Skip to main content
Log in

Efficient uncertainty quantification of a fully nonlinear and dispersive water wave model with random inputs

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

A major challenge in next-generation industrial applications is to improve numerical analysis by quantifying uncertainties in predictions. In this work we present a formulation of a fully nonlinear and dispersive potential flow water wave model with random inputs for the probabilistic description of the evolution of waves. The model is analyzed using random sampling techniques and nonintrusive methods based on generalized polynomial chaos (PC). These methods allow us to accurately and efficiently estimate the probability distribution of the solution and require only the computation of the solution at different points in the parameter space, allowing for the reuse of existing simulation software. The choice of the applied methods is driven by the number of uncertain input parameters and by the fact that finding the solution of the considered model is computationally intensive. We revisit experimental benchmarks often used for validation of deterministic water wave models. Based on numerical experiments and assumed uncertainties in boundary data, our analysis reveals that some of the known discrepancies from deterministic simulation in comparison with experimental measurements could be partially explained by the variability in the model input. Finally, we present a synthetic experiment studying the variance-based sensitivity of the wave load on an offshore structure to a number of input uncertainties. In the numerical examples presented the PC methods exhibit fast convergence, suggesting that the problem is amenable to analysis using such methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. The gravitational acceleration constant, g, is set at 9.81 m/s\(^2\).

  2. For a treatment of measure theoretic probability theory see, for example, [27].

  3. The package ORTHPOL [41] is used within the Python modules UQToolbox and SpectralToolbox for the construction of polynomials orthogonal with respect to an arbitrary measure.

  4. The kernel density estimation method [58] with a Gaussian kernel was used here to obtain the approximations of the PDFs from samples of the solution.

  5. The theoretical error of the MC method can be expressed by the standard deviation of the MC estimator (18), which is \(\sigma /\sqrt{n}\). This can be approximated inserting the estimated variance \({\bar{\sigma }}\) and then used to test a convergence criterion for the method. Note that the estimate of LHS is often better than the MC estimate. In the example at hand, both mean and variance are time and space dependent, i.e., \(\mu (\mathbf{x},t),\sigma ^2(\mathbf{x},t)\). For the gauge locations \(\{\mathbf{x}_i\}_{i=1}^8\), we defined the convergence criterion by \(\max _i\left( \frac{\Vert \sigma (\mathbf{x}_i,t) \Vert _\infty / \sqrt{n}}{\Vert \mu (\mathbf{x}_i,t) \Vert _\infty }\right) \le 10^{-2}\).

  6. The number of quadrature points for a 1D Gauss rule of polynomial order 5 is 6. The tensorization of this quadrature rule in two dimensions then leads to \(6^2=36\) evaluation points.

  7. The accuracy estimator is defined similarly to the one used in Sect. 5.1.3. For the means and variances \(\mu _i(x,y_c),\sigma ^2_i(x,y=y_c)\) of the harmonic functions \(\{ {\hat{f}}(x,y=y_c) \}_{i=1}^3\), defined along the centerline of the domain \(y=y_c\), the convergence criterion is given by \(\max _i\left( \frac{\Vert \sigma _i(x,y) \Vert _\infty / \sqrt{n}}{\Vert \mu _i(x,y) \Vert _\infty }\right) \le 10^{-2}\).

References

  1. Wojtkiewicz SJ, Eldred M, Field RJ, Urbina A, Red-Horse J (2001) A toolkit for uncertainty quantification in large computational engineering models. In: Proceedings of the 42nd AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and materials conference

  2. Bitner-Gregersen EM, Bhattacharya SK, Chatjigeorgiou IK, Eames I, Ellermann K, Ewans K, Hermanski G, Johnson MC, Ma N, Maisondieu C, Nilva A, Rychlik I, Waseda T (2014) Recent developments of ocean environmental description with focus on uncertainties. Ocean Eng 86:26–46

    Article  Google Scholar 

  3. Bitner-Gregersen EM, Ewans KC, Johnson MC (2014) Some uncertainties associated with wind and wave description and their importance for engineering applications. Ocean Eng 86:11–25

