Skip to main content
Log in

Assessment of soil fertility and nutrient management strategies in calcareous soils of Khuzestan province: a case study using the Nutrient Index Value method

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Soil fertility (SF) is a crucial factor that directly impacts the performance and quality of crop production. To investigate the SF status in agricultural lands of winter wheat in Khuzestan province, 811 samples were collected from the soil surface (0–25 cm). Eleven soil properties, i.e., electrical conductivity (EC), soil organic carbon (SOC), total nitrogen (TN), calcium carbonate equivalent (CCE), available phosphorus (Pav), exchangeable potassium (Kex), iron (Fe), copper (Cu), zinc (Zn), manganese (Mn), and soil pH, were measured in the samples. The Nutrient Index Value (NIV) was calculated based on wheat nutritional requirements. The results indicated that 100%, 93%, and 74% of the study areas for CCE, pH, and EC fell into the low, moderate, and moderate to high NIV classes, respectively. Also, 25% of the area is classified as low fertility (NIV < 1.67), 75% falls under medium fertility (1.67 < NIV value < 2.33), and none in high fertility (NIV value > 2.33). Assessment of the mean wheat yield (AWY) and its comparison with NIV showed that the highest yield was in the Ramhormoz region (5200 kg.ha−1), while the lowest yield was in the Hendijan region (3000 kg.ha−1) with the lowest EC rate in the study area. Elevated levels of salinity and CCE in soils had the most negative impact on irrigated WY, while Pav, TN, and Mn availability showed significant effects on crop production. Therefore, implementing SF management practices is essential for both quantitative and qualitative improvement in irrigated wheat production in Khuzestan province.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  • Al-Zahrani, M. S., Hassanien, H. A., Alsaade, F. W., & Wahsheh, H. A. (2024). Sustainability of growth performance, water quality, and productivity of Nile tilapia-spinach affected by feeding and fasting regimes in nutrient film technique-based aquaponics. Sustainability, 16, 625. https://doi.org/10.3390/su16020625

    Article  CAS  Google Scholar 

  • Asgari Hafshejani, N., & Jafari, S. (2017). The study of particle size distribution of calcium carbonate and its effects on some soil properties in Khuzestan province. Iran Agricultural Research, 36(2), 71–80. Corpus ID: 147702311

  • Bai, B., Yumin, T., Gennadii, D., Haag, A., & Weerts, A. (2020). A simple spatio-temporal data fusion method based on linear regression coefficient compensation. Remote Sensing, 12(23), 3900.14. https://doi.org/10.3390/rs12233900

    Article  Google Scholar 

  • Barrow, N. J., & Hartemink, A. (2023). The effects of pH on nutrient availability depend on both soils and plants. Plant and Soil, 487, 21–37. https://doi.org/10.1007/s11104-023-05960-5

    Article  CAS  Google Scholar 

  • Brady, N. C., Weil, R. R., Weil, R. R. (2008). The nature and properties of soils, vol. 13. Prentice Hall, Upper Saddle River, NJ. pp 662–710. ISBN: 978–0133254488

  • Burt, R. (2004). Soil survey laboratory methods manual. United States Department of Agriculture Natural Resources.

  • Dahiya, I. S., Richter, J., & Malik, R. S. (1984). Soil spatial variability: A review. International Journal of Tropical Agriculture, 2, 1–102.

    Google Scholar 

  • Du Plessis, C., Van Zijl, G., Van Tol, J., & Manyevere, A. (2020). Machine learning digital soil mapping to inform gully erosion mitigation measures in the Eastern Cape, South Africa. Geoderma, 368, 114287. https://doi.org/10.1016/j.geoderma.2020.114287

    Article  Google Scholar 

  • Faizi Asl, V. (2020). Evaluation of soil fertility status in northwest of Iran drylands by Nutrient Index Value (NIV). Water and soil, 34, 897–919. https://doi.org/10.22067/jsw.v34i4.84165. In Persian.

