Kamel Riahi M, Abu-Nada E, Sheremet MA (2018) Magnetohydrodynamic in partially heated square cavity with variable properties: discrepancy in experimental and theoretical conductivity correlations. Int J Heat Mass Transf 116:532–548

    Article  Google Scholar 

  57. Benedetto M, Berrone S, Borio A, Pieraccini S, Scialò S (2016) Order preserving supg stabilization for the virtual element formulation of advection–diffusion problems. Comput Methods Appl Mech Eng 311:18–40

    Article  MathSciNet  MATH  Google Scholar 

  58. Wervaecke C, Beaugendre H, Nkonga B (2012) A fully coupled rans Spalart–Allmaras supg formulation for turbulent compressible flows on stretched-unstructured grids. Comput Methods Appl Mech Eng 233–236:109–122

    Article  MathSciNet  MATH  Google Scholar 

  59. Alosious S, Sarath S, Nair AR, Krishnakumar K (2017) Experimental and numerical study on heat transfer enhancement of flat tube radiator using Al\(_2\)O\(_3\) and CuO nanofluids. Heat Mass Transf 53(12):3545–3563

    Article  Google Scholar 

  60. Chen YJ, Wang PY, Liu ZH (2016) Numerical study of natural convection characteristics of nanofluids in an enclosure using multiphase model. Heat Mass Transf 52(11):2471–2484

    Article  Google Scholar 

  61. ANSYS (2016) ANSYS Fluent - CFD Software|ANSYS

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. K. Riahi.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: Density dimensionless derivation

Following Eq.(2.22.3) we have

$$\begin{aligned} \rho _\text {nf}= (1-\phi ^{\star }) \rho _\text {bf}+\phi ^{\star }\rho _\text {np}\end{aligned}$$

note also from Eq. (2.4),

$$\begin{aligned} (\rho \beta )_\text {nf} = (\rho \beta )_\text {bf}(1-\phi ^{\star }) + (\rho \beta )_\text {np}\phi ^{\star }, \end{aligned}$$

where \((\rho \beta )_\text {bf}=\rho _\text {bf}\beta _\text {bf}\) and \((\rho \beta )_\text {np}=\rho _\text {np}\beta _\text {np}\). Hence

$$\begin{aligned} \dfrac{(\rho \beta )_\text {nf} }{\rho _\text {nf}}= & {} \dfrac{\rho _\text {bf}\beta _\text {bf}(1-\phi ^{\star })}{ (1-\phi ^{\star }) \rho _\text {bf}+\phi ^{\star }\rho _\text {np}} + \dfrac{ \rho _\text {np}\beta _\text {np}\phi ^{\star }}{ (1-\phi ^{\star }) \rho _\text {bf}+\phi ^{\star }\rho _\text {np}}\\= & {} \dfrac{\beta _\text {bf}(1-\phi ^{\star })}{ (1-\phi ^{\star })+\phi ^{\star }\dfrac{\rho _\text {np}}{\rho _\text {bf}}} + \dfrac{ \phi ^{\star }}{ (1-\phi ^{\star }) +\phi ^{\star }\dfrac{\rho _\text {np}}{\rho _\text {bf}}}\beta _\text {np}= \beta _\text {bf}\left( \dfrac{(1-\phi ^{\star })}{ (1-\phi ^{\star })+\phi ^{\star }\dfrac{\rho _\text {np}}{\rho _\text {bf}}} + \dfrac{ \phi ^{\star }}{ (1-\phi ^{\star }) +\phi ^{\star }\dfrac{\rho _\text {np}}{\rho _\text {bf}}}\dfrac{\beta _\text {np}}{\beta _\text {bf}} \right) .\\ \end{aligned}$$

Let

$$\begin{aligned} \mathcal {M}:=\left( \dfrac{(1-\phi ^{\star })}{ (1-\phi ^{\star })+\phi ^{\star }\dfrac{\rho _\text {np}}{\rho _\text {bf}}} + \dfrac{ \phi ^{\star }}{ (1-\phi ^{\star }) +\phi ^{\star }\dfrac{\rho _\text {np}}{\rho _\text {bf}}}\dfrac{\beta _\text {np}}{\beta _\text {bf}} \right) . \end{aligned}$$

Appendix 2: Momentum equation

$$\begin{aligned} \left( \mathbf{u} ^{\star }\cdot \nabla ^{\star }\,\right) \mathbf{u} ^{\star }= \dfrac{-1}{\rho _\text {nf}}\nabla ^{\star }\,p^{\star }+ \dfrac{1}{\rho _\text {nf}} \nabla ^{\star }\,\cdot \left( \mu ^{\star }_\text {nf}\left( \nabla ^{\star }\,\mathbf{u} ^{\star }+ (\nabla ^{\star }\,\mathbf{u} ^{\star })^{t}\right) \right) + \dfrac{{\mathbf{g}}}{\rho _\text {nf}}(\rho _{\infty }-\rho _{c}). \end{aligned}$$
(A.1)

