Skip to main content
Log in

A decade-long journey shed light on chemical composition and field determination of acid mine drainage in Brazil

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Regular monitoring of Acid Mine Drainage (AMD) is essential for understanding its extent and impact on water resources. Traditional manual sampling methods have limitations, such as limited representativeness and delayed lab analysis. High-frequency monitoring offers an alternative, enabling real-time analysis of AMD fluctuations and determination of constituents in the field. This study assessed a decade-long environmental monitoring database from watersheds impacted by coal mining in Brazil to analyze the relationships between physical properties and constituents from different water sources affected by AMD. Samples were grouped into four categories based on location and contamination levels. Results revealed that water samples from the two groups not affected by AMD exhibited near-neutral pH, low metal and sulfate concentrations, and a large portion of samples below the quantification limit for Mn and Al. In contrast, samples from groups affected by AMD displayed high metal and sulfate concentrations and acidic pH, with the highest contamination observed in the underground mine discharges group (AMD UMD). Spearman correlation analyzes between field (pH and electrical conductivity (EC)) and lab (SO42−, Fe, Mn, and Al) parameters showed no significant correlations in non-AMD-affected groups, but significant correlations in AMD-affected groups, particularly the Streams group. A regression model between sulfate and EC was identified as the best predictor for AMD, enabling continuous, low-cost monitoring of contaminated streams and providing insight into previously unobserved AMD processes, such as variations in contamination during storm events and river flushing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets analyzed during the current study can be found on the Geological Survey of Brazil's web mapping site: https://geoportal.cprm.gov.br/portal/apps/webappviewer/index.html?id=505d786a1b7b4121a1af70aa7a263146

Code availability

Not applicable.

References

  • Acharya, B. S., & Kharel, G. (2020). Acid mine drainage from coal mining in the United States – An overview. Journal of Hydrology, 588, 125061. https://doi.org/10.1016/j.jhydrol.2020.125061

    Article  CAS  Google Scholar 

  • Akcil, A., & Koldas, S. (2006). Acid Mine Drainage (AMD): causes, treatment and case studies. Journal of Cleaner Production, 14(12–13 SPEC. ISS.), 1139–1145. https://doi.org/10.1016/j.jclepro.2004.09.006

  • Akhtar, N., Syakir Ishak, M. I., Bhawani, S. A., & Umar, K. (2021). Various natural and anthropogenic factors responsible for water quality degradation: A review. Water, 13(19). https://doi.org/10.3390/w13192660

  • Aquaread. (2017). Instruction Manual: Aquaprobe AP-700, AP-800 & AP-2000.

  • Blowes, D. W., Ptacek, C. J., Jambor, J. L., & Weisener, C. G. (2003). The Geochemistry of Acid Mine Drainage. Treatise on Geochemistry, 9–9, 149–204. https://doi.org/10.1016/B0-08-043751-6/09137-4

    Article  ADS  Google Scholar 

  • Campaner, V. P., Luiz-Silva, W., & Machado, W. (2014). Geochemistry of acid mine drainage from a coal mining area and processes controlling metal attenuation in stream waters, southern Brazil. Anais Da Academia Brasileira De Ciencias, 86(2), 539–554. https://doi.org/10.1590/0001-37652014113712

    Article  CAS  PubMed  Google Scholar 

  • Cardoso, A. T., & Fan, F. M. (2021). A first evaluation of water resource conditions after an environmental reclamation effort at a former degraded coal mining area in Southern Brazil. Environmental Monitoring and Assessment, 193(10). https://doi.org/10.1007/s10661-021-09393-4

  • Cardoso, A. T., Fan, F. M., Franzen, M., Simão, G., & Troian, G. C. (2022). Surface water resources of Santa Catarina state’s southern region – geochemical background of the coal mining territory. Revista Brasileira de Recursos Hidricos, 27. https://doi.org/10.1590/2318-0331.272220220084