    Article  Google Scholar 

  • FAO, IFAD, UNICEF, WFP, WHO. (2023). The state of food security and nutrition in the world. Urbanization, agrifood systems transformation and healthy diets across the rural–urban continuum. Rome FAO. https://doi.org/10.4060/cc3017

    Article  Google Scholar 

  • Ganorkar, C. (2013). Physio-chemical assessment of soil in Rajura Bazar in Amravati district of Maharashtra (India). International Journal of Chemical, Environment and Pharmaceutical Research, 4(2&3), 46–49. ISSN: 0974–1496.

  • Govindasamy, P., Muthusamy, S. K., Bagavathiannan, M., Mowrer, J., Jagannadham, P. T. K., Maity, A., Halli, H. M., Vadivel, R., Das, T. K., Raj, R., Pooniya, V., Babu, S., Rathore, S. S., & Tiwari, G. (2023). Nitrogen use efficiency—A key to enhance crop productivity under a changing climate. Front Plant Sci, 14, 1121073. https://doi.org/10.3389/fpls.2023.1121073

    Article  Google Scholar 

  • Hartono, A., Funakawa, S., & Kosaki, T. (2005). Phosphorus sorption-desorption properties of selected acid upland soils in Indonesia. Soil Science and Plant Nutrition, 51, 787–799. https://doi.org/10.1111/j.1747-0765.2005.tb00113.x

    Article  CAS  Google Scholar 

  • Hasheminasab, K. S., Shahbazi, K., Marzi, M., Zare, A., Yeganeh, M., Bazargan, K., & Kharazmi, R. (2023). A study on wheat grain zinc, iron, copper, and manganese concentrations and their relationship with grain yield in major wheat production areas of Iran. Journal of Agriculture and Food Research, 14, 100913. https://doi.org/10.1016/j.jafr.2023.100913

    Article  CAS  Google Scholar 

  • Hegade, R. R., Chethanakumara, M. V., & Krishnamurthy, S. V. B. (2024). Effect of cultivation practice on the heavy metal content of rice paddy field soil in Western Ghats of India. Environmental Earth Sciences, 83, 15. https://doi.org/10.1007/s12665-023-11317-z

    Article  CAS  Google Scholar 

  • Jackson, M. L. (1959). Soil chemical analysis. Prentice Hall Inc, USA, pp 183–204. https://doi.org/10.1002/jpln.19590850311

  • Kashiwar, S. R., Kundu, M. C., & Dongarwar, U. R. (2023). GIS-based spatial mapping of soil nutrient status of Pauni block of Maharashtra, India. Annals of Plant and Soil Research, 25, 446–454. https://doi.org/10.47815/apsr.2023.10290

    Article  Google Scholar 

  • Khan, F., Siddique, A. B., Shabala, S., Zhou, M., & Zhao, C. (2023). Phosphorus plays key roles in regulating plants’ physiological responses to abiotic stresses. Plants, 12(15), 2861. https://doi.org/10.3390/plants12152861

    Article  CAS  Google Scholar 

  • Khosravani, P., Baghernejad, M., Moosavi, A., & FallahShamsi, R. (2023). Digital mapping to extrapolate the selected soil fertility attributes in calcareous soils of a semiarid region in Iran. Journal of Soils and Sediments. https://doi.org/10.1007/s11368-023-03548-1

    Article  Google Scholar 

  • Khosravi-Aghdam, K., Asadzadeh, F., Rezapour, F., & Nouri, A. (2023). Comparative assessment of soil fertility. Across Varying Elevations, Environ Monit Assess, 195, 1007. https://doi.org/10.1007/s10661-023-11610-1

    Article  CAS  Google Scholar 

  • Li, C., Aluko, O. O., & Yuan, G. (2022). The responses of soil organic carbon and total nitrogen to chemical nitrogen fertilizers reduction base on a meta-analysis. Science and Reports, 12, 16326. https://doi.org/10.1038/s41598-022-18684-w

    Article  CAS  Google Scholar 

  • Lichtenberg, E. (2024). Thinking about soil health: A conceptual framework. Soil Security, 100130. https://doi.org/10.1016/j.soisec.2024.100130

  • Lindsay, W. L., & Norvell, W. A. (1978). Development of a DTPA soil test for zinc, iron, manganese, and copper 1. Soil Science Society of America Journal, 42, 421–428. https://doi.org/10.2136/sssaj1978.03615995004200030009x

    Article  CAS  Google Scholar 

  • Maguire, R. O., & Heckendorn, S. E. (2019). Soil test recommendations for Virginia (p. 104). Virginia State University.

