Skip to main content
Log in

Asymptotic analysis of Rayleigh–Taylor flow for Newtonian miscible fluids

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

Asymptotic analysis is used to derive anelastic, quasi-isobaric, and Boussinesq approximations for Rayleigh–Taylor induced flow between Newtonian fluids. The anelastic approximation appears to be valid for slightly stratified equilibrium states, but the analysis does not provide bounds on the Atwood number. The quasi-isobaric model is valid for unstratified equilibrium states without bounds on the Atwood number, while the Boussinesq approximation is a restriction of the quasi-isobaric model for vanishing Atwood numbers. These three models are consistently derived from first principles within the same framework, and they greatly facilitate investigations – including some compressibility effects – of Rayleigh–Taylor flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Abarzhi S, Gauthier S, Niemela J (2010) Preface: turbulent mixing and beyond. Phys Scr T142:011001–014070

    Article  ADS  Google Scholar 

  2. Abarzhi S, Gauthier S, Sreenivasan K (2013) Turbulent mixing and beyond: non-equilibrium processes from atomistic to astrophysical scales II. Introduction. Philos Trans R Soc A 371(2003):7–20120436

    Article  MathSciNet  Google Scholar 

  3. Le Creurer B, Gauthier S (2008) A return toward equilibrium in a two-dimensional Rayleigh–Taylor flows instability for compressible miscible fluids. Theor Comput Fluid Dyn 22:125–144

    Article  MATH  Google Scholar 

  4. Chu B, Kovásznay L (1957) Non-linear interactions in a viscous heat-conducting compressible gas. J Fluid Mech 3:494–514

    Article  ADS  Google Scholar 

  5. Zeytounian R (1990) Asymptotic modeling of atmospheric flows. Springer, Berlin

    Book  MATH  Google Scholar 

  6. Fröhlich J (1990) Résolution numérique des équations de Navier-Stokes à faible nombre de Mach par méthode spectrale. Ph.D. thesis, Université de Nice-Sophia Antipolis

  7. Klein R, Botta N, Schneider T, Munz C, Roller S, Meister A, Hoffmann L, Sonar T (2001) Asymptotic adaptive methods for multi-scale problems in fluid mechanics. J Eng Math 39:261–343

    Article  MATH  MathSciNet  Google Scholar 

  8. Batchelor G (1953) The conditions for dynamical similarity of motions of a frictionless perfect-gas atmosphere. Q J R Meteorol Soc 79:224–235

    Article  ADS  Google Scholar 

  9. Ogura Y, Phillips N (1962) Scale analysis of deep and shallow convection in the atmosphere. J Atmos Sci 19:173–179

    Article  ADS  Google Scholar 

  10. Gough D (1969) The anelastic approximation for thermal convection. J Atmos Sci 26:448–456

    Article  ADS  Google Scholar 

  11. Wilhelmson R, Ogura Y (1972) The pressure perturbation and the numerical modeling of a cloud. J Atmos Sci 29(7):1295–1307

    Article  ADS  Google Scholar 

  12. Lipps F, Hemler R (1982) A scale analysis of deep moist convection and some related numerical calculations. J Atmos Sci 39:2192–2210

    Article  ADS  Google Scholar 

  13. Durran D (1989) Improving the anelastic approximation. J Atmos Sci 46:1453–1461

    Article  ADS  Google Scholar 

  14. Emanuel K (1994) Atmospheric convection. Oxford University Press, Oxford

    Google Scholar 

  15. Durran D (1999) Numerical methods for wave equations in geophysical fluid dynamics. Texts in Applied Mathematics Springer, New York

  16. Chassaing P, Antonia R, Anselmet F, Joly L, Sarkar S (2002) Variable density fluid turbulence, fluid mechanics and its applications. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  17. Rehm R, Baum H (1978) The equations of motion for thermally driven buoyant flows. J Res Natl Bur Stand 83:297–308

    Article  MATH  Google Scholar 

  18. Paolucci S (1982) On the filtering of sound from the Navier–Stokes equations. SAND82-8257, Sandia National Laboratories.

