Skip to main content

Advertisement

Log in

Influence of meteorological variables and air pollutants on fog/smog formation in seven major cities of Indo-Gangetic Plain

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The Indo-Gangetic Plains (IGP) of the Indian subcontinent during winters experience widespread fog episodes. The low visibility is not only attributed to meteorological conditions but also to the increased pollution levels in the region. The study was carried out for Tier 1 and Tier II cities of the IGP of India, including Kolkata, Amritsar, Patiala, Hisar, Delhi, Patna, and Lucknow. This work analyzes data from 1990 to 2023 (33 years) employing the Mann–Kendall-Theil-Sen slope to determine the trends in fog occurrences and the relation between fog and meteorological parameters using multiple linear regressions. Furthermore, identifying the most relevant fog (visibility)—impacting factors from a set of both meteorological factors and air pollutants using step-wise regression. All cities indicated trend in the number of foggy days except for Kolkata. The multiple regression analysis reveals relatively low associations between fog occurrences and meteorological factors (30 to 59%), although the association was stronger when air pollution levels were considered (60 to 91%). Relative humidity, PM2.5, and PM10 have the most influence on fog formation. The study provides comprehensive insights into fog trends by incorporating meteorological data and air pollution analysis. The findings highlight the significance of acknowledging meteorological and pollution factors to understand and mitigate the impacts of reduced visibility. Hence, this information can guide policymakers, urban planners, and environmental management agencies in developing effective strategies to manage fog-related risks and improve air quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

GSOD, ISD, and daily mean pollution concentration data are freely accessible from the data providers mentioned in the “Datasets and Methodology” section of the manuscript. GSOD, https://www.ncei.noaa.gov/access/search/data-search/global-summary-of-the-day; ISD, https://www.ncei.noaa.gov/access/search/data-search/global-hourly; daily mean pollution concentration, https://airquality.cpcb.gov.in/ccr/#/caaqm-dashboard-all/caaqm-landing/data.

References

  • Alduchov, O. A., & Eskridge, R. E. (1996). Improved Magnus form approximation of saturation vapor pressure. Journal of Applied Meteorology and Climatology, 35(4), 601–609. https://doi.org/10.1175/1520-0450(1996)035%3c0601:IMFAOS%3e2.0.CO;2

    Article  Google Scholar 

  • Anger, A., Dessens, O., Xi, F., Barker, T., & Wu, R. (2016). China’s air pollution reduction efforts may result in an increase in surface ozone levels in highly polluted areas. Ambio, 45, 254–265. https://doi.org/10.1007/s13280-015-0700-6

    Article  CAS  Google Scholar 

  • Bilal, M., Hassan, M., Tahir, D. B. T., Iqbal, M. S., & Shahid, I. (2022). Understanding the role of atmospheric circulations and dispersion of air pollution associated with extreme smog events over South Asian megacity. Environmental Monitoring and Assessment, 194, 1–17. https://doi.org/10.1007/s10661-021-09674-y

    Article  CAS  Google Scholar 

  • Chauhan, A., & Singh, R. P. (2017). Poor air quality and dense haze/smog during 2016 in the Indo-Gangetic plains associated with the crop residue burning and Diwali festival. In 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS) (pp. 6048–6051). IEEE. https://doi.org/10.1109/IGARSS.2017.8128389

  • Chen, J., Li, Z., Lv, M., Wang, Y., Wang, W., Zhang, Y., ..., & Cribb, M. (2019). Aerosol hygroscopic growth, contributing factors, and impact on haze events in a severely polluted region in northern China. Atmospheric Chemistry and Physics19(2), 1327-1342. https://doi.org/10.5194/acp-19-1327-2019

  • Chen, Y., Wild, O., Ryan, E., Sahu, S. K., Lowe, D., Archer-Nicholls, S., Wang, Y., ..., & Beig, G. (2020). Mitigation of PM 2.5 and ozone pollution in Delhi: A sensitivity study during the pre-monsoon period. Atmospheric Chemistry and Physics, 20(1), 499-514. https://doi.org/10.5194/acp-20-499-2020

  • Chen, Y., Beig, G., Archer-Nicholls, S., Drysdale, W., Acton, W. J. F., Lowe, D., Nelson, B., …, & Wild, O. (2021). Avoiding high ozone pollution in Delhi, India. Faraday Discussions, 226, 502-514. https://doi.org/10.1039/D0FD00079E

  • Climate Research & Services. (n.d). MET Glossary. IMD-Indian Meteorological Department, Pune. Retrieved June 28, 2023 from https://www.imdpune.gov.in/Reports/glossary.pdf

  • Dhangar, N. G., Lal, D. M., Ghude, S. D., Kulkarni, R., Parde, A. N., Pithani, P., ..., & Rajeevan, M. (2021). On the conditions for onset and development of fog over New Delhi: An observational study from the WiFEX. Pure and Applied Geophysics, 178, 3727–3746. https://doi.org/10.1007/s00024-021-02800-4