    Google Scholar 

  • Marschner, H. (1995). Functions of mineral nutrients: Micronutrients. In: Mineral nutrition of higher plants, 2nd edition, Academic Press, London pp 313–404. ISBN: 9780080571874.

  • Matinfar, H. R., Maghsodi, Z., Mousavi, S. R., & Rahmani, A. (2021). Evaluation and prediction of topsoil organic carbon using machine learning and hybrid models at a field-scale. Catena, 202, 105258. https://doi.org/10.1016/j.catena.2021.105258

    Article  CAS  Google Scholar 

  • Mondal, K., & Ramkala, R. (2016). Fertility map and horizontal soil potassium status of north-eastern region of Haryana. Journal of Applied and Natural Science, 8, 2077–2080. https://doi.org/10.31018/jans.v8i4.1093

    Article  CAS  Google Scholar 

  • Moshiri, F., Samavat, S., Balali, M. R. (2017). Soil organic carbon: A key factor of sustainable agriculture in Iran. pp 492–496. Proceedings of the global symposium on soil organic carbon. pp 21–23.

  • Moshiri, F. (2013). Guidelines for integrated management of and wheat plant nutrition, Soil and Water Research Institute (In Persian).

  • Mousavi, S. R., Sarmadian, F., Omid, M., & Bogaert, P. (2022a). Application of machine learning models in spatial estimation of soil phosphorus and potassium in some parts of Abyek Plain. Iranian Journal of Soil Research, 35(4), 397–411. https://doi.org/10.22092/IJSR.2022.355198.618

  • Mousavi, S. R., Sarmadian, F., Omid, M., & Bogaert, P. (2022b). Three-dimensional mapping of soil organic carbon using soil and environmental covariates in an arid and semi-arid region of Iran. Measurement, 201, 111706. https://doi.org/10.1016/j.measurement.2022.111706

  • Mousavi, S. R., Sarmadian, F., Angelini, M. E., Bogaert, P., & Omid, M. (2023). Cause-effect relationships using structural equation modeling for soil properties in arid and semi-arid regions. Catena, 232, 107392. https://doi.org/10.1016/j.catena.2023.107392

    Article  CAS  Google Scholar 

  • Naorem, A., Jayaraman, S., Dang, Y. P., Dalal, R. C., Sinha, N. K., Rao, C. S., & Patra, A. K. (2023). Soil constraints in an arid environment—Challenges, prospects, and implications. Agronomy, 13, 220. https://doi.org/10.3390/agronomy13010220

    Article  CAS  Google Scholar 

  • Nelson, D. W., Sommers, L. E. (1996). Total carbon, organic carbon, and organic matter. Methods of soil analysis Part 3—Chemical methods, pp 961–1010. https://doi.org/10.2136/sssabookser5.3.c34.

  • Olsen, S. R. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate. United States Department of Agriculture.

    Google Scholar 

  • Parker, F., Nelson, W., Winters, E., & Miles, I. (1951). The broad interpretation and application of soil test information. Agronomy Journal, 43, 105–112. https://doi.org/10.2134/agronj1951.00021962004300030001x

    Article  CAS  Google Scholar 

  • Parsaie, F., Farrokhian Firouzi, A., Mousavi, S. R., Rahmani, A., Sedri, M. H., & Homaee, M. (2021). Large-scale digital mapping of topsoil total nitrogen using machine learning models and associated uncertainty map. Environmental Monitoring and Assessment, 193, 1–15. https://doi.org/10.1007/s10661-021-08947-w

    Article  CAS  Google Scholar 

  • Pélabon, C., Hilde, C. H., Einum, S., & Gamelon, M. (2020). On the use of the coefficient of variation to quantify and compare trait variation. Evolution Letters, 14;4(3), 180–188. https://doi.org/10.1002/evl3.171