  19. Majda A, Sethian J (1985) The derivation and numerical solution of the equations for zero Mach number combustion. Combust Sci Technol 42:185–205

    Article  Google Scholar 

  20. Chenoweth D, Paolucci S (1986) Natural convection in an enclosed vertical air layer with large horizontal temperature differences. J Fluid Mech 169:173–210

    Article  ADS  MATH  Google Scholar 

  21. Paolucci S, Chenoweth D (1987) Departures from the Boussinesq approximation in laminar Bénard convection. Phys Fluids 30:1561–1564

    Article  ADS  Google Scholar 

  22. Fröhlich J, Laure P, Peyret R (1992) Large departures from Boussinesq approximation in the Rayleigh-Bénard problem. Phys Fluids A4:1355–1372

    Article  ADS  Google Scholar 

  23. Fröhlich J, Gauthier S (1993) Numerical investigations from compressible to isobaric Rayleigh–Bénard convection in two dimensions. Eur J Mech B/Fluids 2:141–159

    Google Scholar 

  24. Müller B (1998) Low-Mach-number asymptotics of the Navier–Stokes equations. J Eng Math 34:10–97

    Article  Google Scholar 

  25. Hirschfelder J, Curtiss C, Bird R (1954) Molecular theory of gases and liquids. John Wiley & Sons, New York

    MATH  Google Scholar 

  26. Cook A (2009) Enthalpy diffusion in multicomponent flows. Phys Fluids 21:16–055109

    Article  Google Scholar 

  27. Strikwerda J (1977) Initial boundary value problems for incompletely systems. Commun Pure Appl Math 30:797–822

    Article  MATH  MathSciNet  Google Scholar 

  28. Bazarov I (1964) Thermodynamics. Macmillan, New York

    Google Scholar 

  29. Guo W, Labrosse G, Narayanan R (2012) The application of the Chebyshev-spectral method in transport phenomena. Lecture Notes in Applied and Computational Mechanics. Springer, New York

  30. Hammouch Z, Labrosse G, Gauthier S (2013) Anelastic Stokes eigenmodes in infinite channel. J Sci Comput 55:65–91

    Article  MATH  MathSciNet  Google Scholar 

  31. Tryggvason G (1983) In: Mellor F (ed) Geophysical fluid dynamics, vol WHOI-83-41. pp 207–228

  32. Canuto C, Hussaini M, Quarteroni A, Zang T (1988) Spectral methods in fluid dynamics. Springer, Berlin

    Book  MATH  Google Scholar 

  33. Peyret R (2002) Spectral methods for incompressible viscous flow. Springer, New York

    Book  MATH  Google Scholar 

  34. Labrosse G (2011) Méthodes spectrales. Ellipses, Paris

    Google Scholar 

  35. Fröhlich J, Peyret R (1990) Calculations of non-Boussinesq convection by a pseudo-spectral method. Comput Methods Appl Mech Eng 80:425–433

    Article  ADS  MATH  Google Scholar 

  36. Fröhlich J, Peyret R (1992) Direct spectral methods for the low Mach number equations. Int J Numer Heat Fluid Flow 2:195–213

    Article  Google Scholar 

  37. Gauthier S, Le Creurer B, Abéguilé F, Boudesocque-Dubois C, Clarisse JM (2005) A self-adaptative domain decomposition method with Chebyshev method. Int J Pure Appl Math 24(4):553–577

    MATH  MathSciNet  Google Scholar 

  38. Barranco J, Marcus P (2006) A 3D spectral anelastic hydrodynamic code for shearing, stratified flows. J Comput Phys 219:21–46

    Article  ADS  MATH  MathSciNet  Google Scholar 

  39. Schneider N, Hammouch Z, Labrosse G, Gauthier S (2014) A spectral anelastic Navier–Stokes solver for a stratified two-miscible-layer system in infinite horizontal channel (in preparation)

Download references

Acknowledgments

We wish to thank Gérard Labrosse for stimulating discussions in the course of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Gauthier.

