Skip to main content
Log in

On the stability of initial conditions for the parabolic Gelfand problem

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

This work investigates the initial conditions for a classical quasilinear parabolic equation with exponential nonlinearity such that blowup is developed. This is a very old question in parabolic partial differential equations because it corresponds, for example, to the question of blowup that develops in a thermal runaway. Very definite criteria are given for the initial conditions under which blowup develops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Gelfand IM (1963) Some problems in the theory of quasilinear equations. Amer Math Soc Trans 29:295–381

    Google Scholar 

  2. Frank-Kamenetskii DA (1955) Diffusion and heat exchange in chemical kinetics. Princeton University Press, Princeton

    Google Scholar 

  3. Fujita H (1969) On the asymptotic stability of solutions of the equation \(v_{t}=\Delta v+{\rm e}^{v}\). In: Proceedings of the international conference on functional analysis and related topics,Tokyo

  4. Kassoy DR (1976) Extremely rapid transient phenomena in combustion, ignition and explosion. In: O’Malley RE (ed) Asymptotic methods and singular perturbations, SIAM-AMS Proceedings, vol 10

  5. Bebernes J, Kassoy DR (1981) Analysis of blowup for thermal reactions-the spacially nonhomogeneous case. SIAM J Appl Math 40:476–484

    Article  MATH  MathSciNet  Google Scholar 

  6. Boddington T, Gray P, Wake G (1977) Criteria for thermal explosions with and without reactant consumption. Proc R Soc Lond A357:403–433

    Article  ADS  Google Scholar 

  7. Boddington T, Feng C-G, Gray P (1983) Thermal explosions, critically and the disappearance of critically in systems with distributed temperatures I. Arbitrary Biot numbers and general reactions rates. Proc R Soc Lond A 390:247–264

  8. Keller HB (1969) Some positone problems suggested by nonlinear heat generation. In: Keller HB, Altman S (eds) Bifurcation theory and nonlinear eigenvalue problems. Benjamin, New York, pp 217–256

    Google Scholar 

  9. Keener JP, Keller HB (1974) Positive solutions of convex nonlinear eigenvalue problems. J Diff Equ 16:103–125

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. Bandle C (1975) Existence theorems, qualitative results and a priori bounds for a class of nonlinear Dirichlet problems. Arch Ration Mech Anal 58:219–238

    Article  MATH  MathSciNet  Google Scholar 

  11. Lacey A (1983) Mathematical analysis of thermal runaway for spacially inhomogeneous reactions. SIAM J Appl Math 43:1350–1366

    Article  MATH  MathSciNet  Google Scholar 

  12. Lacey A, Tzanetis D (1988) Complete blow-up for a semilinear diffusion equation with a sufficient large initial condition. IMA J Appl Math 41:207–215

    Article  MATH  MathSciNet  Google Scholar 

  13. Lacey A, Wake GC (1992) Critical initial conditions for spatially-distributed thermal explosions. J Aust Math Soc Ser B Appl Math 33:350–362

    Article  MATH  MathSciNet  Google Scholar 

  14. Lacey A, Tzanetis D (1993) Global unbounded solutions to a parabolic equation. J Diff Equ 101:80–102

    Article  ADS  MATH  MathSciNet  Google Scholar 

  15. Dold J (1985) Analysis of the early stage of thermal runaway. Quart J Mech Appl Math 38:361–387

    Article  MATH  Google Scholar 

  16. Bebernes J, Eberly D (1989) Mathematical problems from combustion theory, Applied mathematical sciences, vol 83. Springer, New York

  17. Cazenave T, Haraux A (1998) An introduction to semilinear evolution equations, Oxford lectures in mathematics and its applications, vol 13. Oxford University Press, Oxford

  18. Tello JI (2006) Stability of steady states of the Cauchy problem for the exponential reaction–diffusion equation. J Math Anal Appl 324:381–396

    Article  MATH  MathSciNet  Google Scholar 

  19. Fila M, Pulkkinen A (2008) Nonconstant selfsimilar blow-up profile for the exponential reaction-diffusion equation. Tohoku Math J 60:303–328

    Article  MATH  MathSciNet  Google Scholar 

  20. Shi J (2002) Semilinear Neumann boundary value problems on a rectangle. Trans Am Math Soc 354:3117–3154

    Article  MATH  Google Scholar 

  21. Berchio E, Gazzola F, Pierotti D (2010) Gelfand type elliptic problems under Steklov boundary conditions. Ann Inst H Poincare Ann Non Linear 27:315–335

    Article  ADS  MATH  MathSciNet  Google Scholar 

  22. Lions PL (1982) Asymptotic behaviour of some nonlinear heat equations. Physica D 53:293–306

    Article  ADS  Google Scholar 

  23. Lions PL (1984) Structure of the set of steady-state solutions and asymptotic behaviour of semilinear equations. J Diff Equ 53:362–386

    Article  ADS  MATH  Google Scholar 

  24. Ni WM (1984) On the asymptotic behaviour of solutions of certain quasilinear parabolic equations. J Diff Equ 54:97–120

    Article  ADS  MATH  Google Scholar 

  25. Lions PL (1996) Mathematical topics in fluid dynamics, vol 1: Incompressible models, Oxford lectures in mathematics and its applications, vol 13. Oxford University Press, Oxford

  26. Temam R (1988) Infinite-dimensional dynamical systems in mechanics and physics, vol 68, Appied mathematical scienceSpringer, New York

  27. Chipot M (2002) l goes to plus infinity. Birkhauser Advanced Text, Birkhauser

  28. Sperb R (1981) Maximum principles and their applications, Mathematics in science and engineering, vol 157. Academic Press, New York

  29. Ni WM (1987) Lane–Emden equations and related topics in nonlinear elliptic and parabolic problems. Aspects Math 10:135–152

  30. Sattinger D (1972) Monotone methods in nonlinear elliptic and parabolic boundary value problems. Indiana Univ Math J 21:979–1000

    Article  MATH  MathSciNet  Google Scholar 

  31. Ball J (1977) Remarks on blow-up and nonexistence theorems for nonlinear evolution equations. Quart J Math Oxford 2 28:473–786

    Article  MATH  Google Scholar 

  32. Liñán A, Williams F (1993) Fundamental aspects of combustion, Oxford engineering science series, vol 34. Oxford University Press, New York

  33. Matano H (1979) Asymptotic behaviour and stability of solution of semilinear diffusion equations. Publ RIMS, Kyoto Univ 15:401–454

Download references

Acknowledgments

The author would like to thank all the referees for their excellent comments and suggestions, which significantly led to improvements in the original manuscript in all aspects; also, the author would like to thank Vice-rectoría de Investigación and Dirección de Investigación at Universidad de La Frontera for their support through DIUFRO DI 120018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro Omón Arancibia.

Additional information

This article is dedicated to Professor Manuel Pinto Jimenez, on the occasion of his 60th birthday.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Omón Arancibia, A. On the stability of initial conditions for the parabolic Gelfand problem. J Eng Math 92, 167–184 (2015). https://doi.org/10.1007/s10665-014-9759-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-014-9759-5

Keywords

Navigation