Skip to main content
Log in

Typology and classification of water quality in an intermittent river in a semi-arid Mediterranean climate

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The typology and classification of rivers are highly relevant concepts in the field of limnology and freshwater ecology. Water body typology systematically categorizes water bodies based on their natural attributes, while water body classification groups them based on specific criteria or purposes for management, regulatory, or administrative reasons. Both concepts play important roles in understanding and managing water resources effectively. This scientific article focuses on the ZAT River in Morocco as a model for studying low-flow and intermittent rivers. The objective is to develop an accurate model for the typology and classification of small, low-flow rivers into homogeneous classes based on natural and anthropogenic factors. The study also investigates the impact of human activities on altering the uniformity and reference nature of the water body. The typology of water bodies is carried out according to the European methodology specified in The European Commission’s Water Framework Directive (WFD) in 2000. The classification of water bodies is conducted by assessing their chemical and biological quality using the weighted index (WI), the Iberian Biological Monitoring Working Group (IBMWP) index, and multivariate statistical methods such as principal component analysis (PCA) for confirming water quality assessment. The results indicate the possibility of dividing the basin into four water bodies. Water bodies show homogeneity in terms of chemical quality when human influence is minimal or during periods of high river flow. However, increased human influence and decreased river flows lead to heterogeneity in chemical quality, indicating an unstable state. This study is the first of its kind in arid and semi-arid intermittent rivers, where such an approach could be suggested to determine their typology and classification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data could be shared upon request.

References

  • Abessolo, J.-R.Z., Khebiza, M. Y., & Messouli, M. (2021). Réponse des macroinvertébrés benthiques (éphéméroptères, plécoptères, trichoptères) aux pressions anthropiques dans un contexte de changement climatique sur le bassin versant de l’Ourika (Haut-Atlas du Maroc). Hydroécologie Appliquée, 21, 115–155. https://doi.org/10.1051/hydro/2021001

    Article  Google Scholar 

  • Alvarez Troncoso, R., Gutiérrez, D., Villar, I., Ehlers, S. E., Soto, B., Mato, S., & Garrido, J. (2022). Microplastics in Water, Sediments and Macroinvertebrates in a Small River of Nw Spain. Social Science Research Network, 21, 4079147. https://doi.org/10.2139/ssrn.4079147

  • Arias-Real, R., Gutiérrez-Cánovas, C., Menéndez, M., & Muñoz, I. (2022). Drying niches of aquatic macroinvertebrates identify potential biomonitoring indicators in intermittent and ephemeral streams. Ecological Indicators, 142, 109263. https://doi.org/10.1016/j.ecolind.2022.109263

    Article  Google Scholar 

  • Bellos, D., & Sawidis, T. (2005). Chemical pollution monitoring of the River Pinios (Thessalia—Greece). Journal of Environmental Management, 76, 282–292. https://doi.org/10.1016/j.jenvman.2005.01.027

    Article  CAS  Google Scholar 

  • Benaddi, R., Ferkan, Y., Bouriqi, A., & Ouazzani, N. (2022a). Impact of landfill leachate on groundwater quality – A comparison between three different landfills in Morocco. Journal of Ecological Engineering, 23, 89–94. https://doi.org/10.12911/22998993/153006

  • Benaddi, R., Bouriqi, A., & Ouazzani, N. (2022b). The environmental problem of olive mill waste water in Morocco: Data analysis and characterization. International Journal of Current Science Research and Review, 5, 1805–1809. https://doi.org/10.47191/ijcsrr/V5-i5-51

  • Ben-Daoud, M., Mouhaddach, O., Essahlaoui, A., Layachi, A., Kestemont, M.-P., & El Jaafari, S. (2011). Conception d’un SIG pour l’évaluation de l’impact des activités anthropiques sur la qualité des eaux superficielles de la ville de Meknès (Maroc). Cahiers De l’ASEES, 16, 17–25. https://doi.org/10.1051/asees/2011205

    Article  CAS  Google Scholar 

  • Benkirane, M., Laftouhi, N.-E., Mansouri, B. E., Salik, I., Snineh, M., Ghazali, F. E. E., Kamal, S., & Zamrane, Z. (2020). An approach for flood assessment by numerical modeling of extreme hydrological events in the Zat watershed (High Atlas, Morocco). Urban Water Journal, 17, 381–389. https://doi.org/10.1080/1573062X.2020.1734946