Appendix: Mixing model

Appendix: Mixing model

As stated in Sect. 2, the mixing of two Newtonian miscible fluids is considered within the single-fluid approximation. The components of the single fluid are of molar weights \(\mathcal {M}_\mathrm{{H}}\) and \(\mathcal {M}_\mathrm{{L}}\) and densities \(\rho _\mathrm{{H}} =m_\mathrm{{H}}/V\) and \(\rho _\mathrm{{L}} =m_\mathrm{{L}}/V\), respectively. The expression of the partial pressures reads as follows:

$$\begin{aligned} p_i = \rho _i \displaystyle \frac{\mathcal R}{\mathcal {M}_i} T = (\gamma _i -1) \, \rho _i \, C_{v_i} \, T \qquad \hbox {with} \qquad i=\mathrm{{H,L}}. \end{aligned}$$
(56)

The perfect-gas constant is \(\mathcal R\), and the specific heat at constant volume is \(C_{v_i}\). The partial pressures–partial densities mixing model reads

$$\begin{aligned} \displaystyle p=p_\mathrm{{H}}+p_\mathrm{{L}}, \quad \rho =\rho _\mathrm{{H}}+\rho _\mathrm{{L}} \quad \hbox {and } \quad T=T_\mathrm{{H}}=T_\mathrm{{L}} . \end{aligned}$$
(57)

We also introduced the fluid concentration \(c\) based on the heavy density component

$$\begin{aligned} \rho _\mathrm{{H}}=\rho \,c \quad \hbox {and } \quad \rho _\mathrm{{L}} = (1-c)\,\rho . \end{aligned}$$
(58)

From the additivity of the extensive variables one has \(C_{v,m} = c \, C_{v_\mathrm{{H}}} + (1-c) \, C_{v_\mathrm{{L}}}\) or, in dimensionless form,

$$\begin{aligned} C_{v,m}(c) = (\gamma _r-1) \left[ c\, \displaystyle \frac{1-\mathrm {At}}{\gamma _\mathrm{{H}}-1} + (1-c) \displaystyle \frac{1+\mathrm {At}}{\gamma _\mathrm{{L}}-1} \right] , \end{aligned}$$
(59)

and \(C_{v,m}^{(0)} \equiv C_{v,m}(c^{(0)})\) is computed with \(c^{(0)}\) and

$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}{c}}C_{v,m} = \frac{\mathrm{d}}{\mathrm{d}{c^{(0)}}} C_{v,m}^{(0)} = (\gamma _r-1) \left[ \displaystyle \frac{1-\mathrm {At}}{\gamma _\mathrm{{H}}-1} - \displaystyle \frac{1+\mathrm {At}}{\gamma _\mathrm{{L}}-1} \right] . \end{aligned}$$
(60)

In the same way, the ratio of specific heats of the mixing is defined as

$$\begin{aligned} \displaystyle \gamma _m(c) = \frac{C_{p,m}}{C_{v,m}} = \frac{c\,C_{v_1}\,\gamma _\mathrm{{H}} + (1-c) \,C_{v_\mathrm{{H}}} \, \gamma _\mathrm{{L}}}{c \, C_{v_\mathrm{{H}}} + (1-c) \, C_{v_\mathrm{{L}}}} = \frac{c \, N_{-}\, \gamma _\mathrm{{H}} + (1-c) \, N_{+}\,\gamma _\mathrm{{L}}}{c\, N_{-} + (1-c) \, N_{+} }, \end{aligned}$$
(61)

where \(N_{\pm } = (1 \pm \Gamma )(1 \pm \mathrm {At})\). Instead of using the ratio of \(\gamma _{\mathrm{{H,L}}}-1\), we introduce the Atwood number, \(\Gamma \), of these two quantities, so that

$$\begin{aligned} \displaystyle \frac{\gamma _{\mathrm{{H}}}-1}{\gamma _{\mathrm{{L}}}-1} = \displaystyle \frac{1+\Gamma }{1-\Gamma } \qquad \hbox {or} \qquad \Gamma = \displaystyle \frac{(\gamma _{\mathrm{{H}}}-1) - (\gamma _{\mathrm{{L}}}-1)}{(\gamma _{\mathrm{{H}}}-1) + (\gamma _{\mathrm{{L}}}-1)} . \end{aligned}$$
(62)

