Skip to main content

Advertisement

Log in

Modelling the dispersion of particulate matter (PM10) via wind erosion from opencast mining—Moldova Nouă tailings ponds, Romania

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Historically, Romania is known as a mining site of mineral substances, including gold, silver, copper, lead, zin, uranium, manganese, salt, and coal, whereby their long periods of exploitation and extraction affected human health and the environment in various ways. In Moldova Nouă southwest region of Romania, we investigated the environmental impacts of mining activities on air quality over 2021. We quantified PM10 emission rates through in situ monitoring, dispersion modelling, and horizontal and vertical fluxes. Statistical metrics, including the fraction within factor 2 (FAC2), mean bias (MB), mean gross error (MGE), normalized mean bias (NMB), normalized mean gross error (NMGE), coefficient of efficiency (COE), index of agreements (IOAs), and Taylor diagram signifying standards deviation (SD), root mean squared error (RMSE), and correlation coefficient (R), were used to evaluate the reliability of modelling results against observation. Results conclude that PM10 dispersion agrees with MB, MGE, NMB, NMGE, COE, IOA, and Taylor diagram and moderately with FAC2 metrics. PM10 hotspot was investigated in the vicinity of the tailings ponds of 115.5 µg m−3 annual mean, 563.7 µg m−3 daily mean, 63.3 µg m−2 s−1 annual horizontal flux, and 3.0 µg m−2 s−1 annual vertical flux. PM10 dispersion was identified to expand to Moldova Nouă City and nearby country Serbia. Findings concluded that a windy air mass accumulation across the overburdened dumps and ponds causes the increase of PM10 in the air, resulting in the region’s pollution. Therefore, results recommend adopting a strategic mitigation measure for residents, policymakers, stakeholders, and urban planners.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Not applicable.

References

  • Ajtai, N., TöRöK, Z., & Ozunu, A. (2012). Air quality modelling of SO2 emissions associated to metallurgical processes. Studia Universitatis Babes-Bolyai, Chemia, 57(1), 57. link.gale.com/apps/doc/A427961935/AONE?u=anon~440736f1&sid=googleScholar&xid=1f101480. Accessed 8 Dec 2023.

  • Arnalds, O., Gisladottir, F. O., & Sigurjonsson, H. (2001). Sandy deserts of Iceland: An overview. Journal of Arid Environments, 47(3), 359–371. https://doi.org/10.1006/jare.2000.0680

    Article  Google Scholar 

  • Baddock, M. C., Bullard, J. E., & Bryant, R. G. (2009). Dust source identification using MODIS: A comparison of techniques applied to the Lake Eyre Basin Australia. Remote Sensing of Environment, 113(7), 1511–1528. https://doi.org/10.1016/j.rse.2009.03.002

    Article  Google Scholar 

  • Barbu, S., Moisa, C., & Mircov, D. V. (2009). Cosava–a Banatean wind. Research Journal of Agricultural Science, 41(1), 365–371.

    Google Scholar 

  • Belnap, J., Phillips, S. L., Herrick, J. E., & Johansen, J. R. (2007). Wind erodibility of soils at Fort Irwin, California (Mojave Desert), USA, before and after trampling disturbance: Implications for land management. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group, 32(1), 75–84.

    Article  Google Scholar 

  • Beutură, D., Rogobete, G., Beutură, S., Bertici, R., Tudor, C., & Ţimbota, O. (2005). Estimation of the mining – Work impact on soil, water and air of Moldova Nouă, District Caraş-Severin. Journal: Soil Forming Factors and Processes from the Temperate Zone, 4(1), 231. https://journaldatabase.info/articles/estimation_mining_work_impact_on_soil.html. Accessed 1 July 2022.

  • Brock, B. W., Willis, I. C., & Sharp, M. J. (2000). Measurement and parameterization of albedo variations at Haut Glacier d’Arolla. Switzerland. Journal of Glaciology, 46(155), 675–688. https://doi.org/10.3189/172756500781832675

    Article  Google Scholar 

  • Brock, B. W., Willis, I. C., & Sharp, M. J. (2006). Measurement and parameterization of aerodynamic roughness length variations at Haut Glacier d’Arolla Switzerland. Journal of Glaciology, 52(177), 281–297. https://doi.org/10.3189/172756506781828746

    Article  Google Scholar 

  • Brock, B. W., Mihalcea, C., Kirkbride, M. P., Diolaiuti, G., Cutler, M. E. J., & Smiraglia, C. (2010). Meteorology and surface energy fluxes in the 2005–2007 ablation seasons at the Miage debris-covered glacier, Mont Blanc Massif, Italian Alps. Journal of Geophysical Research: Atmospheres, 115(D9). https://doi.org/10.1029/2009JD013224

  • Camino, C., Cuevas, E., Basart, S., Alonso-Pérez, S., Baldasano, J. M., Terradellas, E., et al. (2015). An empirical equation to estimate mineral dust concentrations from visibility observations in Northern Africa. Aeolian Research, 16, 55–68.