    Article  Google Scholar 

  • Benkirane, M., Laftouhi, N.-E., Khabba, S., & de la Hera-Portillo, Á. (2022). Hydro statistical assessment of TRMM and GPM precipitation products against ground precipitation over a Mediterranean mountainous watershed (in the Moroccan High Atlas). Applied Sciences, 12, 8309. https://doi.org/10.3390/app12168309

    Article  CAS  Google Scholar 

  • Bouaida, J., Witam, O., Ibnoussina, M., Delmaki, A. E. F., & Benkirane, M. (2021). Contribution of remote sensing and GIS to analysis of the risk of flooding in the Zat basin (High Atlas-Morocco). Natural Hazards. https://doi.org/10.1007/s11069-021-04758-x

    Article  Google Scholar 

  • Boudhar, A., Duchemin, B., Hanich, L., Jarlan, L., Chaponnière, A., Maisongrande, P., Boulet, G., Chehbouni, A., (2010). Long-term analysis of snow-covered area in the Moroccan High-Atlas through remote sensing. International Journal of Applied Earth Observation and Geoinformation, Supplement Issue on “Remote Sensing for Africa – A Special Collection from the African Association for Remote Sensing of the Environment (AARSE)” 12, S109–S115. https://doi.org/10.1016/j.jag.2009.09.008

  • Bouimouass, H., Fakir, Y., Tweed, S., & Leblanc, M. (2020). Groundwater recharge sources in semiarid irrigated mountain fronts. Hydrological Processes, 34, 1598–1615. https://doi.org/10.1002/hyp.13685

    Article  Google Scholar 

  • Brierley, G.J., 2020. The socio-ecological river: Socio-economic, cultural and environmental relations to river systems, in: Brierley, G.J. (Ed.), Finding the voice of the river: Beyond restoration and management. Springer International Publishing, Cham. 29–60. https://doi.org/10.1007/978-3-030-27068-1_2

  • Camargo, J. A., Alonso, A., & De La Puente, M. (2004). Multimetric assessment of nutrient enrichment in impounded rivers based on benthic macroinvertebrates. Environmental Monitoring and Assessment, 96, 233–249. https://doi.org/10.1023/B:EMAS.0000031730.78630.75

    Article  CAS  Google Scholar 

  • Chehbouni, A., Escadafal, R., Duchemin, B., Boulet, G., Simonneaux, V., Dedieu, G., Mougenot, B., Khabba, S., Kharrou, H., Maisongrande, P., Merlin, O., Chaponnière, A., Ezzahar, J., Er-Raki, S., Hoedjes, J., Hadria, R., Abourida, A., Cheggour, A., Raibi, F., … Sobrino, J. A. (2008). An integrated modelling and remote sensing approach for hydrological study in arid and semi-arid regions: The SUDMED Programme. International Journal of Remote Sensing, 29, 5161–5181. https://doi.org/10.1080/01431160802036417

    Article  Google Scholar 

  • Cid, N., Bonada, N., Carlson, S. M., Grantham, T. E., Gasith, A., & Resh, V. H. (2017). High variability is a defining component of Mediterranean-climate rivers and their biota. Water, 9, 52. https://doi.org/10.3390/w9010052

    Article  Google Scholar 

  • Cox, B. A. (2003). A review of dissolved oxygen modelling techniques for lowland rivers. Science of the Total Environment, Land Ocean Interaction: Processes, Functioning and Environmental Management: A UK Perspective, 314–316, 303–334. https://doi.org/10.1016/S0048-9697(03)00062-7

    Article  CAS  Google Scholar 

  • Cui, D., Liang, S., & Wang, D. (2021). Observed and projected changes in global climate zones based on Köppen climate classification. Wires Climate Change, 12, e701. https://doi.org/10.1002/wcc.701

    Article  Google Scholar 

  • Czerniawska-Kusza, I. (2005). Comparing modified biological monitoring working party score system and several biological indices based on macroinvertebrates for water-quality assessment. Limnologica, 11th Magdeburg Seminar, October 2004 on Waters in Central and Eastern Europe: Assessment. Protection, Management, 35, 169–176. https://doi.org/10.1016/j.limno.2005.05.003

    Article  Google Scholar 

  • Daniel, M. H. B., Montebelo, A. A., Bernardes, M. C., Ometto, J. P. H. B., de Camargo, P. B., Krusche, A. V., Ballester, M. V., Victoria, R. L., & Martinelli, L. A. (2002). Effects of urban sewage on dissolved oxygen, dissolved inorganic and organic carbon, and electrical conductivity of small streams along a gradient of urbanization in the Piracicaba River Basin. Water, Air, & Soil Pollution, 136, 189–206. https://doi.org/10.1023/A:1015287708170