Moving toward dimensionless variables the above equation becomes

$$\begin{aligned} \dfrac{\alpha ^2}{L^3} \left( \mathbf {u}\cdot \nabla \right) \mathbf {u}= \dfrac{-\rho _\text {bf}\alpha ^2}{L^{2}\rho _\text {nf}}\nabla ^{\star }\,p^{\star }+ \dfrac{\alpha \mu _\text {bf}}{L^3\rho _\text {nf}} \nabla ^{\star }\,\cdot \left( \mu _\text {nf}\left( \nabla ^{\star }\,\mathbf{u} ^{\star }+ (\nabla ^{\star }\,\mathbf{u} ^{\star })^{t}\right) \right) + \dfrac{{\mathbf{g}}\beta _\text {nf}}{\rho _\text {nf}}\rho _{\infty }(\theta _{h}-\theta _{c})\theta \end{aligned}$$
(A.2)

Multiplying the above equation by \(\dfrac{L^3}{\alpha ^2}\) we obtain

$$\begin{aligned} \left( \mathbf {u}\cdot \nabla \right) \mathbf {u}= & {} \dfrac{\rho _\text {bf}}{\rho _\text {nf}} \nabla p + \dfrac{\mu _\text {bf}}{\alpha \rho _\text {bf}\left( 1-\phi +\phi \dfrac{\rho _\text {np}}{\rho _\text {bf}}\right) } \nabla \cdot \left( \mu _\text {nf}\left( \nabla \mathbf {u}+ (\nabla \mathbf {u})^{t}\right) \right) +\dfrac{\mathcal {M}L^3{\mathbf{g}}\beta _\text {nf}}{\alpha ^2\rho _\text {nf}}\rho _{\infty }(\theta _{h}-\theta _{c})\theta , \end{aligned}$$

which rewrites using the non-dimensional constants as follows:

$$\begin{aligned} \left( \mathbf {u}\cdot \nabla \right) \mathbf {u}= & {} \pi ^{m}_{1}(\phi ) \nabla p + \pi ^{m}_{2}(\phi ) \nabla \cdot \left( \mu _\text {nf}\left( \nabla \mathbf {u}+ (\nabla \mathbf {u})^{t}\right) \right) +\pi ^{m}_{3}(\phi )\theta , \end{aligned}$$
(A.3)

where

$$\begin{aligned} \pi ^{m}_{1}(\phi )= & {} \left( 1-\phi +\phi \dfrac{\rho _\text {np}}{\rho _\text {bf}}\right) ^{-1}, \end{aligned}$$
(A.4)
$$\begin{aligned} \pi ^{m}_{2}(\phi )= & {} \text {Pr}\left( 1-\phi +\phi \dfrac{\rho _\text {np}}{\rho _\text {bf}}\right) ^{-1}, \end{aligned}$$
(A.5)
$$\begin{aligned} \pi ^{m}_{3}(\phi )= & {} \text {Pr}\text {Ra}_\text {nf} \mathcal {M}. \end{aligned}$$
(A.6)

Appendix 3: Energy equation

The dimensional energy equation writes

$$\begin{aligned} \left( \mathbf{u} ^{\star }\cdot \nabla ^{\star }\,\theta ^{\star }\right) = \dfrac{1}{c_\text {nf}\rho _\text {nf}} \nabla ^{\star }\,\cdot \left( k^{\star }_\text {nf}\nabla ^{\star }\,\theta ^{\star }\right) + \left( \dfrac{\rho _\text {np}c_\text {np}}{\rho _\text {nf}c_\text {nf}}\right) \left( \dfrac{D^{\star }_{\theta }}{\theta ^{\star }_{C}} \nabla ^{\star }\,\theta ^{\star }\cdot \nabla ^{\star }\,\theta ^{\star }+D_{\omega }^{\star }\nabla ^{\star }\,\phi \cdot \nabla ^{\star }\,\theta ^{\star }\right) . \end{aligned}$$

Moving toward dimensionless variables the above equation writes

$$\begin{aligned} \dfrac{\alpha (\theta ^{\star }_{H}-\theta ^{\star }_{C})}{L^2}\left( \mathbf {u}\cdot \nabla \theta \right)= & {} \dfrac{k_\text {bf}(\theta ^{\star }_{H}-\theta ^{\star }_{C})}{L^2c_\text {nf}\rho _\text {nf}} \nabla \cdot \left( k_\text {nf}\nabla \theta \right) + \left( \dfrac{\rho _\text {np}c_\text {np}}{\rho _\text {nf}c_\text {nf}}\right) \dfrac{D_{\theta _{c}} (\theta ^{\star }_{H}-\theta ^{\star }_{C})^{2}}{\theta ^{\star }_{C}L^2} \left( D_{\theta }\nabla \theta \cdot \nabla \theta \right) \\&+ \left( \dfrac{\rho _\text {np}c_\text {np}}{\rho _\text {nf}c_\text {nf}}\right) \dfrac{\phi _\text {b}D_{\omega _{c}} (\theta ^{\star }_{H}-\theta ^{\star }_{C})}{L^2} \left( D_{\omega }\nabla \phi \cdot \nabla \theta \right) . \end{aligned}$$

