Skip to main content
Log in

Closed form expression for the surface temperature in wet grinding: application to maximum temperature evaluation

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

Considering the classical modelling of heat transfer in wet flat grinding [DesRuisseaux and Zerkle, J Heat Transf 92:456–464, 1970], we have calculated a closed-form expression for the surface temperature in the stationary regime. For any Peclet number and for small Biot numbers this closed expression can be computed much more rapidly than its equivalent integral form given in the literature. As an application, this result can be used to compute the maximum temperature of the workpiece very rapidly. We have seen that the numerical maximization of the surface temperature using the integral form given in the literature is extremely slow and sometimes fails. However, to prevent thermal damage, a fast computation of the maximum temperature is highly desirable for on-line monitoring in industrial grinding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Malkin S (1989) Grinding technology: theory and application of machining with abrasives. Ellis Horwood Ltd, England

    Google Scholar 

  2. Guo C, Malkin S (1995) Analysis of energy partition in grinding. J Eng Ind 117:55–61

    Article  Google Scholar 

  3. Malkin S, Anderson R (1974) Thermal aspects of grinding, part I: energy partition. J Manuf Sci Eng 96:1177–1183

    Google Scholar 

  4. Lavine A (1991) Thermal aspects of grinding: the effects of heat generation at the shear planes. Ann CIRP 40:343–345

    Article  Google Scholar 

  5. Lavine A (2000) An exact solution for surface temperature in down grinding. Int J Heat Mass Transf 43:4447–4456

    Article  MATH  Google Scholar 

  6. Lavine A (1988) A simple model for convective cooling during the grinding process. ASME J Eng Ind 110:1–6

  7. Pérez J, Hoyas S, Skuratov D, Ratis Y, Selezneva I, Fernández de Córdoba P, Urchueguía J (2008) Heat transfer analysis of intermittent grinding processes. Int J Heat Mass Transf 51:4132–4138

    Article  MATH  Google Scholar 

  8. Carslaw H, Jaeger JC (1986) Conduction of heat in solids. Oxford Science Publications, Oxford

    MATH  Google Scholar 

  9. DesRuisseaux NR, Zerkle RD (1970) Temperature in semi-infinite and cylindrical bodies subjected to moving heat surfaces and surface cooling. J Heat Transf 92:456–464

    Article  Google Scholar 

  10. DesRuisseaux NR (1968) Thermal aspects of grinding processes. PhD dissertation, University of Cincinnati

  11. Skuratov D, Ratis Y, Selezneva I, Pérez J, Fernández de Córdoba P, Urchueguía J (2007) Mathematical modelling and analytical solution for workpiece temperature in grinding. App Math Mod 31:1039–1047

  12. González-Santander JL, Isidro JM, Martín G (2014) An analysis of the transient regime temperature field in wet grinding. J Eng Math. doi:10.1007/s10665-014-9713-6

  13. Jaeger JC (1942) Moving sources of heat and the temperature at sliding contracts. Proc R Soc N S W 76:204–224

    Google Scholar 

  14. Cameron A, Gordon AN, Symm GT (1965) Contact temperatures in rolling/sliding surfaces. Proc R Soc Lond A 286:45–61

    Article  ADS  Google Scholar 

  15. Yevtuhenko A, Ukhanska O (1996) Plane quasi-stationary thermal problems with convective boundary condition. J Theor Appl Mech 34:143–158

    Google Scholar 

  16. Fischer FD, Werner E, Knothe F (2001) The surface temperature of a halfplane heated by friction and cooled by convection. ZAMM 81:75–81

  17. Knothe K, Liebelt S (1995) Determination of temperatures for sliding contact with applicatios for wheel-rail systems. Wear 189:91–99

    Article  Google Scholar 

  18. González-Santander JL, Pérez J, Fernández de Córdoba P, Isidro JM (2009) An analysis of the temperature field of the workpiece in dry continuous grinding. J Eng Math 67:165–174