    Article  CAS  Google Scholar 

  • Dodkins, I., Rippey, B., Harrington, T. J., Bradley, C., Ni Chathain, B., Kelly-Quinn, M., McGarrigle, M., Hodge, S., & Trigg, D. (2005). Developing an optimal river typology for biological elements within the Water Framework Directive. Water Research, 39, 3479–3486. https://doi.org/10.1016/j.watres.2005.06.008

    Article  CAS  Google Scholar 

  • Durski, S. M., Barth, J. A., McWilliams, J. C., Frenzel, H., & Deutsch, C. (2017). The influence of variable slope-water characteristics on dissolved oxygen levels in the northern California Current System. Journal of Geophysical Research: Oceans, 122, 7674–7697. https://doi.org/10.1002/2017JC013089

    Article  CAS  Google Scholar 

  • El Hmaidi, A., Talhaoui, A., Manssouri, I., Jaddi, H., & Ousmana, H. (2020). Contribution of the pollution index and GIS in the assessment of the physico-chemical quality of the surface waters of Moulouya River (NE, Morocco). La Houille Blanche, 45–54, 2020028. https://doi.org/10.1051/lhb/2020028

  • Er-Raki, S., Chehbouni, A., Khabba, S., Simonneaux, V., Jarlan, L., Ouldbba, A., Rodriguez, J. C., & Allen, R. (2010). Assessment of reference evapotranspiration methods in semi-arid regions: Can weather forecast data be used as alternate of ground meteorological parameters? Journal of Arid Environments, 74, 1587–1596. https://doi.org/10.1016/j.jaridenv.2010.07.002

    Article  Google Scholar 

  • Errochdi, S., El Alami, M., Bennas, N., Belqat, B., Ater, M., & Fdil, F. (2012). Étude de la qualité physicochimique et microbiologique de deux réseaux hydrographiques nord marocains : Laou et Tahaddart. Méditerranée. Journal of Mediterranean Geography, 118, 41–51. https://doi.org/10.4000/mediterranee.6221

  • Ferreira, J. G., Nobre, A. M., Simas, T. C., Silva, M. C., Newton, A., Bricker, S. B., Wolff, W. J., Stacey, P. E., & Sequeira, A. (2006). A methodology for defining homogeneous water bodies in estuaries – Application to the transitional systems of the EU Water Framework Directive. Estuarine, Coastal and Shelf Science, 66, 468–482. https://doi.org/10.1016/j.ecss.2005.09.016

    Article  Google Scholar 

  • Floury, M., Usseglio-Polatera, P., Ferreol, M., Delattre, C., & Souchon, Y. (2013). Global climate change in large European rivers: Long-term effects on macroinvertebrate communities and potential local confounding factors. Global Change Biology, 19, 1085–1099. https://doi.org/10.1111/gcb.12124

    Article  Google Scholar 

  • Guellaf, A., & Kettani, K. (2021). Assessing the ecological status using physico-chemical, bacteriological parameters and biotic indices of the Oued Martil River basin in northwestern Morocco. Biologia, 76, 585–598. https://doi.org/10.2478/s11756-020-00560-5

    Article  CAS  Google Scholar 

  • Gurnell, A. M., Rinaldi, M., Belletti, B., Bizzi, S., Blamauer, B., Braca, G., Buijse, A. D., Bussettini, M., Camenen, B., Comiti, F., Demarchi, L., García de Jalón, D., González del Tánago, M., Grabowski, R. C., Gunn, I. D. M., Habersack, H., Hendriks, D., Henshaw, A. J., Klösch, M., … Ziliani, L. (2016). A multi-scale hierarchical framework for developing understanding of river behaviour to support river management. Aquatic Sciences, 78, 1–16. https://doi.org/10.1007/s00027-015-0424-5

    Article  Google Scholar 

  • Heasley, E. L., Millington, J. D. A., Clifford, N. J., & Chadwick, M. A. (2019). A waterbody typology derived from catchment controls using self-organising maps. Water, 12, 78. https://doi.org/10.3390/w12010078

    Article  Google Scholar 

  • Julien, F. (2006). Maîtrise de l’eau et développement durable en Afrique de l’ouest : de la nécessité d’une coopération régionale autour des systèmes hydrologiques transfrontaliers. Vertigo, 7, 2402. https://doi.org/10.4000/vertigo.2402