Multiplying the above equation by \(\dfrac{L^2}{\alpha (\theta ^{\star }_{H}-\theta ^{\star }_{C})}\) we obtain

$$\begin{aligned} \left( \mathbf {u}\cdot \nabla \theta \right)= & {} \dfrac{k_\text {bf}}{\alpha c_\text {nf}\rho _\text {nf}} \nabla \cdot \left( k_\text {nf}\nabla \theta \right) + \left( \dfrac{\rho _\text {np}c_\text {np}}{\rho _\text {nf}c_\text {nf}}\right) \dfrac{D_{\theta _{c}} (\theta ^{\star }_{H}-\theta ^{\star }_{C})}{\alpha \theta ^{\star }_{C}} \left( D_{\theta }\nabla \theta \cdot \nabla \theta \right) \\&+\left( \dfrac{\rho _\text {np}c_\text {np}}{\rho _\text {nf}c_\text {nf}}\right) \dfrac{\phi _\text {b}D_{\omega _{c}}}{\alpha } \left( D_{\omega }\nabla \phi \cdot \nabla \theta \right) , \end{aligned}$$

which rewrites using non-dimensional variables as follows:

$$\begin{aligned} \left( \mathbf {u}\cdot \nabla \theta \right)= & {} \pi ^{e}_{1} \nabla \cdot \left( k_\text {nf}\nabla \theta \right) +\pi ^{e}_{2} \left( D_{\theta }\nabla \theta \cdot \nabla \theta \right) +\pi ^{e}_{3} \left( D_{\omega }\nabla \phi \cdot \nabla \theta \right) , \end{aligned}$$

where

Appendix 4: Nanoparticle transport equation

The particle dimensional equation writes

$$\begin{aligned} \nabla ^{\star }\,\cdot \nabla ^{\star }\,\phi ^{\star }= \nabla ^{\star }\,\cdot \left( D_{\omega }^{\star } \nabla ^{\star }\,\phi ^{\star }+\dfrac{D_{\theta ^{\star }}^{\star }}{\theta ^{\star }_{C}}\nabla ^{\star }\,\theta ^{\star }\right) \end{aligned}$$

using the non-dimensional equations the above equation writes

$$\begin{aligned} \dfrac{\alpha }{L^2}\phi _\text {b}\nabla \cdot \nabla \phi = \dfrac{\phi _\text {b}D_{\omega _{c}}}{L^2}\nabla \cdot \left( D_{\omega } \nabla \phi \right) +\dfrac{D_{\theta ^{\star }_{C}} (\theta ^{\star }_{H}-\theta ^{\star }_{C})}{ L^2\theta ^{\star }_{C}} \nabla \cdot \left( D_{\theta }\nabla \theta \right) . \end{aligned}$$

Multiplying the above by \(\dfrac{L^2}{\alpha \phi _\text {b}}\) we obtain

$$\begin{aligned} \phi _\text {b}\nabla \cdot \nabla \phi= & {} \dfrac{D_{\omega _{c}}}{\alpha }\nabla \cdot \left( D_{\omega } \nabla \phi \right) +\dfrac{D_{\theta ^{\star }_{C}}^{\star } (\theta ^{\star }_{H}-\theta ^{\star }_{C})}{\phi _\text {b}\alpha \theta ^{\star }_{C}} \nabla \cdot \left( D_{\theta }\nabla \theta ^{\star }\right) .\\ \nabla \cdot \nabla \phi= & {} \pi ^{p}_{1}\nabla \cdot \left( D_{\omega } \nabla \phi \right) +\pi ^{p}_{2} \nabla \cdot \left( D_{\theta }\nabla \theta ^{\star }\right) , \end{aligned}$$

where

$$\begin{aligned}&\pi ^{p}_{1} = \dfrac{D_{\omega _{c}}}{\alpha }=\dfrac{1}{\text {Le}},\\&\pi ^{p}_{2} = \dfrac{D_{\theta ^{\star }_{C}} (\theta ^{\star }_{H}-\theta ^{\star }_{C})}{ L^2\theta ^{\star }_{C}}=\dfrac{\text {St}\text {Pr}}{\text {Sc}}\dfrac{\theta ^{\star }_{H}-\theta ^{\star }_{C}}{\theta ^{\star }_{C}} \dfrac{1}{\phi _\text {b}}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riahi, M.K., Ali, M., Addad, Y. et al. Combined Newton–Raphson and Streamlines-Upwind Petrov–Galerkin iterations for nanoparticles transport in buoyancy-driven flow. J Eng Math 132, 22 (2022). https://doi.org/10.1007/s10665-021-10205-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10665-021-10205-4

Keywords

Mathematics Subject Classification

Navigation