  • Chaves, L. C. G., Lopes, F. B., Maia, A. R. S., Meireles, A. C. M., & De Andrade, E. M. (2019). Water quality and anthropogenic impact in the watersheds of service reservoirs in the Brazilian semi-arid region1. Revista Ciencia Agronomica, 50(2), 223–233. https://doi.org/10.5935/1806-6690.20190026

    Article  Google Scholar 

  • Cravotta, C. A., Brady, K. B. C., Rose, A. W., & Douds, J. B. (1999). Frequency Distribution of the pH of Coal-Mine Drainage in Pennsylvania. U.S. Geological Survey Water-Resources Investigative Report. 99–4018A, (September 2016), 313–324.

  • do Amaral Filho, J. R., Weiler, J., Broadhurst, J. L., & Schneider, I. A. H. (2017). The Use of Static and Humidity Cell Tests to Assess the Effectiveness of Coal Waste Desulfurization on Acid Rock Drainage Risk. Mine Water and the Environment, 36(3), 429–435. https://doi.org/10.1007/s10230-017-0435-7

  • Doulati Ardejani, F., Jodieri Shokri, B., Moradzadeh, A., Shafaei, S. Z., & Kakaei, R. (2011). Geochemical characterisation of pyrite oxidation and environmental problems related to release and transport of metals from a coal washing low-grade waste dump, Shahrood, northeast Iran. Environmental Monitoring and Assessment, 183(1–4), 41–55. https://doi.org/10.1007/s10661-011-1904-2

    Article  CAS  PubMed  Google Scholar 

  • Eaton, A. D., Clesceri, L. S., Greenberg, A. E., Franson, M. A. H., American Public Health Association., American Water Works Association., & Water Environment Federation. (1998). Standard methods for the examination of water and wastewater. American Public Health Association. Accessed 1 May 2017

  • Fan, R., Qian, G., Li, Y., Short, M. D., Schumann, R. C., Chen, M., Smart, R. S. C., & Gerson, A. R. (2022). Evolution of pyrite oxidation from a 10-year kinetic leach study: Implications for secondary mineralisation in acid mine drainage control. Chemical Geology, 588, 120653. https://doi.org/10.1016/J.CHEMGEO.2021.120653

    Article  CAS  Google Scholar 

  • Fytas, K., & Hadjigeorgiou, J. (1995). An assessment of acid rock drainage continuous monitoring technology. Environmental Geology25. Springer-Verlag.

  • Galván, L., Olías, M., Cánovas, C. R., Torres, E., Ayora, C., Nieto, J. M., & Sarmiento, A. M. (2012). Refining the estimation of metal loads dissolved in acid mine drainage by continuous monitoring of specific conductivity and water level. Applied Geochemistry, 27(10), 1932–1943. https://doi.org/10.1016/j.apgeochem.2012.07.011

    Article  ADS  CAS  Google Scholar 

  • Glasser, G. J., & Winter, R. F. (1961). Critical Values of the Coefficient of Rank Correlation for Testing the Hypothesis of Independence. Biometrika, 48(3/4), 444. https://doi.org/10.2307/2332767

    Article  Google Scholar 

  • Gomes, C. J. B., Mendes, C. A. B., & Costa, J. F. C. L. (2011). The Environmental Impact of Coal Mining: A Case Study in Brazil’s Sangão Watershed. Mine Water and the Environment, 30(3), 159–168. https://doi.org/10.1007/s10230-011-0139-3

    Article  ADS  CAS  Google Scholar 

  • Gotardo, R., Piazza, G. A., Torres, E., Severo, D. L., & Kaufmann, V. (2018). Distribuição espacial e temporal das chuvas no estado de Santa Catarina. Geosul, 33(67), 253–276. https://doi.org/10.5007/2177-5230.2018v33n67p253

    Article  Google Scholar 

  • Gray, N. (1996). Field assessment of acid mine drainage contamination in surface and ground water. Environmental Geology, 27, 358–361. https://doi.org/10.1007/BF00766705