  • Kagalou, I., & Leonardos, I. (2009). Typology, classification and management issues of Greek lakes: Implication of the Water Framework Directive (2000/60/EC). Environmental Monitoring and Assessment, 150, 469–484. https://doi.org/10.1007/s10661-008-0245-2

    Article  CAS  Google Scholar 

  • Koumba, M., Kevin Mipounga, H., Armel Koumba, A., Zinga Koumba, C. R., Rollinat Mboye, B., Félicien Liwouwou, J., Daniel Mbega, J., & François Mavoungou, J. (2017). Diversité familiale des macroinvertébrés et qualité des cours d’eau du Parc National de Moukalaba Doudou (sud-ouest du Gabon). Entomologie Faunistique -Faunistic Entomology, 70, 3719. https://doi.org/10.25518/2030-6318.3719

  • Kumar, B., Singh, U. K., & Ojha, S. N. (2019). Evaluation of geochemical data of Yamuna River using WQI and multivariate statistical analyses: A case study. International Journal of River Basin Management, 17, 143–155. https://doi.org/10.1080/15715124.2018.1437743

    Article  Google Scholar 

  • Lakhloufi, M. Y., Lamchouri, F., El Haissoufi, M., Boulfia, M., Zalaghi, A., & Toufik, H. (2021). Evaluation of anthropic activities impact through the monitoring of aquatic fauna on Oued Lârbaa in Taza City of Morocco. Environmental Monitoring and Assessment, 193, 153. https://doi.org/10.1007/s10661-021-08938-x

    Article  Google Scholar 

  • Lyche Solheim, A., Globevnik, L., Austnes, K., Kristensen, P., Moe, S. J., Persson, J., Phillips, G., Poikane, S., van de Bund, W., & Birk, S. (2019). A new broad typology for rivers and lakes in Europe: Development and application for large-scale environmental assessments. Science of The Total Environment, 697, 134043. https://doi.org/10.1016/j.scitotenv.2019.134043

  • Masese, F., Muchiri, M., & Raburu, P. (2009). Macroinvertebrate assemblages as biological indicators of water quality in the Moiben River, Kenya. African Journal of Aquatic Science, 34, 15–26. https://doi.org/10.2989/AJAS.2009.34.1.2.727

    Article  CAS  Google Scholar 

  • Mourhir, A., Rachidi, T., & Karim, M. (2014). River water quality index for Morocco using a fuzzy inference system. Environmental Systems Research, 3, 21. https://doi.org/10.1186/s40068-014-0021-y

  • Munné, A., & Prat, N. (2004). Defining river types in a Mediterranean area: A methodology for the implementation of the EU Water Framework Directive. Environmental Management, 34, 711–729. https://doi.org/10.1007/s00267-003-0098-y

    Article  Google Scholar 

  • Mustapha, M. K. (2008). Assessment of the water quality of Oyun Reservoir, Offa, Nigeria, using selected physico-chemical parameters. TrJFAS, 8, 309–319.

    Google Scholar 

  • Nahli, A., Oubraim, S., & Chlaida, M. (2022). Application of the biotic indices for water quality and resilience assessment of a disturbed stream (Casablanca, Morocco). Biologia, 77, 2887–2904. https://doi.org/10.1007/s11756-022-01193-6

  • Olsen, R. L., Chappell, R. W., & Loftis, J. C. (2012). Water quality sample collection, data treatment and results presentation for principal components analysis – Literature review and Illinois River watershed case study. Water Research, 46, 3110–3122. https://doi.org/10.1016/j.watres.2012.03.028

    Article  CAS  Google Scholar 

  • Pavlidou, A., Anastasopoulou, E., Dassenakis, Μ, Hatzianestis, I., Paraskevopoulou, V., Simboura, N., Rousselaki, E., & Drakopoulou, P. (2014). Effects of olive oil wastes on river basins and an oligotrophic coastal marine ecosystem: A case study in Greece. Science of the Total Environment, 497–498, 38–49. https://doi.org/10.1016/j.scitotenv.2014.07.088

    Article  CAS  Google Scholar 

  • Perez, N., Teixell, A., Gómez-Gras, D., & Stockli, D. (2019). Reconstructing extensional basin architecture and provenance in the Marrakech high atlas of Morocco: Implications for rift basins and inversion. Tectonics, 38, 1507–1839. https://doi.org/10.1029/2018TC005413

