Skip to main content
Log in

Analysing district-level climate vulnerability pattern in Madhya Pradesh, India, based on agricultural and socio-economic indicators

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Indian agriculture transitioned from a food deficit sector to a food surplus following the Green Revolution. However, the continued progress of Indian agriculture has been hampered by climate change. This research explores the district-wise vulnerability in Madhya Pradesh, India, to climate change by assessing the composite vulnerability index using the agricultural vulnerability index (AVI) and socio-economic vulnerability index (SEVI). The study seeks to understand how agricultural and socio-economic factors lead to variations in vulnerability across districts and influence targeted adaptation and mitigation strategies. The trend analysis results present declining rainfall and inclining temperature from 1951 to 2021 in Madhya Pradesh, directly affecting the agricultural sector and human livelihood. The composite vulnerability index (CVI) results revealed that districts with low values (< 0.394), such as Burhanpur and Balaghat, demonstrate reduced susceptibility due to limited cultivation, low reliance on rainfall, lower drought susceptibility, and decreased population density. Districts such as Panna and Bhopal show moderate vulnerability (0.394–0.423), with lower fallow land, reduced rainfed agriculture, and socio-economic vulnerability. Extensive agriculture and marginalised workers’ presence influence high vulnerability (0.423 to 0.456) in districts such as Tikamgarh and Indore. Districts like Barwani and Jhabua have the highest CVI values (> 0.456), indicating substantial susceptibility to climate impacts. The cluster analysis validates the results of the vulnerability index. The findings highlight the urgent need for tailored adaptation strategies to address the diverse agricultural and socio-economic indicators creating vulnerability in Madhya Pradesh. The study helps understand regional vulnerability patterns and provides evidence-based policy approaches for resilience to climate change effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  • Anjali, J., & Aditi, J. (2013). Inter-linkages of environment and socio-economic development of Madhya Pradesh, India. Journal of Environmental Research and Development, 7(3), 1282–1293.

    Google Scholar 

  • Arana, V. (2016). Water supply, sanitation, energy, and industrial constraints. In Water and Territory in Latin America (pp. 59–87). Springer International Publishing. https://doi.org/10.1007/978-3-319-30343-7_4

  • Azhar, G., Saha, S., Ganguly, P., Mavalankar, D., & Madrigano, J. (2017). Heat wave vulnerability mapping for India. International Journal of Environmental Research and Public Health, 14(4), 357. https://doi.org/10.3390/ijerph14040357

    Article  Google Scholar 

  • Benderskaya, E. N. (2017). Cluster analysis problems and bio-inspired clustering methods. 2017 XX IEEE International Conference on Soft Computing and Measurements (SCM), 162–164. https://doi.org/10.1109/SCM.2017.7970526

  • Borden, K. A., Schmidtlein, M. C., Emrich, C. T., Piegorsch, W. W., & Cutter, S. L. (2007). Vulnerability of U.S. cities to environmental hazards. Journal of Homeland Security and Emergency Management, 4(2). https://doi.org/10.2202/1547-7355.1279

  • Bretschger, L., & Valente, S. (2011). Climate change and uneven development*. The Scandinavian Journal of Economics, 113(4), 825–845. https://doi.org/10.1111/j.1467-9442.2011.01676.x

    Article  Google Scholar 

  • Chakraborty, A., & Joshi, P. K. (2016). Mapping disaster vulnerability in India using analytical hierarchy process. Geomatics, Natural Hazards and Risk, 7(1), 308–325. https://doi.org/10.1080/19475705.2014.897656

    Article  Google Scholar 

  • Chothodi, S., Patidar, H., Parmar, K., & Mishra, R. (2022). Environment and human well-being: Revisiting linkages and major issues. The Indian Geographical Journal, 97(1), 1–16.

    Google Scholar 

  • Das, S. K., & Basu, J. P. (2022). Tribal livelihood vulnerability due to climate change: A study across tribes of Paschim Medinipur district of West Bengal. SN Business & Economics, 2(8). https://doi.org/10.1007/s43546-022-00277-4

  • Deressa, T. T., Hassan, R. M., Ringler, C., Alemu, T., & Yesuf, M. (2009). Determinants of farmers’ choice of adaptation methods to climate change in the Nile Basin of Ethiopia. Global Environmental Change, 19(2), 248–255. https://doi.org/10.1016/j.gloenvcha.2009.01.002

    Article  Google Scholar 

  • Feng, Y., Chen, H., & Zheng, X. (2022). Component analysis of ancient glass products based on hierarchical analysis clustering algorithm. Highlights in Science, Engineering and Technology, 21, 180–185. https://doi.org/10.54097/hset.v21i.3155

