Skip to main content
Log in

Green’s functions for a trigonal piezoelectric half-plane belonging to 3m crystal class

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

Piezoelectric materials have a wide range of industrial applications in different branches of engineering due to their electromechanical coupling. So, investigating their responses to either mechanical or electric loadings helps engineers for efficient design of smart systems. However, most of the studies have assessed the well-known 6 mm piezoelectric materials or piezoceramics and few papers have studied other piezoelectric crystals despite of their application in industry. In this paper, fundamental solutions of a trigonal piezoelectric half-plane belonging to 3m crystal class is obtained. The governing differential equations are derived and solved analytically using potential method. It is shown that the solution for the 3m material can be degenerated to 6 mm solution as a special case. The contour lines were depicted for two practical piezoelectric materials belonging to 3m and 6 mm crystal classes including lithium niobate and PZT-4 and they were compared to each other. The numerical results showed that the response of the trigonal material is asymmetric due to anisotropy and the effect of anisotropy on some responses is considerable causing totally different behavior from 6 mm piezoelectric material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Vijaya MS (2013) Piezoelectric materials and devices. CRC Press, Boca Raton

    Google Scholar 

  2. Xu Y (2013) Ferroelectric materials and their applications. Elsevier, Amsterdam

    Google Scholar 

  3. Tichý J, Erhart J, Kittinger E, Prívratská J (2010) Fundamentals of piezoelectric sensorics: mechanical, dielectric, and thermodynamical properties of piezoelectric materials. Springer, Berlin

    Book  Google Scholar 

  4. Manbachi A, Cobbold RS (2011) Development and application of piezoelectric materials for ultrasound generation and detection. Ultrasound 19:187–196

    Article  Google Scholar 

  5. Nye JF (1957) Physical properties of crystals: their representation by tensors and matrices. Clarendon Press, Oxford

    MATH  Google Scholar 

  6. Kholkin AL, Pertsev NA, Goltsev AV (2008) Piezoelectricity and crystal symmetry. Piezoelectric and acoustic materials for transducer applications. Springer, Boston, pp 17–38

    Book  Google Scholar 

  7. Elliott HA, Mott NF (1948) Three-dimensional stress distributions in hexagonal aeolotropic crystals. Math Proc Camb Philos Soc 44:522–533

    Article  MathSciNet  Google Scholar 

  8. Pan YC, Chou TW (1976) Point force solution for an infinite transversely isotropic solid. J Appl Mech 43:608–612

    Article  MATH  Google Scholar 

  9. Fredholm I (1900) Sur les équations de l’équilibre d’un corps solide élastique. Acta Math 23:1–42

    Article  MathSciNet  MATH  Google Scholar 

  10. Synge JL (1957) The hypercircle in mathematical physics: a method for the approximate solution of boundary value problems. Cambridge University, Cambridge

    Book  MATH  Google Scholar 

  11. Barnett DM (1972) The precise evaluation of derivatives of the anisotropic elastic Green’s functions. Phys Status Solidi 49:741–748

    Article  Google Scholar 

  12. Phan AV, Gray LJ, Kaplan T (2004) On the residue calculus evaluation of the 3-D anisotropic elastic Green’s function. Commun Numer Methods Eng 20:335–341

    Article  MathSciNet  MATH  Google Scholar 

  13. Sales MA, Gray LJ (1998) Evaluation of the anisotropic Green’s function and its derivatives. Comput Struct 69:247–254

    Article  MATH  Google Scholar 

  14. Malen K (1971) A unified six-dimensional treatment of elastic Green’s functions and dislocations. Phys Status Solidi 44:661–672

    Article  Google Scholar 

  15. Deeg WF (1981) The analysis of dislocation, crack, and inclusion problems in piezoelectric solids. Standford University, Stanford

    Google Scholar 

  16. Chen T (1993) Green’s functions and the non-uniform transformation problem in a piezo electric medium. Mech Res Commun 20:271–278