    Article  Google Scholar 

  • Piotrowska-Długosz, A., Breza-Boruta, B., Długosz, J. (2019). Spatio-temporal heterogeneity of soil microbial properties in a conventionally managed arable field. https://doi.org/10.1007/s11368-018-2022-3

  • Ravikumar, P., Somashekar, R. K. (2013). Evaluation of nutrient index using organic carbon, available P and available K concentrations as a measure of soil fertility in Varahi River basin, India. Proceedings of the International Academy of Ecology and Environmental Sciences, 3(4), 330. License CC BY 4.0

  • Sahu, D., Srivastava, L. K., Porte, S. S., Jatav, G. K., Somi, B. (2023). Evaluation of soil fertility status of research farm, College of Agriculture and Research Station, Katghora, Korba, Chhattisgarh. https://doi.org/10.9734/ijecc/2023/v13i102913

  • Sajid, A., Waheed, M., Shah, I., & Muslim Raza, M. (2023). Bayesian sample size determination for coefficient of variation of normal distribution. Journal of Applied Statistics. https://doi.org/10.1080/02664763.2023.2197571

    Article  Google Scholar 

  • Salem, H. M., Schott, L. R., Piaskowski, J., Chapagain, A., Yost, J. L., Brooks, E., & Johnson-Maynard, J. (2024). Evaluating intra-field spatial variability for nutrient management zone delineation through geospatial techniques and multivariate analysis. Sustainability, 16, 645. https://doi.org/10.3390/su16020645

    Article  CAS  Google Scholar 

  • Seyedjalai, A., Navidi, M. N., Zeynoldinimeymand, A., Mohammadesamaeil, Z. (2019). Vegetative needs of crops, Research Organization and Agricultural Education and Promotion, Soil and Water Institute. (In Persian).

  • Shahane, A. A., & Shivay, Y. S. (2021). Soil health and its improvement through novel agronomic and innovative approaches. Frontiers in Agronomy, 3, 680456. https://doi.org/10.3389/fagro.2021.680456

    Article  Google Scholar 

  • Shindo, H., Watanabe, D., Onaga, T., Urakawa, M., Nakahara, O., & Huang, Q. (2002). Adsorption, activity, and kinetics of acid phosphatase as influenced by selected oxides and clay minerals. Soil Science and Plant Nutrition, 48, 763–767. https://doi.org/10.1080/00380768.2002.10409268

    Article  CAS  Google Scholar 

  • Sillanpaa, M. (1995). Micronutrients and nutrient status of soils: A global study. FAO Soils Bulletin FAO, Rome. Italy, Report No. 48.

  • Simard, R. R. (1993). Ammonium-acetate extractable elements. In M. R. Carter (Ed.), Soil sampling and methods of analysis (pp. 39–42). Lewis.

    Google Scholar 

  • Singh, G., Sharma, M., Manan, J., & Singh, G. (2016). Assessment of soil fertility status under different cropping sequences in district Kapurthala. J Krishi Vigyan, 5, 1–9.

    Article  Google Scholar 

  • Singh, S. N., Latare, A. M., & Singh, S. K. (2017). Soil fertility status of Majhwa block of Mirzapur District of Eastern UP, India. International Journal of Current Microbiology and Applied Sciences, 6, 2019–2026. https://doi.org/10.20546/ijcmas.2017.609.248

    Article  CAS  Google Scholar 

  • Singh, R. P., Handa, R., & Manchanda, G. (2021). Nanoparticles in sustainable agriculture: An emerging opportunity. Journal of Controlled Release, 329, 1234-1248 767. https://doi.org/10.1016/j.jconrel.2020.10.051

    Article  CAS  Google Scholar 

  • Singh, I. R., Champathi Gunathilake, D. M., & Prasad, A. (2023). Soil fertility level and nutrient index for important nutrients in the Macuata province of Fiji Islands. International Journal of Agricultural Technology, 19, 2237–2248.