    Article  Google Scholar 

  • Fernandez, P., Mourato, S., Moreira, M., & Pereira, L. (2016). A new approach for computing a flood vulnerability index using cluster analysis. Physics and Chemistry of the Earth, Parts A/B/C, 94, 47–55. https://doi.org/10.1016/j.pce.2016.04.003

    Article  Google Scholar 

  • Ge, Y., Dou, W., Wang, X., Chen, Y., & Zhang, Z. (2021). Identifying urban–rural differences in social vulnerability to natural hazards: A case study of China. Natural Hazards, 108(3), 2629–2651. https://doi.org/10.1007/s11069-021-04792-9

    Article  Google Scholar 

  • George, A., Sharma, P., & Pradhan, K. C. (2023). Spatiotemporal pattern of vulnerability to climate change in Madhya Pradesh, India. Applied Spatial Analysis and Policy. https://doi.org/10.1007/s12061-023-09535-w

  • Ghosh, M., & Ghosal, S. (2021). Climate change vulnerability of rural households in flood-prone areas of Himalayan foothills, West Bengal, India. Environment, Development and Sustainability, 23(2), 2570–2595. https://doi.org/10.1007/s10668-020-00687-0

    Article  Google Scholar 

  • GMPCCC. (2012). Madhya Pradesh State action plan on climate change.

  • Government of India. (2012). India Second National Communication to the United Nations Framework on Climate Change.

  • Gupta, M., Patil, J. P., & Goyal, V. C. (2020). Vulnerability assessment of the agro-based households to climate change in the Bundelkhand Region and suggesting adaptation strategies. In Global Climate change and environmental policy (pp. 55–123). Springer Singapore. https://doi.org/10.1007/978-981-13-9570-3_3

  • Hiremath, D. B., & Shiyani, R. L. (2013). Analysis of vulnerability indices in various agro-climatic zones of Gujarat. Indian Journal of Agricultural Economics, 68(1), 122.

    Google Scholar 

  • IPCC. (2012). Managing the risks of extreme events and disasters to advance climate change adaptation: Special report of the intergovernmental panel on climate change. Cambridge University Press.

    Google Scholar 

  • Jeganathan, A., Andimuthu, R., & Kandasamy, P. (2021). Climate risks and socio-economic vulnerability in Tamil Nadu, India. Theoretical and Applied Climatology, 145(1–2), 121–135. https://doi.org/10.1007/s00704-021-03595-z

    Article  Google Scholar 

  • Jha, R. K., & Gundimeda, H. (2019). An integrated assessment of vulnerability to floods using composite index – A district level analysis for Bihar, India. International Journal of Disaster Risk Reduction, 35, 101074. https://doi.org/10.1016/j.ijdrr.2019.101074

    Article  Google Scholar 

  • Kantamaneni, K., Rice, L., Yenneti, K., & Campos, L. C. (2020). Assessing the vulnerability of agriculture systems to climate change in coastal areas: A novel index. Sustainability, 12(11), 4771. https://doi.org/10.3390/su12114771

    Article  Google Scholar 

  • Kendall, M. (1975). Rank correlation techniques. Charles Griffen.

    Google Scholar 

  • Kulkarni, A., & Patwardhan, S. (2016). Contemporary climate change models and projections for Madhya Pradesh. Climate change in Madhya Pradesh: A compendium of expert views-II, Madhya Pradesh State knowledge management centre on climate change, 7–14.

  • Kumar, A., Kumar, S., Rautela, K. S., Kumari, A., Shekhar, S., & Thangavel, M. (2023a). Exploring temperature dynamics in Madhya Pradesh: A spatial-temporal analysis. Environmental Monitoring and Assessment, 195(11), 1313. https://doi.org/10.1007/s10661-023-11884-5

    Article  Google Scholar 

  • Kumar, A., Kumar, S., Rautela, K. S., Shekhar, S., Ray, T., & Thangavel, M. (2023b). Assessing seasonal variation and trends in rainfall patterns of Madhya Pradesh, Central India. Journal of Water and Climate Change. https://doi.org/10.2166/wcc.2023.280

  • Kumar, N., Patel, P., Singh, S., & Goyal, M. K. (2023c). Understanding non-stationarity of hydroclimatic extremesand resilience in Peninsular catchments India. Scientific Reports, 13(1), 12524. https://doi.org/10.1038/s41598-023-38771-w