    Article  Google Scholar 

  4. Naess A, Moan T (2012) Stochastic dynamics of marine structures. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  5. Ge L, Cheung KF, Kobayashi MH (2008) Stochastic solution for uncertainty propagation in nonlinear shallow-water equations. J Hydraul Eng 134:1732–1743

    Article  Google Scholar 

  6. Ge L, Cheung KF (2011) Spectral sampling method for uncertainty propagation in long-wave runup modeling. J Hydraul Eng 137:277–288

    Article  Google Scholar 

  7. Liu D (2009) Uncertainty quantification with shallow water equations. PhD thesis, University of Braunschweig – Institute of Technology

  8. Ricchiuto M, Congedo PM, Delis A (2014) Runup and uncertainty quantification: sensitivity analysis via ANOVA decomposition. Technical Report April, INRIA, Bordeaux

  9. Yildirim B, Karniadakis GE (2015) Stochastic simulations of ocean waves: an uncertainty quantification study. Ocean Model 86:15–35

    Article  ADS  Google Scholar 

  10. Engsig-Karup AP, Bingham HB, Lindberg O (2008) An efficient flexible-order model for 3d nonlinear water waves. J Comput Phys 228:2100–2118

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Engsig-Karup AP, Madsen MG, Glimberg SL (2011) A massively parallel GPU-accelerated model for analysis of fully nonlinear free surface waves. Int J Numer Meth Fluids 70(1):20–36

    Article  MathSciNet  MATH  Google Scholar 

  12. Glimberg SL, Engsig-Karup AP, Madsen MG (2012) A fast GPU-accelerated mixed-precision strategy for fully nonlinear water wave computations. In: Cangiani A (ed) Numerical mathematics and advanced applications 2011. Proceedings of ENUMATH 2011, the 9th European conference on numerical mathematics and advanced applications, September 2011. Springer, Leicester

  13. Engsig-Karup AP, Glimberg LS, Nielsen AS, Lindberg O (2013) Fast hydrodynamics on heterogenous many-core hardware. In: Couturier R (ed) Designing scientific applications on GPUs. Lecture notes in computational science and engineering. CRC Press, Boca Raton

  14. Glimberg LS, Engsig-Karup AP, Dammann B, Nielsen AS (2013) Development of high-performance software components for emerging architectures. In: Couturier R (ed) Designing scientific applications on GPUs. Lecture notes in computational science and engineering. CRC Press, Boca Raton

  15. Xiu D (2009) Fast numerical methods for stochastic computations: a review. Commun Comput Phys 5(2):242–272

    MathSciNet  Google Scholar 

  16. Le Maître OP, Knio OM (2010) Spectral methods for uncertainty quantification: with applications to computational fluid dynamics. Springer, Berlin

    Book  MATH  Google Scholar 

  17. Beji S, Battjes JA (1994) Numerical simulation of nonlinear-wave propagation over a bar. Coast Eng 23:1–16

    Article  Google Scholar 

  18. Dutykh D, Clamond D (2013) Efficient computation of steady solitary gravity waves. Wave Motion 51(1):86–99

    Article  MathSciNet  MATH  Google Scholar 

  19. Kiureghian A, Ditlevsen O (2009) Aleatory or epistemic? Does it matter? Struct Saf 31(2):105–112

    Article  Google Scholar 

  20. Sobol’ I (1993) Sensitivity analysis for non linear mathematical models. Math Model Comput Exp 1:407–414

    MathSciNet  MATH  Google Scholar 

  21. Rabitz H, Alis O (2000) Managing the tyranny of parameters in mathematical modelling of physical systems. In: Saltelli A, Chan K, Scott EM (eds) Sensitivity analysis. Wiley, Chichester

    Google Scholar 

  22. Chan K, Tarantola S, Saltelli A, Sobol I (2000) Variance-based methods. In: Saltelli A, Chan K, Scott EM (eds) Sensitivity analysis. Wiley, Chichester