    CAS  Google Scholar 

  • Smita Tale, K., Ingole, S. (2015). A review on role of physico-chemical properties in soil quality, Chem Sci Rev Lett. 4: 57–66. ID: 198959053

  • Soofi, L., Heidari, Gh., Siosemardeh, A., & Hosseinpanahi, F. (2017). The effect of zinc sulfate foliar spray on yield and yield components of Sardari wheat ecotypes. Plant Production Technology, 8, 69–86.

    Google Scholar 

  • Subbiah, V., & Asija, G. L. (1956). A rapid procedure for estimation of available nitrogen in soil. Current Science, 25, 259–260. https://doi.org/10.12691/aees-2-5-1

    Article  CAS  Google Scholar 

  • Sumithra, S., Ankalaiah, C., Rao, D., & Yamuna, R. T. (2013). A case study on physico – chemical properties of soil around industrial and agricultural area of Yerraguntla, Kadapa district, A. P, India. International Journal of Geology, Earth and Environmental Sciences, 3, 28–34.

    Google Scholar 

  • Sun, B., Zhou, S., & Zhao, Q. (2003). Evaluation of spatial and temporal changes of soil quality based on geostatistical analysis in the hill region of subtropical China. Geoderma, 115, 85–99. https://doi.org/10.1016/S0016-7061(03)00078-8

    Article  Google Scholar 

  • Tirkey, D. E., & Thomas, T. (2017). Assessment of soil sample by analysing chemical properties of soil in Korba district of Chhattisgarh, India. Research Journal of Chemical and Environmental Sciences, 5, 76–81. ID: 212448026.

    CAS  Google Scholar 

  • Tiruneh, G. A., Alemayehu, T. Y., Allouche, F. K., & Reichert, J. M. (2021a). Spatial variability modeling of soil fertility for improved nutrient management in Northwest Ethiopia. Arabian Journal of Geosciences, 14(24), 1–14. https://doi.org/10.1371/journal.pone.0253156

  • Tiruneh, G. A., Alemayehu, T. Y., Meshesha, D. T., Vogelmann, E. S., Reichert, J. M., & Haregeweyn, N. (2021b). Spatial variability of soil chemical properties under different land-uses in Northwest Ethiopia. PLoS One, 16(6), e0253156.

  • Tiruneh, G. A., Meshesha, D. T., Adgo, E., Tsunekawa, A., Haregeweyn, N., Fenta, A. A., Belay, A. W., Tadesse, N., Fekadu, G., & Reichert, J. M. (2022a). Use of soil spectral reflectance to estimate texture and fertility affected by land management practices in Ethiopian tropical highland. PLoS One, 17(7), e0270629. https://doi.org/10.1371/journal.pone.0270629

  • Tiruneh, G. A., Meshesha, D. T., Adgo, E., Tsunekawa, A., Haregeweyn, N., Fenta, A. A., & Reichert, J. M. (2022b). A leaf reflectance based crop yield modeling in Northwest Ethiopia. PLoS One, 17(6), e0269791. https://doi.org/10.1371/journal.pone.0269791

  • Tiruneh, G. A., Meshesha, D. T., Adgo, E., Tsunekawa, A., Haregeweyn, N., Fenta, A. A., Alemayehu, T. Y., Ayana, G., Reichert, J. M., & Tilahun, K. (2023a). Geospatial modeling and mapping of soil organic carbon and texture from spectroradiometric data in Nile basin. Remote Sensing Applications: Society and Environment, 29, 100879. https://doi.org/10.1016/j.rsase.2022.100879

  • Tiruneh, G. A., Alemayehu, T. Y., Meshesha, D. T., Adgo, E., Tiruneh, G. A., & Reichert, J. M. (2023b). Variability modeling and mapping of soil properties for improved management in Ethiopia. Agrosystems, Geosciences and Environment, 6, e20357. https://doi.org/10.1002/agg2.20357

  • Tiruneh, G.A., Hanjagi, A., Mumtaz, M., & Reichert, J.M. (2024). Prediction, mapping, and implication for better soil organic carbon management in Ethiopia. Soil Science Society of America Journal, 1–11. https://doi.org/10.1002/saj2.20644.