  • Kumar, A., & Mohanasundari, T. (2024). Assessing district-level climate vulnerability in Madhya Pradesh, Central India: An integrated environmental and socio-economic approach. Theoretical and Applied Climatology. https://doi.org/10.1007/s00704-023-04814-5

  • Kumar, N., & Khurana, S. P. (2023). Potential push of climate change on crop production, crop adaptation, and possible strategies to mitigate this. In Global climate change and plant stress management (pp. 35–51). Wiley. https://doi.org/10.1002/9781119858553.ch6

  • Kuniyal, J. C., Kanwar, N., Bhoj, A. S., Rautela, K. S., Joshi, P., Kumar, K., Sofi, M. S., Bhat, S. U., Rashid, I., Lodhi, M. S., Devi, Ch. A., & Singh, H. B. (2021). Climate change impacts on glacier-fed and non-glacier-fed ecosystems of the Indian Himalayan Region: People’s perception and adaptive strategies. Current Science, 120(5), 888–899.

    Article  Google Scholar 

  • Ma, R., Boubrahimi, S. F., Angryk, R. A., & Ma, Z. (2020). Evaluation of hierarchical structures for time series data. 2020 5th IEEE International Conference on Big Data Analytics (ICBDA), 94–99. https://doi.org/10.1109/ICBDA49040.2020.9101255

  • Maiti, S., Jha, S. K., Garai, S., Nag, A., Bera, A. K., Paul, V., Upadhaya, R. C., & Deb, S. M. (2017). An assessment of social vulnerability to climate change among the districts of Arunachal Pradesh, India. Ecological Indicators, 77, 105–113. https://doi.org/10.1016/j.ecolind.2017.02.006

    Article  Google Scholar 

  • Mann, H. B. (1945). Nonparametric tests against trend. Econometrica, 13(3), 245. https://doi.org/10.2307/1907187

    Article  Google Scholar 

  • Mishra, A. K., & Singh, V. P. (2010). A review of drought concepts. Journal of Hydrology, 391(1–2), 202–216. https://doi.org/10.1016/j.jhydrol.2010.07.012

    Article  Google Scholar 

  • Mishra, V., Shah, R., & Garg, A. (2016). Climate change in Madhya Pradesh: indicators, impacts and adaptation. Ahamdabad, India: Indian Institute of Management.

  • Mohanty, A., & Wadhawan, S. (2021). Mapping India's climate vulnerability: A district level assessment. Council on Enenrgy, Environment and Water.

  • MPSKMCCC (2018). Climate change vulnerability assessment for Madhya Pradesh. Madhya Pradesh State Knowledge Management Centre on Climate Change.

  • Nguyen, T. T., Krishnakumari, P., Calvert, S. C., Vu, H. L., & van Lint, H. (2019). Feature extraction and clustering analysis of highway congestion. Transportation Research Part c: Emerging Technologies, 100, 238–258. https://doi.org/10.1016/j.trc.2019.01.017

    Article  Google Scholar 

  • Palanisami, K., Mohanasundari, T., & Kakumanu, K. R. (2017). Policy support: Challenges and opportunities in abiotically stressed agroecosystem. In Abiotic stress management for resilient agriculture (pp. 475–491). Springer Singapore. https://doi.org/10.1007/978-981-10-5744-1_23

  • Palinkas, L. A. (2020). Policy responses to climigration. In Global climate change, population displacement, and public health (pp. 149–169). Springer International Publishing. https://doi.org/10.1007/978-3-030-41890-8_8

  • Patri, P., Sharma, P., & Patra, S. K. (2022). Does economic development reduce disaster damage risk from floods in India? Empirical evidence using the ZINB model. International Journal of Disaster Risk Reduction, 79, 103163. https://doi.org/10.1016/j.ijdrr.2022.103163

    Article  Google Scholar 

  • Phuong, T. T., Tan, N. Q., Dinh, N. C., Van Chuong, H., Ha, H. D., & Hung, H. T. (2023). Livelihood vulnerability to climate change: Indexes and insights from two ethnic minority communities in Central Vietnam. Environmental Challenges, 10, 100666. https://doi.org/10.1016/j.envc.2022.100666

    Article  Google Scholar 

  • Pradhan, K. C., & Narayanan, K. (2022). Does climatic risk induce labour migration? Evidence from Semi‐Arid Tropics region of India. Journal of Public Affairs, 22(1). https://doi.org/10.1002/pa.2323

  • Rai, J. (2019). Understanding poverty-environment relationship from sustainable development perspectives. Journal of Geography, Environment and Earth Science International, 1–19. https://doi.org/10.9734/jgeesi/2019/v19i130077