  19. González-Santander JL (2009) Modelización matemática de la transmisión de calor en el proceso del rectificado plano industrial. PhD dissertation, Universidad Politénica de Valencia. http://riunet.upv.es/handle/10251/4769

  20. Abramowitz M, Stegun I (1972) Handbook of mathematical functions. NBS Applied Mathematics Series, vol 55, Washington

  21. Gradsthteyn IS, Ryzhik M (2007) Table of integrals, series and products, 7th edn. Academic Press Inc, New York

    Google Scholar 

  22. Luke YJ (1950) Some notes on integrals involving Bessel functions. J Math Phys 29:27–30

    MATH  MathSciNet  Google Scholar 

  23. Lebedev NN (1965) Special functions and their applications. Prentice-Hall Inc, New Jersey

    MATH  Google Scholar 

  24. Conway JB (1978) Functions of one complex variable. Springer, New York

    Book  Google Scholar 

  25. Murav’ev VI, Yakimov AV, Chernysev AV (2003) Effect of deformation welding, and electrocontact heating on the properties of titanium alloy VT20 in pressed and welded structures. Metal Sci Heat Treat 45:419–422

    Article  Google Scholar 

  26. Chapra SC, Canale RP (2010) Numerical methods for engineers. McGraw-Hill, New York

    Google Scholar 

  27. Apostol TM (1967) Calculus, vol 1. Wiley, New York

    MATH  Google Scholar 

  28. Olver FWJ, Lozier DW, Boisvert RF, Clark CW (2010) NIST handbook of mathematical functions. Cambridge University Press, New York

    MATH  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the financial support received from Universidad Católica de Valencia under Grant 2012-027-001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. L. González-Santander.

Appendix A

Appendix A

1.1 A.1 The \(\mathrm {Yu}\!\left( x\right) \) function

In the literature, we find [22, Eq. 13]

$$\begin{aligned}&\displaystyle \int \limits _{0}^{x}\mathrm{e}^{\pm u}\ u^{\nu }K_{\nu }\!\left( u\right) \ \mathrm{d}u =\frac{\mathrm{e}^{\pm x}x^{\nu +1}}{2\nu +1}\left[ K_{\nu }\!\left( x\right) \pm K_{\nu +1}\!\left( x\right) \right] \mp \frac{2^{\nu }\Gamma \!\left( \nu +1\right) }{ 2\nu +1}. \end{aligned}$$
(106)

From (106) we can calculate the \(\mathrm {Yu}\!\left( x\right) \) function defined by the following integral:

$$\begin{aligned} \mathrm {Yu}{}_{\nu }\!\left( x\right) :=\int \limits _{0}^{x}\mathrm{e}^{u}\left| u\right| ^{\nu }K_{\nu }\!\left( \left| u\right| \right) \ \mathrm{d}u. \end{aligned}$$

1.1.1 A.1.1 \(x>0\)

Directly from (106) we have

$$\begin{aligned} \mathrm {Yu}{}_{\nu }\!\left( x\right)&= \int \limits _{0}^{x}\mathrm{e}^{u}u^{\nu }K_{\nu }\!\left( u\right) \ \mathrm{d}u=\frac{\mathrm{e}^{x}x^{\nu +1}}{2n+1}\left[ K_{\nu }\!\left( x\right) +K_{\nu +1}\!\left( x\right) \right] -\frac{2^{\nu }\Gamma \! \left( \nu +1\right) }{2\nu +1}. \end{aligned}$$
(107)