  • Prathumratana, L., Sthiannopkao, S., & Kim, K. W. (2008). The relationship of climatic and hydrological parameters to surface water quality in the lower Mekong River. Environment International, 34, 860–866. https://doi.org/10.1016/j.envint.2007.10.011

    Article  CAS  Google Scholar 

  • Qalmoun, A., Bouzrarf, K., & Belqat, B. (2022). Assessment of the ecological status of the Oum Er-rabie River basin (Central Morocco) through physicochemical, bacteriological parameters and biotic indices. Biologia, 77, 2533–2547. https://doi.org/10.1007/s11756-022-01128-1

  • Rajwa-Kuligiewicz, A., Bialik, R., & Rowiński, P. (2015). Dissolved oxygen and water temperature dynamics in lowland rivers over various timescales. Journal of Hydrology and Hydromechanics, 63, 353–363. https://doi.org/10.1515/johh-2015-0041

    Article  Google Scholar 

  • Rego, F., & Rocha, M. S. (2014). Climatic patterns in the Mediterranean region. Ecologia Mediterranea, 40, 49–59. https://doi.org/10.3406/ecmed.2014.1269

    Article  Google Scholar 

  • Ren, L., Song, C., Wu, W., Guo, M., & Zhou, X. (2020). Reservoir effects on the variations of the water temperature in the upper Yellow River, China, using principal component analysis. Journal of Environmental Management, 262, 110339. https://doi.org/10.1016/j.jenvman.2020.110339

    Article  Google Scholar 

  • Reyjol, Y., Argillier, C., Bonne, W., Borja, A., Buijse, A. D., Cardoso, A. C., Daufresne, M., Kernan, M., Ferreira, M. T., Poikane, S., Prat, N., Solheim, A.-L., Stroffek, S., Usseglio-Polatera, P., Villeneuve, B., & van de Bund, W. (2014). Assessing the ecological status in the context of the European Water Framework Directive: Where do we go now? Science of the Total Environment, 497–498, 332–344. https://doi.org/10.1016/j.scitotenv.2014.07.119

    Article  CAS  Google Scholar 

  • Saal, I., Bouchelouche, D., Hamache, C., & Arab, A. (2021). Evaluation of the surface water quality in the Kebir-Rhumel catchment area (northeast Algeria) using biotic indices and physico-chemical analyses. Environmental Science and Pollution Research, 28, 46565–46579. https://doi.org/10.1007/s11356-020-10598-2

    Article  CAS  Google Scholar 

  • Schofield, C. L. (1977). Acid snow-melt effects on water quality and fish survival in the Adirondack Mountains of New York State. Cornell University, No. PB-27780. https://www.osti.gov/biblio/5268014

  • Schourup-Kristensen, V., Maar, M., Larsen, J., Mohn, C., Murawski, J., She, J., & Jakobsen, H. H. (2021). Methodology for defining homogeneous water bodies for management purposes. Marine Pollution Bulletin, 173, 113004. https://doi.org/10.1016/j.marpolbul.2021.113004

    Article  CAS  Google Scholar 

  • Sehlaoui, H., Hassikou, R., Moussadek, R., Zouahri, A., Douaik, A., Iiach, H., Ghanimi, A., & Dakak, H. (2020). Evaluation of water quality for agricultural suitability in the Benslimane region. Morocco. Environ Monit Assess, 192, 587. https://doi.org/10.1007/s10661-020-08530-9

    Article  CAS  Google Scholar 

  • Sidabutar, N. V., Namara, I., Hartono, D. M., & Soesilo, T. E. B. (2017). The effect of anthropogenic activities to the decrease of water quality. IOP Conference Series: Earth and Environmental Science, 67, 012034. https://doi.org/10.1088/1755-1315/67/1/012034

    Article  Google Scholar 

  • Simyrdanis, K., Papadopoulos, N., Soupios, P., Kirkou, S., & Tsourlos, P. (2018). Characterization and monitoring of subsurface contamination from Olive Oil Mills’ waste waters using electrical resistivity tomography. Science of the Total Environment, 637–638, 991–1003. https://doi.org/10.1016/j.scitotenv.2018.04.348

    Article  CAS  Google Scholar 

  • Skoulikidis, N. T., Sabater, S., Datry, T., Morais, M. M., Buffagni, A., Dörflinger, G., Zogaris, S., del Mar Sánchez-Montoya, M., Bonada, N., Kalogianni, E., Rosado, J., Vardakas, L., De Girolamo, A. M., & Tockner, K. (2017). Non-perennial Mediterranean rivers in Europe: Status, pressures, and challenges for research and management. Science of the Total Environment, 577, 1–18. https://doi.org/10.1016/j.scitotenv.2016.10.147