  • Raju, K. V., Deshpande, R. S., & Bedamatta, S. (2017). Vulnerability to climate change: A sub-regional analysis of socio-economic and agriculture sectors in Karnataka, India. Journal of Development Policy and Practice, 2(1), 24–55. https://doi.org/10.1177/2455133316676402

    Article  Google Scholar 

  • Rao, C. A. R., Raju, B. M. K., Rao, A. V. M. S., Rao, K. V, Rao, V. U. M., Ramachandran, K., Venkateswarlu, B., Sikka, A. K., Rao, M. S., Maheswari, M., & Rao, C. S. (2016). A district level assessment of vulnerability of Indian agriculture to climate change. Current Science, 1939–1946.

  • Rautela, K. S., Kumar, D., Gandhi, B. G. R., Kumar, A., & Dubey, A. K. (2023). Long-term hydrological simulation for the estimation of snowmelt contribution of Alaknanda River Basin, Uttarakhand using SWAT. Journal of Water Supply: Research and Technology-Aqua, 72(2), 139–159. https://doi.org/10.2166/aqua.2023.176

    Article  Google Scholar 

  • Rautela, K. S., Kuniyal, J. C., Alam, M. A., Bhoj, A. S., & Kanwar, N. (2022). Assessment of daily streamflow, sediment fluxes, and erosion rate of a pro-glacial stream basin, Central Himalaya, Uttarakhand. Water, Air, and Soil Pollution, 233(4). https://doi.org/10.1007/s11270-022-05567-z

  • Reddy, A. A., Babu, S., Kumar, P., & Kumar, S. N. (2023). Food supply and security. In Trajectory of 75 years of Indian Agriculture after independence (pp. 23–46). Springer Nature Singapore. https://doi.org/10.1007/978-981-19-7997-2_2

  • Rehman, S., Azhoni, A., & Chabbi, P. H. (2022). Livelihood vulnerability assessment and climate change perception analysis in Arunachal Pradesh, India. GeoJournal, 88(2), 1427–1447. https://doi.org/10.1007/s10708-022-10703-7

    Article  Google Scholar 

  • Saravanakumar, V., Lohano, H. D., & Balasubramanian, R. (2022). A district-level analysis for measuring the effects of climate change on production of rice: Evidence from Southern India. Theoretical and Applied Climatology, 150(3–4), 941–953. https://doi.org/10.1007/s00704-022-04198-y

    Article  Google Scholar 

  • Sarun, S., Ghermandi, A., Sheela, A. M., Justus, J., & Vineetha, P. (2018). Climate change vulnerability in a tropical region based on environmental and socio-economic factors. Environmental Monitoring and Assessment, 190(12). https://doi.org/10.1007/s10661-018-7095-3

  • Sen, P. K. (1968). Estimates of the regression coefficient based on Kendall’s Tau. Journal of the American Statistical Association, 63(324), 1379–1389. https://doi.org/10.1080/01621459.1968.10480934

    Article  Google Scholar 

  • Sendhil, R., Jha, A., Kumar, A., & Singh, S. (2018). Extent of vulnerability in wheat producing agro-ecologies of India: Tracking from indicators of cross-section and multi-dimension data. Ecological Indicators, 89, 771–780. https://doi.org/10.1016/j.ecolind.2018.02.053

    Article  Google Scholar 

  • Sengupta, A., & Thangavel, M. (2023). Analysis of the effects of climate change on cotton production in Maharashtra State of India using statistical model and GIS mapping. Caraka Tani: Journal of Sustainable Agriculture, 38(1), 152–162. https://doi.org/10.20961/carakatani.v38i1.64377

    Article  Google Scholar 

  • Sharma, A. (2023). Drought risk management in Madhya Pradesh, India: A policy perspective. International Journal of Emergency Management, 18(1), 23. https://doi.org/10.1504/IJEM.2023.129408

    Article  Google Scholar 

  • Sheela, A. M., Sarun, S., Justus, J., Vineetha, P., & Sheeja, R. V. (2015). Assessment of changes ofvector borne diseases with wetland characteristics using multivariate analysis. In Environmental geochemistry and health (pp. 391–410). Springer.

  • Shi, J., Zhu, Q., Li, J., Liu, J., & Cheng, D. (2021). Hierarchical clustering based on local cores and sharing concept. 2021 IEEE 45th Annual Computers, Software, and Applications Conference (COMPSAC), 284–289. https://doi.org/10.1109/COMPSAC51774.2021.00047

  • Singh, P., & Keshari, S. (2016). Development of Human Development Index at district level for EAG states. Statistics and Applications, 14(1 & 2), 43–61.