1.1.2 A.1.2 \(x<0\)

Performing the change of variables \(u=-u^{\prime }\),

$$\begin{aligned} \mathrm {Yu}{}_{\nu }\!\left( x\right)&= \int \limits _{0}^{x}\mathrm{e}^{u}\ \left( -u\right) ^{\nu }K_{\nu }\!\left( -u\right) \ \mathrm{d}u=-\int \limits _{0}^{-x}\mathrm{e}^{-u^{\prime }}\!\left( u^{\prime }\right) ^{\nu }\ K_{\nu }\!\left( u^{\prime }\right) \ \mathrm{d}u^{\prime }, \end{aligned}$$

and applying again (106), we have

$$\begin{aligned} \mathrm {Yu}{}_{\nu }\!\left( x\right)&=-\left\{ \frac{\left( -x\right) ^{\nu +1}\mathrm{e}^{-\left( -x\right) }}{2\nu +1}\left[ K_{\nu }\!\left( -x\right) -K_{\nu +1}\!\left( -x\right) \right] +\frac{2^{\nu }\Gamma \!\left( \nu +1\right) }{ 2\nu +1}\right\} \nonumber \\&=-\frac{\left( -x\right) ^{\nu +1}\mathrm{e}^{x}}{2\nu +1}\left[ K_{\nu }\!\left( -x\right) -K_{\nu +1}\!\left( -x\right) \right] -\frac{2^{\nu }\Gamma \!\left( \nu +1\right) }{2\nu +1}. \end{aligned}$$
(108)

1.1.3 A.1.3 \(x\ne 0\)

For \(x\ne 0\) we can unify the results given in (107) and (108) as follows:

$$\begin{aligned} \mathrm {Yu}{}_{\nu }\!\left( x\right) =\frac{x\left| x\right| ^{\nu }\mathrm{e}^{x}}{2\nu +1}\ \left[ K_{\nu }\!\left( \left| x\right| \right) + \mathrm {sign}\!\left( x\right) K_{\nu +1}\!\left( \left| x\right| \right) \right] -\frac{2^{\nu }\Gamma \! \left( \nu +1\right) }{2\nu +1}, \end{aligned}$$
(109)

where

$$\begin{aligned} \mathrm {sign}\!\left( x\right) =\frac{\left| x\right| }{x}. \end{aligned}$$
(110)

1.1.4 A.1.4 \(x=0\)

To evaluate \(\mathrm {Yu}{}_{\nu }\!\left( 0\right) \), let us calculate the following limit:

$$\begin{aligned} \mathrm {Yu}{}_{\nu }\!\left( 0\right)&= \frac{1}{2\nu +1}\underset{ x\rightarrow 0}{\lim }\ x\left| x\right| ^{\nu }\mathrm{e}^{x}\ \left[ K_{\nu }\!\left( \left| x\right| \right) +\mathrm {sign}\!\left( x\right) K_{\nu +1}\!\left( \left| x\right| \right) \right] -\frac{2^{\nu }\Gamma \! \left( \nu +1\right) }{2\nu +1}. \end{aligned}$$
(111)

On the one hand, when \(\nu =0\), we have

$$\begin{aligned} \mathrm {Yu}{}_{0}\!\left( 0\right) =\underset{x\rightarrow 0}{\lim }\ x\ \left[ K_{0}\!\left( \left| x\right| \right) +\mathrm {sign}\!\left( x\right) K_{1}\!\left( \left| x\right| \right) \right] -1. \end{aligned}$$

Applying the asymptotic formulas [23, Eq. 5.16.4]

$$\begin{aligned}&K_{0}\!\left( x\right) \approx \log \left( \frac{2}{x}\right) ,\qquad x\rightarrow 0, \end{aligned}$$
(112)
$$\begin{aligned}&K_{\nu }\!\left( x\right) \approx \frac{2^{\nu -1}\Gamma \! \left( \nu \right) }{ x^{\nu }},\qquad x\rightarrow 0, \end{aligned}$$
(113)

and taking into account (110), we have

$$\begin{aligned} \mathrm {Yu}{}_{0}\!\left( 0\right)&=\underset{x\rightarrow 0^{+}}{\lim }\ x\ \left[ \log \left( \frac{2}{\left| x\right| }\right) +\frac{ \left| x\right| }{x}\frac{1}{\left| x\right| }\right] -1=\underset{x\rightarrow 0^{+}}{\lim }\ -x\log \left( \frac{\left| x\right| }{2}\right) =0. \end{aligned}$$
(114)