  • Tsegay, T., & Hill, R. L. (1998). Intensive tillage effects on spatial variability of soil test, plant growth, and nutrient uptake measurements. Soil Science, 163, 155–165.

    Article  Google Scholar 

  • Vito, R. D., Portoghese, I., Pagano, A., Fratino, U., & Vurro, M. (2017). An index-based approach for the sustainability assessment of irrigation practice based on the water-energy-food nexus framework. Advances in Water Resources, 110, 423–436. https://doi.org/10.1016/j.advwatres.2017.10.027

    Article  Google Scholar 

  • Wang, X., Tan, W., Zhou, S., Xu, Y., Cui, T., Gao, H., Chen, M., Dong, X., Sun, H., Yang, J., & Wu, Y. (2021). Converting maize production with low energy cost and high economic return for sustainable development. Renewable and Sustainable Energy Reviews, 136, 11044. https://doi.org/10.1016/j.rser.2020.110443

    Article  Google Scholar 

  • Wang, S., Xu, L., & Hao, M. (2022). Impacts of long-term micronutrient fertilizer application on soil properties and micronutrient availability. International Journal of Environmental Research and Public Health, 19, 16358. https://doi.org/10.3390/ijerph192316358

    Article  CAS  Google Scholar 

  • Webster, R., Oliver, M. A. (2007). Characterizing spatial processes: The covariance and variogram. Geostatistics for Environmental Scientists, 2nd edn. Wiley, Chichester. pp 47–73.

  • Wilding, L. P. (1985). Spatial variability: its documentation, accommodation and implication to soil surveys. In Soil spatial variability, Las Vegas NV, 30 November-1 December 1984: 166–194. https://doi.org/10.12691/env-3-1-4

  • Xu, A., Li, L., Xie, J., Wang, X., Coulter, J. A., Liu, C., & Wang, L. (2020). Effect of long-term nitrogen addition on wheat yield, nitrogen use efficiency, and residual soil nitrate in a semiarid area of the Loess Plateau of China. Sustainability, 12, 1735. https://doi.org/10.3390/su12051735

    Article  CAS  Google Scholar 

  • Xu, Y., Bi, R., & Li, Y. (2023). Effects of anthropogenic and natural environmental factors on the spatial distribution of trace elements in agricultural soils. Ecotoxicology and Environmental Safety, 249, 114436. https://doi.org/10.1016/j.ecoenv.2022.114436

    Article  CAS  Google Scholar 

  • Zeng, W. A., Li, F., Zhou, H., Qin, X. L., Zou, Z. J., Tian, T., Zeng, M., Liao, B. H. (2016). Effect of calcium carbonate on cadmium and nutrients uptake in tobacco (Nicotiana tabacum L.) planted on contaminated soil. Journal of Environmental Biolology, 37. pp 163–168. ISSN: 0254–8704

  • Zhang, W., & Zhang, X. (2007). A forecast analysis on fertilizers consumption worldwide. Environmental Monitoring and Assessment, 133(1–3), 427–434. https://doi.org/10.1007/s10661-006-9597-7

    Article  Google Scholar 

Download references

Acknowledgements

The authors are very thankful to the Khuzestan Province Agricultural Jihad Organization for providing the data.

Funding

This study is supported by Shahid Chamran University of Ahvaz, Iran, under Grant No. SCU.EG1401.827 for the year 2023.

Author information

Authors and Affiliations

Authors

Contributions

Zeinab Zaheri conducted the investigation, methodology, and analysis; Danya Karimi contributed to conceptualization, methodology, and writing – review and editing; Kazem Rangzan was involved in conceptualization, visualization, and editing; Seyed Roohollah Mousavi participated in conceptualization, methodology, and editing.

Corresponding author

Correspondence to Danya Karimi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaheri Abdehvand, Z., Karimi, D., Rangzan, K. et al. Assessment of soil fertility and nutrient management strategies in calcareous soils of Khuzestan province: a case study using the Nutrient Index Value method. Environ Monit Assess 196, 503 (2024). https://doi.org/10.1007/s10661-024-12665-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-024-12665-4

Keywords

Navigation