    Google Scholar 

  • Sinha, S. (2023). Climate change impacts in India: Potential of Nature Based Solutions (NBSs) for adaptation and mitigation (pp. 133–145). https://doi.org/10.1007/978-981-19-4715-5_8

  • Singh, S., & Goyal, M. K. (2023). Enhancing climate resilience in businesses: The role of artificial intelligence. Journal of Cleaner Production, 418, 138228. https://doi.org/10.1016/j.jclepro.2023.138228

  • Singh, S., Kumar, N., Goyal, M. K., & Jha, S. (2023). Relative influence of ENSO, IOD, and AMO over spatiotemporal variability of hydroclimatic extremes in Narmada basin, India. AQUA — Water Infrastructure, Ecosystems and Society, 72(4), 520–539. https://doi.org/10.2166/aqua.2023.219

  • Singh, S., Goyal, M. K., & Saikumar, E. (2024a). Assessing climate vulnerability of ramsar wetlands through CMIP6 Projections. Water Resources Management, 38(4), 1381–1395. https://doi.org/10.1007/s11269-023-03726-3

  • Singh, S., Yadav, A., & Kumar Goyal, M. (2024b). Univariate and bivariate spatiotemporal characteristics of heat waves and relative influence of large-scale climate oscillations over India. Journal of Hydrology, 628, 130596. https://doi.org/10.1016/j.jhydrol.2023.130596

  • Skendžić, S., Zovko, M., Živković, I. P., Lešić, V., & Lemić, D. (2021). The impact of climate change on agricultural insect pests. Insects, 12(5), 440. https://doi.org/10.3390/insects12050440

    Article  Google Scholar 

  • Venkateswarlu, B., & Rao, V. U. M. (2015). Agriculture in Madhya Pradesh: Impacts of climate change and adaptation strategies. Climate Change in Madhya Pradesh: A Compendium of Expert Views - II, 43–49.

  • Venus, T. E., Bilgram, S., Sauer, J., & Khatri-Chettri, A. (2022). Livelihood vulnerability and climate change: A comparative analysis of smallholders in the Indo-Gangetic plains. Environment, Development and Sustainability, 24(2), 1981–2009. https://doi.org/10.1007/s10668-021-01516-8

    Article  Google Scholar 

  • Yadava, R. N., & Sinha, B. (2020). Vulnerability assessment of forest fringe villages of Madhya Pradesh, India for planning adaptation strategies. Sustainability (Switzerland), 12(3). https://doi.org/10.3390/su12031253

  • Yenneti, K., Tripathi, S., Wei, Y. D., Chen, W., & Joshi, G. (2016). The truly disadvantaged? Assessing social vulnerability to climate change in urban India. Habitat International, 56, 124–135. https://doi.org/10.1016/j.habitatint.2016.05.001

    Article  Google Scholar 

  • Yue, S., & Wang, C. Y. (2002). Applicability of prewhitening to eliminate the influence of serial correlation on the Mann‐Kendall test. Water Resources Research, 38(6). https://doi.org/10.1029/2001WR000861

  • Yusuf, A. A., & Francisco, H. A. (2009). Climate change vulnerability mapping for Southeast Asia. Singapore: Economy and Environment Programme for Southeast Asia.

Download references

Author information

Authors and Affiliations

Authors

Contributions

Amit Kumar: Conceptualisation, Visualisation, data collection, data analysis, methodology, and original draft writing. Ashish Kumar: Data analysis, original draft writing and critical review of the manuscript Khushi Mann: Visualisation, data collection and manuscript revision. T. Mohanasundari: Supervision, Conceptualization, methodology, and final manuscript review. All the authors read and approved the manuscript.

Corresponding authors

Correspondence to Amit Kumar or T. Mohanasundari.

Ethics declarations

Declarations

All authors have read, have understood, and have complied as applicable with the statement on “Ethical responsibilities of Authors” as found in the Instructions for Authors.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Tables 3, 4, 5, and 6

Table 3 Agricultural vulnerability index (AVI)
Table 4 Socio-economic Vulnerability Index (SEVI)
Table 5 Composite Vulnerability Index (CVI)
Table 6 Classification of districts using HCA of agricultural and socio-economic factors

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Kumar, A., Mann, K. et al. Analysing district-level climate vulnerability pattern in Madhya Pradesh, India, based on agricultural and socio-economic indicators. Environ Monit Assess 196, 528 (2024). https://doi.org/10.1007/s10661-024-12646-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-024-12646-7

Keywords

Navigation