    Article  Google Scholar 

  17. Chen T, Lin FZ (1993) Numerical evaluation of derivatives of the anisotropic piezoelectric Green’s functions. Mech Res Commun 20:501–506

    Article  MATH  Google Scholar 

  18. Dunn ML (1994) Electroelastic Green’s functions for transversely isotropic piezoelectric media and their application to the solution of inclusion and inhomogeneity problems. Int J Eng Sci 32:119–131

    Article  MathSciNet  MATH  Google Scholar 

  19. Pan E, Tonon F (2000) Three-dimensional Green’s functions in anisotropic piezoelectric solids. Int J Solids Struct 37:943–958

    Article  MATH  Google Scholar 

  20. Akamatsu M, Tanuma K (1997) Green’s function of anisotropic piezoelectricity. Proc R Soc A 453:473–487

    Article  MathSciNet  MATH  Google Scholar 

  21. Xie L, Zhang C, Hwu C, Sladek J, Sladek V (2015) On two accurate methods for computing 3D Green’s function and its first and second derivatives in piezoelectricity. Eng Anal Bound Element 61:183–193

    Article  MathSciNet  MATH  Google Scholar 

  22. Wang Z, Zheng B (1995) The general solution of three-dimensional problems in piezoelectric media. Int J Solids Struct 32:105–115

    Article  MATH  Google Scholar 

  23. Ding H, Chen B, Liang J (1996) General solutions for coupled equations for piezoelectric media. Int J Solids Struct 33:2283–2298

    Article  MATH  Google Scholar 

  24. Dunn ML, Wienecke HA (1996) Green’s functions for transversely isotropic piezoelectric solids. Int J Solids Struct 33:4571–4581

    Article  MATH  Google Scholar 

  25. Ding H, Chen B, Liang J (1997) On the Green’s functions for two-phase transversely isotropic piezoelectric media. Int J Solids Struct 34:3041–3057

    Article  MATH  Google Scholar 

  26. Sosa HA, Castro MA (1994) On concentrated loads at the boundary of a piezoelectric half-plane. J Mech Phys Solids 42:1105–1122

    Article  MathSciNet  MATH  Google Scholar 

  27. Ding HJ, Wang GQ, Chen WQ (1998) A boundary integral formulation and 2D fundamental solutions for piezoelectric media. Comput Methods Appl Mech Eng 158:65–80

    Article  MATH  Google Scholar 

  28. Ding HJ, Wang GQ, Chen WQ (1997) Green’s functions for a two-phase infinite piezoelectric plane. Proc R Soc A 453:2241–2257

    Article  MathSciNet  MATH  Google Scholar 

  29. Pan E, Han F (2004) Green’s functions for transversely isotropic piezoelectric multilayered half-spaces. J Eng Math 49:271–288

    Article  MathSciNet  MATH  Google Scholar 

  30. Chen WQ (2000) On the general solution for piezothermoelasticity for transverse isotropy with application. J Appl Mech Trans ASME 67:705–711

    Article  MathSciNet  MATH  Google Scholar 

  31. Hou PF (2009) 2D fundamental solution for orthotropic pyroelectric media. Acta Mech 206:225–235

    Article  MATH  Google Scholar 

  32. Hou PF, Luo ZW, Leung AYT (2010) 2D greengs functions for two-phase orthotropic piezothermoelastic plane. J Intell Mater Syst Struct 21:557–565

    Article  Google Scholar 

  33. Hou PF, Li ZS, Zhang Y (2014) Three-dimensional quasi-static Green’s function for an infinite transversely isotropic pyroelectric material under a step point heat source. Mech Res Commun 62:66–76

    Article  Google Scholar 

  34. Hou PF, Tian W, Jiang HY (2015) Two-dimensional Green’s functions for the fluid and piezoelectric two-phase plane under the line forces and line charge. Zeitschrift fur Angew Math und Phys 66:2001–2023