  • Dimri, A. P., Niyogi, D., Barros, A. P., Ridley, J., Mohanty, U. C., Yasunari, T., & Sikka, D. R. (2015). Western disturbances: A review. Reviews of Geophysics, 53(2), 225–246. https://doi.org/10.1002/2014RG000460

    Article  Google Scholar 

  • Ding, Y., Wu, P., Liu, Y., & Song, Y. (2017). Environmental and dynamic conditions for the occurrence of persistent haze events in North China. Engineering, 3(2), 266–271. https://doi.org/10.1016/J.ENG.2017.01.009

    Article  CAS  Google Scholar 

  • Dutta, H. N. (2010). Acoustic sounding probing of fog dynamics, forecaster-users interactive workshop on fog monitoring and forecasting services 2010–2011. (Dec. 2010).

  • Gao, Y., Zhang, M., Liu, Z., Wang, L., Wang, P., Xia, X., ..., & Zhu, L. (2015). Modeling the feedback between aerosol and meteorological variables in the atmospheric boundary layer during a severe fog–haze event over the North China Plain. Atmospheric Chemistry and Physics15(8), 4279-4295. https://doi.org/10.5194/acp-15-4279-2015

  • Gautam, R., & Singh, M. K. (2018). Urban heat island over Delhi punches holes in widespread fog in the Indo-Gangetic Plains. Geophysical Research Letters, 45(2), 1114–1121. https://doi.org/10.1002/2017GL076794

    Article  Google Scholar 

  • Gautam, R., Patel, P. N., Singh, M. K., Liu, T., Mickley, L. J., Jethva, H., & DeFries, R. S. (2023). Extreme smog challenge of India intensified by increasing lower tropospheric stability. Geophysical Research Letters, 50(11), e2023GL103105. https://doi.org/10.1029/2023GL103105

    Article  Google Scholar 

  • Ghude, S. D., Bhat, G. S., Prabhakaran, T., Jenamani, R. K., Chate, D. M., Safai, P. D., ..., & Rajeevan, M. (2017). Winter fog experiment over the Indo-Gangetic plains of India. Current Science, 767–784. http://www.jstor.org/stable/24912578

  • Ghude, S. D., Jenamani, R. K., Kulkarni, R., Wagh, S., Dhangar, N. G., Parde, A. N., ..., & Rajeevan, M. (2023). WiFEX: Walk into the warm fog over Indo-Gangetic Plain Region. Bulletin of the American Meteorological Society104(5), E980-E1005. https://doi.org/10.1175/BAMS-D-21-0197.1

  • Parde, A. N., Ghude, S. D., Dhangar, N. G., Bhautmage, U. P., Wagh, S., Lonkar, P., Govardhan, G., Kumar, R., Biswas, M., Chen, F. (2024). Challenges in simulating prevailing fog types over urban region of Delhi. Journal of Geophysical Research: Atmospheres, 129(7). https://doi.org/10.1029/2023JD039772

  • Gough, W. A., & Leung, A. C. (2022). Do airports have their own climate? Meteorology, 1(2), 171–182. https://doi.org/10.3390/meteorology1020012

    Article  Google Scholar 

  • Gray, E., Gilardoni, S., Baldocchi, D., McDonald, B. C., Facchini, M. C., & Goldstein, A. H. (2019). Impact of air pollution controls on radiation fog frequency in the Central Valley of California. Journal of Geophysical Research: Atmospheres, 124(11), 5889–5905. https://doi.org/10.4209/aaqr.2018.04.0152

    Article  CAS  Google Scholar 

  • Hameed, S., Mirza, M. I., Ghauri, B. M., Siddiqui, Z. R., Javed, R., Khan, A. R., Rattigan, O. V., Qureshi, S., & Husain, L. (2000). On the widespread winter fog in northeastern Pakistan and India. Geophysical Research Letters, 27(13), 1891–1894. https://doi.org/10.1029/1999gl011020. Portico.

    Article  CAS  Google Scholar 

  • Hingmire, D., Vellore, R. K., Krishnan, R., Ashtikar, N. V., Singh, B. B., Sabade, S., & Madhura, R. K. (2019). Widespread fog over the Indo-Gangetic Plains and possible links to boreal winter teleconnections. Climate Dynamics, 52, 5477–5506. https://doi.org/10.1007/s00382-018-4458-y

    Article  Google Scholar 

  • Hunt, K. M., Turner, A. G., & Shaffrey, L. C. (2018). The evolution, seasonality and impacts of western disturbances. Quarterly Journal of the Royal Meteorological Society, 144(710), 278–290. https://doi.org/10.1002/qj.3200