On the other hand, when \(\nu \ne 0\), we can apply in (111) the asymptotic formula (113), so that

$$\begin{aligned} \mathrm {Yu}{}_{\nu }\!\left( 0\right)&= \frac{1}{2\nu +1}\underset{ x\rightarrow 0^{+}}{\lim }\ x\left| x\right| ^{\nu }\left[ \frac{ 2^{\nu -1}\Gamma \! \left( \nu \right) }{\left| x\right| ^{\nu }}+\frac{ \left| x\right| }{x}\frac{2^{\nu }\Gamma \! \left( \nu +1\right) }{ \left| x\right| ^{\nu +1}}\right] -\frac{2^{\nu }\Gamma \! \left( \nu +1\right) }{2\nu +1}=0,\qquad \nu \ne 0. \end{aligned}$$
(115)

Therefore, according to (109), (114) and (115), we can express the \(\mathrm {Yu}{}_{\nu }\!\left( x\right) \) function as follows:

$$\begin{aligned} \begin{array}{l} \displaystyle \mathrm {Yu}{}_{\nu }\!\left( x\right) :=\int \limits _{0}^{x}\mathrm{e}^{u}\ \left| u\right| ^{\nu }K_{\nu }\!\left( \left| u\right| \right) \ \mathrm{d}u \\ \qquad \qquad \,\,=\left\{ \begin{array}{ll} \displaystyle \frac{x\left| x\right| ^{\nu }\mathrm{e}^{x}}{2\nu +1}\ \left[ K_{\nu }\!\left( \left| x\right| \right) +\mathrm {sign}\!\left( x\right) K_{\nu +1}\!\left( \left| x\right| \right) \right] -\frac{2^{\nu }\Gamma \!\left( \nu +1\right) }{2\nu +1} &{} \quad x\ne 0, \\ 0 &{}\quad x=0. \end{array} \ \right. \end{array} \ \end{aligned}$$
(116)

1.2 A.2 Convergence condition for \(\mathcal {T}\!\left( X,0\right) \)

According to [27, theorem 10.6], if a series \(\sum _{n=0}^{\infty }a_{n}\) converges, then \(\lim _{{n\rightarrow \infty }}a_{n}=0\). Therefore, the series given in (39),

$$\begin{aligned} \mathcal {T}\!\left( X,0\right) =\sqrt{\pi }\sum _{n=0}^{\infty }\frac{\left( -H/ \sqrt{2}\right) ^{n}}{\Gamma \left( \frac{n+1}{2}\right) } \widetilde{ \mathrm {Yu}}{}_{n/2}\!\left( u\right) \left. \!\! \right| _{X-L}^{X+L}, \end{aligned}$$

converges if

$$\begin{aligned} \underset{n\rightarrow \infty }{\lim }\frac{\left( -H/\sqrt{2}\right) ^{n}}{ \Gamma \left( \frac{n+1}{2}\right) } \widetilde{\mathrm {Yu}}{} _{n/2}(u) \left. \!\! \right| _{X-L}^{X+L}. \end{aligned}$$
(117)