    Article  MathSciNet  MATH  Google Scholar 

  35. Hou PF, Yuan K, Tian W (2014) Three-dimensional Green’s functions for a fluid and pyroelectric two-phase material. Appl Math Comput 249:303–319

    MathSciNet  MATH  Google Scholar 

  36. Zhang L, Zhang Y, Gao Y (2014) General solutions of plane elasticity of one-dimensional orthorhombic quasicrystals with piezoelectric effect. Phys Lett Sect A 378:2768–2776

    Article  MathSciNet  MATH  Google Scholar 

  37. Li XY, Li PD, Wu TH, Shi MX, Zhu ZW (2014) Three-dimensional fundamental solutions for one-dimensional hexagonal quasicrystal with piezoelectric effect. Phys Lett Sect A 378:826–834

    Article  MathSciNet  MATH  Google Scholar 

  38. Samea P, Eskandari M, Ahmadi SF (2017) Displacement potentials for functionally graded piezoelectric solids. Appl Math Model 52:458–469

    Article  MathSciNet  MATH  Google Scholar 

  39. Sevostianov I, Da Silva UP, Aguiar AR (2014) Green’s function for piezoelectric 622 hexagonal crystals. Int J Eng Sci 84:18–28

    Article  MathSciNet  MATH  Google Scholar 

  40. Berndt EA, Sevostianov I (2016) Green’s function for unbounded piezoelectric material of class 6. Int J Solids Struct 83:81–89

    Article  Google Scholar 

  41. Chiang CR (2013) Electromechanical fields around a screw dislocation in a cubic piezoelectric crystal. Eng Fract Mech 99:191–201

    Article  Google Scholar 

  42. Chiang CR (2014) Some half-space problems of cubic piezoelectric materials. Int J Solids Struct 51:1046–1051

    Article  Google Scholar 

  43. Chiang CR (2013) Mode-III crack problems in a cubic piezoelectric medium. Acta Mech 224:2203–2217

    Article  MathSciNet  MATH  Google Scholar 

  44. Warner AW, Onoe M, Coquin GA (1968) Determination of elastic and piezoelectric constants for crystals. J Acoust Soc Am 930:1223–1231

    Google Scholar 

  45. Smith RT (1967) Elastic, piezoelectric, and dielectric properties of lithium tantalate. Appl Phys Lett 11:146–148

    Article  Google Scholar 

  46. Domenjoud M, Lematre M, Gratton M, Lethiecq M, Tran-Huu-Hue LP (2013) Theoretical and experimental study of the electroacoustic behavior of lithium niobate under an initial mechanical stress. IEEE Trans Ultrason Ferroelectr Freq Control 60(10):2219–2224

    Article  Google Scholar 

  47. Zemanian AH (1965) Distribution theory and transform analysis: an introduction to generalized functions, with applications. McGraw-Hill, New York

    MATH  Google Scholar 

  48. Wang JH, Chen CQ, Lu TJ (2008) Indentation responses of piezoelectric films. J Mech Phys Solids 56:3331–3351

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Khojasteh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

The coefficients \(a_{\mathrm {1}}\) to \(a_{\mathrm {6}}\) are determined in terms of material constants as follows