    Article  Google Scholar 

  • Hunt, K. M. R., Turner, A. G., & Shaffrey, L. C. (2019). Falling trend of Western disturbances in future climate simulations. Journal of Climate, 32, 5037–5051. https://doi.org/10.1175/JCLI-D-18-0601.1

    Article  Google Scholar 

  • Jaswal, A. K., Kumar, N., Prasad, A. K., & Kafatos, M. (2013). Decline in horizontal surface visibility over India (1961–2008) and its association with meteorological variables. Natural Hazards, 68(2), 929–954. https://doi.org/10.1007/s11069-013-0666-2

    Article  Google Scholar 

  • Jenamani, R. K. (2007). Alarming rise in fog and pollution causing a fall in maximum temperature over Delhi. Current Science, 93(3), 314–322.

    CAS  Google Scholar 

  • Kelley, K., & Bolin, J. H. (2013). Multiple regression. In Handbook of quantitative methods for educational research (pp. 69–101). Brill. https://doi.org/10.1007/978-94-6209-404-8

  • Kulkarni, R., Jenamani, R. K., Pithani, P., Konwar, M., Nigam, N., & Ghude, S. D. (2019). Loss to aviation economy due to winter fog in New Delhi during the winter of 2011–2016. Atmosphere, 10(4), 198. https://doi.org/10.3390/atmos10040198

    Article  Google Scholar 

  • Lakra, K., & Avishek, K. (2022). A review on factors influencing fog formation, classification, forecasting, detection and impacts. Rendiconti Lincei. Scienze Fisiche e Naturali, 1–35. https://doi.org/10.1007/s12210-022-01060-1

  • Lawrence, M. G. (2005). The relationship between relative humidity and the dewpoint temperature in moist air: A simple conversion and applications. Bulletin of the American Meteorological Society, 86(2), 225–234. https://doi.org/10.1175/BAMS-86-2-225

    Article  Google Scholar 

  • Maurer, M., Klemm, O., Lokys, H. L., & Lin, N. H. (2019). Trends of fog and visibility in Taiwan: Climate change or air quality improvement? Aerosol and Air Quality Research, 19(4), 896–910. https://doi.org/10.4209/aaqr.2018.04.0152

    Article  CAS  Google Scholar 

  • NOAA-National Centers for Environmental Information. (2018). Federal Climate Complex data documentation for Integrated Surface Data (ISD). Retrieved 12 November, 2023 from https://www.ncei.noaa.gov/data/global-hourly/doc/isd-format-document.pdf

    Google Scholar 

  • Parde, A. N., Ghude, S. D., Sharma, A., Dhangar, N. G., Govardhan, G., Wagh, S., Jenamani, R., Pithani, P., Chen, F., Rajeevan, M., & Niyogi, D. (2022). Improving simulation of the fog life cycle with high-resolution land data assimilation: A case study from WiFEX. Atmospheric Research, 278, 106331. https://doi.org/10.1016/j.atmosres.2022.106331

    Article  CAS  Google Scholar 

  • Puthussery, J. V., Dave, J., Shukla, A., Gaddamidi, S., Singh, A., Vats, P., ..., & Verma, V. (2022). Effect of biomass burning, Diwali fireworks, and polluted fog events on the oxidative potential of fine ambient particulate matter in Delhi, India. Environmental Science & Technology56(20), 14605–14616. https://doi.org/10.1021/acs.est.2c02730

  • Sawlani, R., Agnihotri, R., Sharma, C., Patra, P. K., Dimri, A. P., Ram, K., & Verma, R. L. (2019). The severe Delhi SMOG of 2016: A case of delayed crop residue burning, coincident firecracker emissions, and atypical meteorology. Atmospheric Pollution Research, 10(3), 868–879. https://doi.org/10.1016/j.apr.2018.12.015

    Article  CAS  Google Scholar 

  • Shrestha, S., Moore, G. A., & Peel, M. C. (2018). Trends in winter fog events in the Terai region of Nepal. Agricultural and Forest Meteorology, 259, 118–130. https://doi.org/10.1016/j.agrformet.2018.04.018

    Article  Google Scholar 

  • Smith, S. J., McDuffie, E. E., & Charles, M. (2022). Opinion: Coordinated development of emission inventories for climate forcers and air pollutants. Atmospheric Chemistry and Physics, 22(19), 13201–13218. https://doi.org/10.5194/acp-22-13201-2022

    Article  CAS  Google Scholar 

  • Smith, D. K., Reka, S., Dorling, S. R., Ross, A. N., Renfrew, I. A., Jayakumar, A., Anurose, T. J., Parde, A. N., Ghude, S. D., & Rumbold, H. (2024). Forecasts of fog events in northern India dramatically improve when weather prediction models include irrigation effects. Communications Earth & Environment, 5(1), 141. https://doi.org/10.1038/s43247-024-01314-w