    Article  ADS  CAS  Google Scholar 

  • Kalkreuth, W., Holz, M., Kern, M., Machado, G., Mexias, A., Silva, M. B., et al. (2006). Petrology and chemistry of Permian coals from the Paraná Basin: 1. Santa Terezinha, Leão-Butiá and Candiota Coalfields, Rio Grande do Sul, Brazil. International Journal of Coal Geology, 68(1–2 SPEC. ISS.), 79–116. https://doi.org/10.1016/j.coal.2005.10.006

  • Keith, L. H., Crummett, W., Deegan, J., Libby, R. A., Wentler, G., & Taylor, J. K. (1983). Principles of Environmental Analysis. Analytical Chemistry, 55(14), 2210–2218. https://doi.org/10.1021/ac00264a003

    Article  CAS  Google Scholar 

  • Khatri, N., & Tyagi, S. (2015). Influences of natural and anthropogenic factors on surface and groundwater quality in rural and urban areas. Frontiers in Life Science, 8(1), 23–39. https://doi.org/10.1080/21553769.2014.933716

    Article  CAS  Google Scholar 

  • Kimball, B. A., Runkel, R. L., Walton-Day, K., & Bencala, K. E. (2002). Assessment of metal loads in watersheds affected by acid mine drainage by using tracer injection and synoptic sampling: Cement Creek, colorado, USA. Applied Geochemistry, 17(9), 1183–1207. https://doi.org/10.1016/S0883-2927(02)00017-3

    Article  ADS  CAS  Google Scholar 

  • Lattuada, R. M., Menezes, C. T. B., Pavei, P. T., Peralba, M. C. R., & dos Santos, J. H. Z. (2009). Determination of metals by total reflection X-ray fluorescence and evaluation of toxicity of a river impacted by coal mining in the south of Brazil. Journal of Hazardous Materials, 163(2–3), 531–537. https://doi.org/10.1016/j.jhazmat.2008.07.003

    Article  CAS  PubMed  Google Scholar 

  • Li, B., Yu, T., Ji, W., Liu, X., Lin, K., Li, C., Ma, X., & Yang, Z. (2023). Geochemical Response of Surface Environment to Mining of Sn-Pb-Zn Sulfide Deposits: A Case Study of Dachang Tin Polymetallic Deposit in Guangxi. Water (switzerland), 15(8), 1–15. https://doi.org/10.3390/w15081550

    Article  CAS  Google Scholar 

  • Milani, E. J., Melo, J. H. G., Souza, P. A., Fernandes, L. A., & França, A. B. (2007). Bacia do Paraná. Boletim De Geociências Da Petrobras, 15(2), 265–287.

    Google Scholar 

  • Núñez-Gómez, D., Rodrigues, C., Lapolli, F. R., & Lobo-Recio, M. Á. (2019). Adsorption of heavy metals from coal acid mine drainage by shrimp shell waste: Isotherm and continuous-flow studies. Journal of Environmental Chemical Engineering, 7(1). https://doi.org/10.1016/j.jece.2018.11.032

  • Pak, G., Jung, M., Kim, H., Mallari, K. J. B., Chung, G., Kim, S., Kim, Y., Oa, S., & Yoon, J. (2016). Assessment of Metals Loading in an Acid Mine Drainage Watershed. Mine Water and the Environment, 35(1), 44–54. https://doi.org/10.1007/S10230-015-0336-6/METRICS

    Article  ADS  CAS  Google Scholar 

  • R Core Team (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

  • Runkel, R. L., Kimball, B. A., McKnight, D. M., & Bencala, K. E. (1999). Reactive solute transport in streams: A surface complexation approach for trace metal sorption. Water Resources Research, 35(12), 3829–3840. https://doi.org/10.1029/1999WR900259