$$\begin{aligned} a_{1}&=c_{44} (c_{33} \kappa _{33} +e_{33}^{2} ), \nonumber \\ a_{2}&=2c_{14} (c_{33} \kappa _{33} +e_{33}^{2} ), \nonumber \\ a_{3}&=c_{33} [c_{44} \kappa _{11} +(e_{15} +e_{31} )^{2}]+\kappa _{33} [c_{11} c_{33} +c_{44}^{2} -(c_{13} +c_{44} )^{2}] \nonumber \\&\quad \times e_{33} [2c_{44} e_{15} +c_{11} e_{33} -2(c_{13} +c_{44} )(e_{15} +e_{31} )], \nonumber \\ a_{4}&=2(c_{13} +c_{44} )(e_{22} e_{33} -c_{14} \kappa _{33} )-2(e_{15} +e_{31} )(c_{33} e_{22} +c_{14} e_{33} ) \nonumber \\&\quad \times 2c_{14} (c_{33} \kappa _{11} +c_{44} \kappa _{33} +2e_{15} e_{33} ), \nonumber \\ a_{5}&=c_{44} [c_{11} \kappa _{33} +(e_{15} +e_{31} )^{2}]+\kappa _{11} [c_{11} c_{33} +c_{44}^{2} -(c_{13} +c_{44} )^{2}] \nonumber \\&\quad +e_{15} [2c_{11} e_{33} +c_{44} e_{15} -2(c_{13} +c_{44} )(e_{15} +e_{31} )]+c_{14} [2e_{22} e_{33} -c_{14} \kappa _{33} ]+c_{33} e_{22}^{2}, \nonumber \\ a_{6}&=2c_{14} (c_{44} \kappa _{11} +e_{15}^{2} )+2(c_{13} +c_{44} )(e_{22} e_{15} -c_{14} \kappa _{11} ), -2(e_{15} +e_{31} )(c_{44} e_{22} +c_{14} e_{15} ), \nonumber \\ a_{7}&=c_{11} (e_{15}^{2} +c_{44} \kappa _{11} )+c_{14} (2e_{15} e_{22} -c_{14} \kappa _{11} )+c_{44} e_{22}^{2}. \end{aligned}$$
(A.1)

The parameters \(m_{i}\) (\(i=1,2,3\)) and \(n_{jl}\) (\(j=1,2,\ldots ,5; l=1,2\)) in Eq. (2.12) can be determined as follows:

$$\begin{aligned} m_{1}&=e_{15} e_{22} -\kappa _{11} c_{14}, \nonumber \\ m_{2}&=\kappa _{11} (c_{13} +c_{44} )+e_{15} (e_{31} +e_{15} ), \nonumber \\ m_{3}&=e_{33} e_{22} -\kappa _{33} c_{14}, \nonumber \\ m_{4}&=\kappa _{33} (c_{13} +c_{44} )+e_{33} (e_{31} +e_{15} ), \nonumber \\ n_{11}&=-(c_{11} \kappa _{11} +e_{22}^{2} ), \nonumber \\ n_{21}&=2(c_{14} \kappa _{11} -e_{22} (e_{31} +e_{15} )), \nonumber \\ n_{31}&=-(c_{44} \kappa _{11} +c_{11} \kappa _{33} +(e_{31} +e_{15} )^{2}),\nonumber \\ n_{41}&=2c_{14} \kappa _{33}, \nonumber \\ n_{51}&=-c_{44} \kappa _{33}, \nonumber \\ n_{12}&=-(c_{11} e_{15} +c_{14} e_{22} ), \nonumber \\ n_{22}&=(c_{14} (e_{15} -e_{31} )+e_{22} (c_{13} +c_{44} )), \nonumber \\ n_{32}&=-(c_{11} e_{33} +c_{44} e_{15} -(c_{13} +c_{44} )(e_{31} +e_{15} )), \nonumber \\ n_{42}&=2c_{14} e_{33}, \nonumber \\ n_{52}&=-c_{44} e_{33}, \end{aligned}$$
(A.2)

\(\alpha _{j}\) and \(\beta _{lj}\) (\(l=\) 1,2) in Eq. (2.15) are calculated as follows:

$$\begin{aligned} \alpha _{j}&=m_{1} -m_{2} s_{j} +m_{3} s_{j}^{2} -m_{4} s_{j}^{3}, \nonumber \\ \beta _{lj}&=n_{1l} -n_{2l} s_{j} +n_{3l} s_{j}^{2} -n_{4l} s_{j}^{3} +n_{5l} s_{j}^{4} ,\,\,\, l=1,2. \end{aligned}$$
(A.3)