    Google Scholar 

  23. Sudret B (2008) Global sensitivity analysis using polynomial chaos expansions. Reliab Eng Syst Saf 93(7):964–979

    Article  Google Scholar 

  24. Crestaux T, Le Maître O, Martinez J-M (2009) Polynomial chaos expansion for sensitivity analysis. Reliab Eng Syst Saf 94:1161–1172

    Article  Google Scholar 

  25. Alexanderian A, Winokur J, Sraj I, Srinivasan A, Iskandarani M, Thacker WC, Knio OM (2012) Global sensitivity analysis in an ocean general circulation model: a sparse spectral projection approach. Comput Geosci 16:757–778

    Article  Google Scholar 

  26. Larsen J, Dancy H (1983) Open boundaries in short wave simulations—a new approach. Coast Eng 7:285–297

    Article  Google Scholar 

  27. Billingsley P (1995) Probability and measure, 3rd edn. Wiley, New York

    MATH  Google Scholar 

  28. Loève M (1978) Probability theory, vols. I–II, 4th edn. Comprehensive manuals of surgical specialties. Springer, New York

  29. Schwab C, Todor RA (2006) KarhunenLoève approximation of random fields by generalized fast multipole methods. J Comput Phys 217:100–122

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Uhlenbeck G, Ornstein L (1905) On the theory of the Brownian motion. Phys Rev 36:1930

    Google Scholar 

  31. Cheng M, Hou TY, Zhang Z (2013) A dynamically bi-orthogonal method for time-dependent stochastic partial differential equations II: Adaptivity and generalizations. J Comput Phys 242:753–776

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Cheng M, Hou TY, Zhang Z (2013) A dynamically bi-orthogonal method for time-dependent stochastic partial differential equations I: derivation and algorithms. J Comput Phys 242:843–868

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Boyaval S, LeBris C, Lelièvre T, Maday Y, Nguyen NC, Patera AT (2010) Reduced basis techniques for stochastic problems. Arch Comput Methods Eng 17:435–454

    Article  MathSciNet  MATH  Google Scholar 

  34. Venturi D (2006) On proper orthogonal decomposition of randomly perturbed fields with applications to flow past a cylinder and natural convection over a horizontal plate. J Fluid Mech 559:215

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Sapsis TP, Lermusiaux PF (2009) Dynamically orthogonal field equations for continuous stochastic dynamical systems. Physica D 238:2347–2360

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Mckay M, Beckman R, Conover W (2000) A comparison of three methods for selecting values of input variables in the analysis of output from a a comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 41(1):55–61

    Article  MATH  Google Scholar 

  37. Morokoff WJ, Caflisch RE (1995) Quasi-Monte Carlo integration. J Comput Phys 122:218–230

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Xiu D, Karniadakis GE (2002) The wiener-askey polynomial chaos for stochastic differential equations. SIAM J Sci Comput 24:619–644

    Article  MathSciNet  MATH  Google Scholar 

  39. Xiu D (2010) Numerical methods for stochastic computations: a spectral method approach. Princeton University Press, Princeton

    MATH  Google Scholar 

  40. Gautschi W (2004) Orthogonal polynomials: computation and approximation. numerical mathematics and scientific computation. Oxford University Press, Oxford

    MATH  Google Scholar 

  41. Gautschi W (1994) Algorithm 726: ORTHPOL;a package of routines for generating orthogonal polynomials and Gauss-type quadrature rules. ACM Trans Math Softw 20:21–62

    Article  MATH  Google Scholar 

  42. Canuto C, Hussaini M, Quarteroni A, Zang T (2006) Spectral methods—fundamentals in single domains. Scientific computation. Springer, Berlin