We then obtain the expression

$$\begin{aligned} \gamma _\mathrm{{m}}(c) = \displaystyle \frac{c\, (1-\mathrm {At}) (1-\Gamma ) \, \gamma _{\mathrm{{H}}} + (1-c) (1+\mathrm {At}) (1+\Gamma ) \, \gamma _{\mathrm{{L}}} }{ c\, (1-\mathrm {At}) (1-\Gamma ) + (1-c) (1+\mathrm {At}) (1+\Gamma ) } . \end{aligned}$$
(63)

The reference of concentration is chosen to be \(c_r = (1 - \mathrm {At})/2\), and the reference value for the specific-heat ratio of the mixing is obtained from \(\gamma _{r} = \gamma _\mathrm{{m}}(c_r)\). On the other hand, we have

$$\begin{aligned} \Delta _{\mathrm{{H,L}}}^{\star } \equiv \displaystyle \frac{C_{p,\mathrm{{H}}} - C_{p,\mathrm{{L}}}}{{C}_{v,r}} = \displaystyle \frac{\gamma _\mathrm{{H}}}{\gamma _\mathrm{{H}}-1} (1-\mathrm {At}) - \displaystyle \frac{\gamma _\mathrm{{L}}}{\gamma _\mathrm{{L}}-1} (1+\mathrm {At}). \end{aligned}$$

For \(\gamma _\mathrm{{H}} = \gamma _\mathrm{{L}} = \gamma _{r}\) we have \(\Delta _{\mathrm{{H,L}}}^{\star } = - {2 \,\gamma _{r} } / {(\gamma _{r}-1)}\, \mathrm {At}< 0\).

Finally, the expression of the pressure as a function of the internal energy is evaluated using the expressions of the internal energy, the specific heat at a constant mixing volume, and the EOS \(p = \rho \left( {\mathcal R}/{\mathcal {M}_{\mathrm{{H}}}} + {\mathcal R}/{\mathcal {M}_{\mathrm{{L}}}} \right) T\), which yields

$$\begin{aligned} \displaystyle \frac{p}{\rho \, e} = \displaystyle \frac{\rho \left( \displaystyle \frac{\mathcal R}{\mathcal {M}_{\mathrm{{H}}}} \, c+\displaystyle \frac{\mathcal R}{\mathcal {M}_{\mathrm{{L}}}} \, (1-c) \right) T}{\rho \, ( c \,C_{{v};\mathrm{{H}}} + (1-c) \, C_{{v};\mathrm{{L}}} ) \, T} = \displaystyle \frac{ \displaystyle \frac{c}{\mathcal {M}_{\mathrm{{H}}}} +\displaystyle \frac{1-c}{\mathcal {M}_{\mathrm{{L}}}} }{ \displaystyle \frac{c}{\mathcal {M}_{\mathrm{{H}}}} \displaystyle \frac{1}{\gamma _{\mathrm{{H}}}-1} + \displaystyle \frac{1-c}{\mathcal {M}_{\mathrm{{H}}}} \, \displaystyle \frac{1}{\gamma _{\mathrm{{L}}}-1} } . \end{aligned}$$
(64)

With dimensionless variables, the EOS is expressed as

$$\begin{aligned} p = \displaystyle \frac{\gamma _\mathrm{{m}}-1}{\gamma _{r}-1} \,\rho \, e . \end{aligned}$$
(65)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schneider, N., Gauthier, S. Asymptotic analysis of Rayleigh–Taylor flow for Newtonian miscible fluids. J Eng Math 92, 55–71 (2015). https://doi.org/10.1007/s10665-014-9765-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-014-9765-7

Keywords

Navigation