The coefficients \(\omega _{mj}\) (m = 1,2,...,5) are obtained in terms of material constants as

$$\begin{aligned} \omega _{1j}&=-(c_{11} +c_{14} s_{j} )+k_{1j} (c_{14} +c_{13} s_{j} )+k_{2j} (e_{31} s_{j} -e_{22} ), \nonumber \\ \omega _{2j}&=-c_{13} +c_{33} s_{j} k_{1j} +e_{33} s_{j} k_{2j}, \nonumber \\ \omega _{3j}&=-e_{31} +e_{33} s_{j} k_{1j} -\kappa _{33} s_{j} k_{2j}, \nonumber \\ \omega _{4j}&=c_{14} +c_{44} s_{j} -c_{44} k_{1j} -e_{15} k_{2j}, \nonumber \\ \omega _{5j}&=-e_{22} +e_{15} s_{j} -e_{15} k_{1j} +\kappa _{11} k_{2j}, \end{aligned}$$
(A.4)

Appendix B

In the case of 6 mm piezoelectric material, \(k_{lj}\), \(\omega _{mj}\), \(\lambda _{j}\), \(\eta _{j}\), and \(\gamma _{j}\) coefficients have the following relations

$$\begin{aligned} k_{l1}&=k_{l1} \qquad k_{l2} =k_{l2}\qquad k_{l3} =-\bar{{k}}_{l1} \nonumber \\&\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \left( {\mathrm{Re}\left( {k_{l2} } \right) =0} \right) \left( {l=1,2} \right) , \nonumber \\ k_{l4}&=\bar{{k}}_{l1} \qquad k_{l5} =-k_{l2} \qquad k_{l6} =-k_{l1} \nonumber \\ \omega _{m1}&=\omega _{m1} \qquad \omega _{m2} =\omega _{m2} \qquad \omega _{m3} =\bar{{\omega }}_{m1} \nonumber \\&\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \left( {\mathrm{Im}\left( {\omega _{m2} } \right) =0} \right) \left( {m=1,2,3} \right) , \nonumber \\ \omega _{m4}&=\bar{{\omega }}_{m1} \qquad \omega _{m5} =\omega _{m2} \omega _{m6} =\omega _{m1} \nonumber \\ \omega _{m1}&=\omega _{m1} \qquad \omega _{m2} =\omega _{m2} \qquad \omega _{m3} =-\bar{{\omega }}_{m1} \nonumber \\&\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \left( {\mathrm{Re}\left( {\omega _{m2} } \right) =0} \right) \left( {m=4,5} \right) , \nonumber \\ \omega _{m4}&=\bar{{\omega }}_{m1} \qquad \omega _{m5} =-\omega _{m2} \qquad \omega _{m6} =-\omega _{m1} \nonumber \\ \lambda _{1}&=\lambda _{1} \qquad \lambda _{2} =\lambda _{2} \qquad \lambda _{3} =\bar{{\lambda }}_{1} \qquad \qquad \,\,\, \left( {\mathrm{Im}\left( {\lambda _{2} } \right) =0} \right) ,\nonumber \\ \eta _{1}&=\eta _{1} \qquad \eta _{2} =\eta _{2} \qquad \eta _{3} =\bar{{\eta }}_{1} \qquad \qquad \,\,\, \left( {\mathrm{Im}\left( {\eta _{2} } \right) =0} \right) , \nonumber \\ \gamma _{1}&=\gamma _{1} \qquad \gamma _{2} =\gamma _{2} \qquad \gamma _{3} =-\bar{{\gamma }}_{1} \qquad \quad \,\,\, \left( {\mathrm{Re}\left( {\gamma _{2} } \right) =0} \right) . \end{aligned}$$
(B.1)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kharrazi, H., Khojasteh, A., Rahimian, M. et al. Green’s functions for a trigonal piezoelectric half-plane belonging to 3m crystal class. J Eng Math 127, 28 (2021). https://doi.org/10.1007/s10665-021-10115-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10665-021-10115-5

Keywords

Navigation