  43. Golub GH, Welsch JH (1969) Calculation of Gauss quadrature rules. Math Comput 23(106):221–230

    Article  MathSciNet  MATH  Google Scholar 

  44. Fejér L (1933) Mechanische Quadraturen mit positiven Cotesschen Zahlen. Math Z 37:287–309

    Article  MathSciNet  MATH  Google Scholar 

  45. Waldvogel J (2006) Fast construction of the Fejér and Clenshaw Curtis quadrature rules. BIT Numer Math 46(1):195–202

    Article  MathSciNet  MATH  Google Scholar 

  46. Clenshaw CW, Curtis AR (1960) A method for numerical integration on an automatic computer. Numer Math 2(1):197–205

    Article  MathSciNet  MATH  Google Scholar 

  47. Kronrod AS (1965) Nodes and weights of quadrature formulas, English transl. from Russian, Consultants Bureau vol 35 no. 597

  48. Petras K (2003) Smolyak cubature of given polynomial degree with few nodes for increasing dimension. Numer Math 93:729–753

    Article  MathSciNet  MATH  Google Scholar 

  49. Conrad P, Marzouk Y (2013) Adaptive Smolyak pseudospectral approximations. SIAM J Sci Comput 35(6):2643–2670

    Article  MathSciNet  MATH  Google Scholar 

  50. Maly T, Petzold LR (1996) Numerical methods and software for sensitivity analysis of differential-algebraic systems. Appl Numer Math 20(60):57–79

    Article  MathSciNet  MATH  Google Scholar 

  51. Errico RM (1997) What is an adjoint model? Bull Am Meterol Soc 78:2577–2591

    Article  Google Scholar 

  52. Cao Y, Li S, Petzold L, Serban R (2003) Adjoint sensitivity analysis for differential-algebraic equations: the adjoint DAE system and its numerical solution. SIAM J Sci Comput 24:1076–1089

    Article  MathSciNet  MATH  Google Scholar 

  53. Ulbrich M, Ulbrich S (2007) Primal-dual interior-point methods for PDE-constrained optimization. Math Progr 117:435–485

    Article  MathSciNet  MATH  Google Scholar 

  54. Herzog R, Kunisch K (2010) Algorithms for PDE-constrained optimization. GAMM-Mitteilungen 33:163–176

    Article  MathSciNet  MATH  Google Scholar 

  55. Gao Z, Hesthaven J (2011) Efficient solution of ordinary differential equations with high-dimensional parametrized uncertainty. Commun Comput Phys 10(2):253–286

    Article  MathSciNet  Google Scholar 

  56. Benxia L, Xiping Y (2009) Wave decomposition phenomenon and spectrum evolution over submerged bars. Acta Oceanol Sin 28(3):82–92

    Google Scholar 

  57. Luth HR, Klopman B, Kitou N (1994) Projects 13G: Kinematics of waves breaking partially on an offshore bar: LDV measurements for waves with and without a net onshore current. Technical report H1573, Delft Hydraulics

  58. Hastie T, Tibshirani R, Friedman J (2001) The elements of statistical learning, vol 1. Springer series in statistics. Springer, Berlin

  59. Dean RG (1965) Stream function representation of nonlinear ocean waves. J Geophys Res 70:4561–4572

    Article  ADS  Google Scholar 

  60. Whalin RW (1971) The limit of applicability of linear wave refraction theory in convergence zone, Technical Report H-71-3, US Army Corps of Engineers

  61. Bigoni D, Engsig-Karup AP, Marzouk YM (2014) Spectral tensor-train decomposition. SIAM J Sci Comput (submitted) http://arxiv.org/abs/1405.5713

  62. https://pypi.python.org/pypi/UQToolbox/

  63. https://pypi.python.org/pypi/SpectralToolbox/

  64. http://www2.compute.dtu.dk/~apek/OceanWave3D/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Bigoni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bigoni, D., Engsig-Karup, A.P. & Eskilsson, C. Efficient uncertainty quantification of a fully nonlinear and dispersive water wave model with random inputs. J Eng Math 101, 87–113 (2016). https://doi.org/10.1007/s10665-016-9848-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-016-9848-8

Keywords

Mathematics Subject Classification

Navigation