    Article  CAS  Google Scholar 

  • Smeti, E., Kalogianni, E., Karaouzas, I., Laschou, S., Tornés, E., De Castro-Català, N., Anastasopoulou, E., Koutsodimou, M., Andriopoulou, A., Vardakas, L., Muñoz, I., Sabater, S., & Skoulikidis, NTh. (2019). Effects of olive mill wastewater discharge on benthic biota in Mediterranean streams. Environmental Pollution, 254, 113057. https://doi.org/10.1016/j.envpol.2019.113057

    Article  CAS  Google Scholar 

  • Talhaoui, A., El Hmaidi, A., Jaddi, H., Ousmana, H., & Manssouri, I. (2020). Calcul De L’indice De Qualité De L’eau (IQE) Pour L’évaluation De La Qualité Physico-Chimique Des Eaux Superficielles De L’Oued Moulouya (NE, Maroc). European Scientific Journal, 16, 64. https://doi.org/10.19044/esj.2020.v16n2p64

  • Thorp, J. H., Thoms, M. C., & Delong, M. D. (2006). The riverine ecosystem synthesis: Biocomplexity in river networks across space and time. River Research and Applications, 22, 123–147. https://doi.org/10.1002/rra.901

    Article  Google Scholar 

  • Tripathi, M., & Singal, S. K. (2019). Use of principal component analysis for parameter selection for development of a novel water quality index: A case study of river Ganga India. Ecological Indicators, 96, 430–436. https://doi.org/10.1016/j.ecolind.2018.09.025

    Article  CAS  Google Scholar 

  • Unda-Calvo, J., Ruiz-Romera, E., Martínez-Santos, M., Vidal, M., & Antigüedad, I. (2020). Multivariate statistical analyses for water and sediment quality index development: A study of susceptibility in an urban river. Science of the Total Environment, 711, 135026. https://doi.org/10.1016/j.scitotenv.2019.135026

    Article  CAS  Google Scholar 

  • Ustaoğlu, F., & Tepe, Y. (2019). Water quality and sediment contamination assessment of Pazarsuyu Stream, Turkey using multivariate statistical methods and pollution indicators. International Soil and Water Conservation Research, 7, 47–56. https://doi.org/10.1016/j.iswcr.2018.09.001

    Article  Google Scholar 

  • Vatanpour, N., Malvandi, A. M., Hedayati Talouki, H., Gattinoni, P., & Scesi, L. (2020). Impact of rapid urbanization on the surface water’s quality: A long-term environmental and physicochemical investigation of Tajan river, Iran (2007–2017). Environmental Science and Pollution Research, 27, 8439–8450. https://doi.org/10.1007/s11356-019-07477-w

    Article  CAS  Google Scholar 

  • Voudouris, K. (2012). Ecological water quality: Water treatment and reuse. Intechopen, 7, 510. https://doi.org/10.5772/1070

  • Wetzel, R. G. (2000). Freshwater ecology: Changes, requirements, and future demands. Limnology, 1, 3–9. https://doi.org/10.1007/s102010070023

    Article  Google Scholar 

  • Young, R. G., Quarterman, A. J., Eyles, R. F., Smith, R. A., & Bowden, W. B. (2005). Water quality and thermal regime of the Motueka River: Influences of land cover, geology and position in the catchment. New Zealand Journal of Marine and Freshwater Research, 39, 803–825. https://doi.org/10.1080/00288330.2005.9517354

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the Tensift Hydraulic Basin Agency (THBA) for providing the data used in this work, and we also appreciate the Erasmus Project for providing the funding necessary to complete this study.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Methodology, Validation, Formal analysis, writing original draft: Abdelillah Bouriqi; Investigation, Visualization: Hassan Benaissa and Rabia Benaddi; Conceptualization, Resources, Supervision, and Writing—Review & Editing: Jean-François Deliège; Conceptualization, Resources, Supervision, and Writing—Review & Editing: Naaila Ouazzani. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Naaila Ouazzani.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 93.0 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouriqi, A., Ouazzani, N., Benaissa, H. et al. Typology and classification of water quality in an intermittent river in a semi-arid Mediterranean climate. Environ Monit Assess 196, 381 (2024). https://doi.org/10.1007/s10661-024-12514-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-024-12514-4

Keywords

Navigation