Notice that according to (36),

$$\begin{aligned} \widetilde{\mathrm {Yu}}{}_{\nu }\!\left( u\right) \left. \!\! \right| _{X-L}^{X+L}=\int \limits _{X-L}^{X+L}\mathrm{e}^{u}\left| u\right| ^{\nu }K_{\nu }\!\left( \left| u\right| \right) \mathrm{d}u, \end{aligned}$$

and, according to [28, Eq. 10.41.2],

$$\begin{aligned} K_{\nu }\!\left( z\right) \approx \sqrt{\frac{\pi }{2\nu }}\left( \frac{\mathrm{e}z}{ 2\nu }\right) ^{-\nu },\qquad \nu \rightarrow \infty , \end{aligned}$$

and thus

$$\begin{aligned} \underset{\nu \rightarrow \infty }{\lim } \widetilde{\mathrm {Yu}}{} _{\nu }\!\left( u\right) \left. \!\! \right| _{X-L}^{X+L}&= \underset{\nu \rightarrow \infty }{\lim }\sqrt{\frac{\pi }{2\nu }}\left( \frac{\mathrm{e}}{2\nu }\right) ^{-\nu }\int \limits _{X-L}^{X+L}\mathrm{e}^{u}\mathrm{d}u=2\mathrm{e}^{X}\sinh L\underset{\nu \rightarrow \infty }{\lim }\sqrt{\frac{\pi }{ 2\nu }}\left( \frac{\mathrm{e}}{2\nu }\right) ^{-\nu }. \end{aligned}$$
(118)

Notice as well that, according to Stirling’s formula [20, Eq. 6.1.37],

$$\begin{aligned} \Gamma \!\left( \nu \right) \approx \left( \frac{\nu }{\mathrm{e}}\right) ^{\nu }\sqrt{ \frac{2\pi }{\nu }},\qquad \nu \rightarrow \infty , \end{aligned}$$
(119)

so that from (118) and (119) we have

$$\begin{aligned} \underset{\nu \rightarrow \infty }{\lim }\frac{ \widetilde{\mathrm {Yu} }{}_{\nu }\!\left( u\right) \left. \!\! \right| _{X-L}^{X+L}}{\Gamma \! \left( \nu \right) }=\mathrm{e}^{X}\sinh L\underset{\nu \rightarrow \infty }{\lim }2^{\nu }. \end{aligned}$$
(120)

Therefore, taking \(\nu =n/2\) in (120), we can calculate the following limit:

$$\begin{aligned} \varLambda&= \underset{n\rightarrow \infty }{\lim }\frac{\left( -H/\sqrt{2} \right) ^{n}}{\Gamma \left( \frac{n+1}{2}\right) } \widetilde{\mathrm { Yu}}{}_{n/2}\!\left( u\right) \left. \!\! \right| _{X-L}^{X+L}=\mathrm{e}^{X}\sinh L\underset{n\rightarrow \infty }{\lim }\!\left( -H\right) ^{n}. \end{aligned}$$

Thus, the condition given in (117) is satisfied when

$$\begin{aligned} H<1. \end{aligned}$$

1.3 A.3 Inequality for modified Bessel function of third kind

Let us consider the following integral representation of the modified Bessel function of the third kind [23, Eq. 5.10.23]:

$$\begin{aligned} K_{\nu }\!\left( z\right) =\int \limits _{0}^{\infty }\exp \!\left( -z\cosh \alpha \right) \cosh \nu \alpha \ \mathrm{d}\alpha . \end{aligned}$$
(121)

Notice that the \(\cosh x\) function is a positive increasing function for \( x>0 \); thus,

$$\begin{aligned} \nu >\mu >0,\ \alpha >0,\ \forall z\quad \rightarrow \quad \mathrm{e}^{-z\cosh \alpha }\cosh \nu \alpha >\mathrm{e}^{-z\cosh \alpha }\cosh \mu \alpha >0. \end{aligned}$$
(122)

Therefore, integrating in (122) and taking into account (121), we have

$$\begin{aligned} \nu >\mu >0\quad \rightarrow \quad K_{\nu }\!\left( z\right) >K_{\mu }\!\left( z\right) >0. \end{aligned}$$
(123)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González-Santander, J.L., Martín, G. Closed form expression for the surface temperature in wet grinding: application to maximum temperature evaluation. J Eng Math 90, 173–193 (2015). https://doi.org/10.1007/s10665-014-9716-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-014-9716-3

Keywords

Navigation