    Article  Google Scholar 

  • Srivastava, S. K., Sharma, A. R., & Sachdeva, K. (2016). A ground observation based climatology of winter fog: Study over the Indo-Gangetic Plains, India. International Journal of Environmental and Ecological Engineering, 10(7), 742–753. https://doi.org/10.5281/zenodo.1125465

    Article  Google Scholar 

  • Tadic, I., Crowley, J. N., Dienhart, D., Eger, P., Harder, H., Hottmann, B., Martinez, M., Parchatka, U., Paris, J. D., Pozzer, A., Rohloff, R., Schuladen, J., Shenolikar, J., Tauer, S., Lelieveld, J., & Fischer, H. (2020). Net ozone production and its relationship to nitrogen oxides and volatile organic compounds in the marine boundary layer around the Arabian Peninsula. Atmospheric Chemistry and Physics, 20(11), 6769–6787. https://doi.org/10.5194/acp-20-6769-2020

    Article  CAS  Google Scholar 

  • Väliaho, H., & Pekkonen, T. (2022). A procedure for stepwise regression analysis. De Gruyter.

    Google Scholar 

  • Verma, S., Ramana, M. V., & Kumar, R. (2022). Atmospheric rivers fueling the intensification of fog and haze over Indo-Gangetic Plains. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-09206-9

  • Wagh, S., Kulkarni, R., Lonkar, P., Parde, A. N., Dhangar, N. G., Govardhan, G., ... & Ghude, S. D. (2023). Development of visibility equation based on fog microphysical observations and its verification using the WRF model. Modeling Earth Systems and Environment, 9(1), 195–211. https://doi.org/10.1007/s40808-022-01492-6

    Article  Google Scholar 

  • Wang, X., Gu, W., Wang, F., Liu, L., Wang, Y., Han, X., & Xie, Z. (2022). A potential controlling approach on surface ozone pollution based upon power big data. SN Applied Sciences, 4(6), 164. https://doi.org/10.1007/s42452-022-05045-5

    Article  CAS  Google Scholar 

  • Westberg, K., Cohen, N., & Wilson, K. W. (1971). Carbon monoxide: Its role in photochemical smog formation. Science, 1013. https://www.science.org/doi/10.1126/science.171.3975.1013

  • World Meteorological Organization. (2017). Fog. In International Cloud Atlas. World Meteorological Organization. Retrieved June 14, 2022 from https://cloudatlas.wmo.int/en/fog.html#:~:text=Definition%3A%20Fog%3A%20A%20suspension%20of,of%20standard%20practices%20and%20procedures

  • Xie, F., Su, Y., Tian, Y., Shi, Y., Zhou, X., Wang, P., ..., & Lü, C. (2023). The shifting of secondary inorganic aerosol formation mechanisms during haze aggravation: The decisive role of aerosol liquid water. Atmospheric Chemistry and Physics23(4), 2365-2378. https://doi.org/10.5194/acp-23-2365-2023

  • Xue, D., Li, C., & Liu, Q. (2015). Visibility characteristics and the impacts of air pollutants and meteorological conditions over Shanghai, China. Environmental Monitoring and Assessment, 187, 1–10. https://doi.org/10.1007/s10661-015-4581-8

    Article  CAS  Google Scholar 

  • Yang, L., Liu, J. W., Ren, Z. P., Xie, S. P., Zhang, S. P., & Gao, S. H. (2018). Atmospheric conditions for advection-radiation fog over the western Yellow Sea. Journal of Geophysical Research: Atmospheres, 123(10), 5455–5468. https://doi.org/10.1029/2017JD028088

    Article  Google Scholar 

  • Yang, J., Shi, B., Shi, Y., Marvin, S., Zheng, Y., & Xia, G. (2020). Air pollution dispersal in high density urban areas: Research on the triadic relation of wind, air pollution, and urban form. Sustainable Cities and Society, 54, 101941. https://doi.org/10.1016/j.scs.2019.101941

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Birla Institute of Technology for providing all the necessary support in completing the article. We would also like to thank the anonymous reviewers for their valuable comments and suggestions.

Funding

This work was supported by the University Grant Commission (UGC), Govt. of India (grant numbers and UGC-Ref. No.: 400/(CSIR-UGC NET JUNE 2019).

Author information

Authors and Affiliations

Authors

Contributions

Kanchan Lakra: data curation, formal analysis, investigation, methodology, writing – original draft.

Kirti Avishek: conceptualization, methodology, supervision, writing – review and editing.

Corresponding author

Correspondence to Kanchan Lakra.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Competing interests

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lakra, K., Avishek, K. Influence of meteorological variables and air pollutants on fog/smog formation in seven major cities of Indo-Gangetic Plain. Environ Monit Assess 196, 533 (2024). https://doi.org/10.1007/s10661-024-12662-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-024-12662-7

Keywords

Navigation