    Article  ADS  CAS  Google Scholar 

  • Runtti, H., Tolonen, E. T., Tuomikoski, S., Luukkonen, T., & Lassi, U. (2018). How to tackle the stringent sulfate removal requirements in mine water treatment—A review of potential methods. Environmental Research, 167, 207–222. https://doi.org/10.1016/J.ENVRES.2018.07.018

    Article  ADS  CAS  PubMed  Google Scholar 

  • Ryberg, K. R. (2003). Continuous Water-Quality Monitoring and Regression Analysis to Estimate Constituent Concentrations and Loads in the05. http://www.usgs.gov/pubprod

  • Silva, L. F. O., Oliveira, M. L. S., Boit, K. M., & Finkelman, R. B. (2009). Characterization of Santa Catarina (Brazil) coal with respect to human health and environmental concerns. Environmental Geochemistry and Health, 31(4), 475–485. https://doi.org/10.1007/s10653-008-9200-y

    Article  CAS  PubMed  Google Scholar 

  • Silva, L. F. O., Wollenschlager, M., & Oliveira, M. L. S. (2011). A preliminary study of coal mining drainage and environmental health in the Santa Catarina region. Brazil. Environmental Geochemistry and Health, 33(1), 55–65. https://doi.org/10.1007/s10653-010-9322-x

    Article  CAS  PubMed  Google Scholar 

  • Silva, L. F. O., Fdez-Ortiz de Vallejuelo, S., Martinez-Arkarazo, I., Castro, K., Oliveira, M. L. S., Sampaio, C. H., et al. (2013). Study of environmental pollution and mineralogical characterization of sediment rivers from Brazilian coal mining acid drainage. Science of the Total Environment, 447, 169–178. https://doi.org/10.1016/j.scitotenv.2012.12.013

    Article  ADS  CAS  PubMed  Google Scholar 

  • Simão, G., Pereira, J. L., Alexandre, N. Z., Galatto, S. L., & Viero, A. P. (2019). Estabelecimento de valores de background geoquímico de parâmetros relacionados a contaminação por carvão. Revista Água Subterrânea, 33(2), 109–118. http:/dx.doi.org/https://doi.org/10.14295/ras.v33i2.29207

  • Smith, J., Sheridan, C., van Dyk, L., & Harding, K. G. (2022). Critical evaluation of the chemical composition of acid mine drainage for the development of statistical correlations linking electrical conductivity with acid mine drainage concentrations. Environmental Advances, 8. https://doi.org/10.1016/j.envadv.2022.100241

  • Sracek, O., Gzyl, G., Frolik, A., Kubica, J., Bzowski, Z., Gwoździewicz, M., & Kura, K. (2010). Evaluation of the impacts of mine drainage from a coal waste pile on the surrounding environment at Smolnica, southern Poland. Environmental Monitoring and Assessment, 165(1–4), 233–254. https://doi.org/10.1007/s10661-009-0941-6

    Article  CAS  PubMed  Google Scholar 

  • Stumm, W., & Morgan, J. J. (1996). Aquatic chemistry: Chemical equilibria and rates in natural waters (3rd ed.). John Wiley & Sons.

    Google Scholar 

  • Tukey, J. W. (1977). Exploratory Data Analysis. Addison-Wesley. http://www.jstor.org/stable/2529486

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors, Albert Teixeira Cardoso, Fernando Mainardi Fan, and Antonio Pedro Viero, made the following contributions to the manuscript: conceptualization, formal analysis, writing, and manuscript review. In addition, Albert Teixeira Cardoso also contributed to the investigation, methodology, and preparation of figures.

Corresponding author

Correspondence to Albert Teixeira Cardoso.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 331 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cardoso, A.T., Fan, F.M. & Viero, A.P. A decade-long journey shed light on chemical composition and field determination of acid mine drainage in Brazil. Environ Monit Assess 196, 123 (2024). https://doi.org/10.1007/s10661-024-12304-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-024-12304-y

Keywords

Navigation