    Article  Google Scholar 

  • Cântar, I. C. (2017). Actual state of tailing dumps from Moldova Nouă-surfaces covered with vegetation and perspectives. JOURNAL of Horticulture, Forestry and Biotechnology, 21(3), 77–81.

    Google Scholar 

  • Chang, J. C., & Hanna, S. R. (2004). Air quality model performance evaluation. Meteorology and Atmospheric Physics, 87(1–3). https://doi.org/10.1007/s00703-003-0070-7

  • Cimorelli, A. J., Perry, S. G., Venkatram, A., Weil, J. C., Paine, R. J., Wilson, R. B., et al. (2005). AERMOD: A dispersion model for industrial source applications. Part I: General model formulation and boundary layer characterization. Journal of applied meteorology, 44(5), 682–693.

  • Cornelis, W. M., Gabriels, D., & Hartmann, R. (2004). A parameterisation for the threshold shear velocity to initiate deflation of dry and wet sediment. Geomorphology, 59(1–4), 43–51.

    Article  Google Scholar 

  • Carslaw, D. C., & Davison, J. (2023). The openair book. https://bookdown.org/david_carslaw/openair/. Accessed 25 January 2023

  • De Oro, L. A., & Buschiazzo, D. E. (2009). Threshold wind velocity as an index of soil susceptibility to wind erosion under variable climatic conditions. Land Degradation & Development, 20(1), 14–21.

    Article  Google Scholar 

  • Del Bello, E., Taddeucci, J., Merrison, J. P., Alois, S., Iversen, J. J., & Scarlato, P. (2018). Experimental simulations of volcanic ash resuspension by wind under the effects of atmospheric humidity. Scientific Reports, 8(1), 14509. https://doi.org/10.1038/s41598-018-32807-2

    Article  CAS  Google Scholar 

  • Dumitru, F.-D., Deák, G., Moncea, M.-A., Panait, A.-M., Matei, M., Boboc, M., et al. (2019). Assessment of recovery opportunities and environmental impact of mining residues from Moldova Noua tailings pond. In AIP Conference Proceedings (Vol. 2129, p. 020068). AIP Publishing LLC.

  • Fryrear, D. W. (1981). Long-term effect of erosion and cropping on soil productivity. Geological Society of America, 186, 253–259.

    Article  Google Scholar 

  • Gibson, M. D., Kundu, S., & Satish, M. (2013). Dispersion model evaluation of PM2.5, NOx and SO2 from point and major line sources in Nova Scotia, Canada using AERMOD Gaussian plume air dispersion model. Atmospheric Pollution Research, 4(2), 157–167. https://doi.org/10.5094/APR.2013.016

    Article  CAS  Google Scholar 

  • Gillette, D. (1978). A wind tunnel simulation of the erosion of soil: Effect of soil texture, sandblasting, wind speed, and soil consolidation on dust production. Atmospheric Environment, 12(8), 1735–1743.

    Article  Google Scholar 

  • Gillette, D. A. (1979) Environmental factors affecting dust emission by wind erosion. In C. Morales (Ed.), Saharan Dust (pp. 71–94). Hoboken: John Wiley. https://scope.dge.carnegiescience.edu/SCOPE_14/SCOPE_14_2.4_Gillette.pdf

  • Gillette, D. A., & Passi, R. (1988). Modeling dust emission caused by wind erosion. Journal of Geophysical Research: Atmospheres, 93(D11), 14233–14242.

    Article  Google Scholar 

  • Gillette, D. A., Hardebeck, E., & Parker, J. (1997). Large-scale variability of wind erosion mass flux rates at Owens Lake: 2. Role of roughness change, particle limitation, change of threshold friction velocity, and the Owen effect. Journal of Geophysical Research: Atmospheres, 102(D22), 25989–25998.

    Article  Google Scholar 

  • Gomes, L., Bergametti, G., Coudé-Gaussen, G., & Rognon, P. (1990). Submicron desert dusts: A sandblasting process. Journal of Geophysical Research: Atmospheres, 95(D9), 13927–13935.

    Article  Google Scholar 

  • Hammond, D. S., Chapman, L., & Thornes, J. E. (2012). Roughness length estimation along road transects using airborne LIDAR data: Roughness length estimation along road transects using airborne LIDAR data. Meteorological Applications, 19(4), 420–426. https://doi.org/10.1002/met.273

    Article  Google Scholar 

  • Harrison, R. G., & Aplin, K. L. (2001). Atmospheric condensation nuclei formation and high-energy radiation. Journal of Atmospheric and Solar-Terrestrial Physics, 63(17), 1811–1819.

    Article  Google Scholar 

  • Houser, C. A., & Nickling, W. G. (2001). The emission and vertical flux of particulate matter <10 μm from a disturbed clay-crusted surface. Sedimentology, 48(2), 255–267. https://doi.org/10.1046/j.1365-3091.2001.00359.x

    Article  CAS  Google Scholar 

  • Huertas, J. I., Huertas, M. E., Izquierdo, S., & González, E. D. (2012). Air quality impact assessment of multiple open pit coal mines in northern Colombia. Journal of Environmental Management, 93(1), 121–129. https://doi.org/10.1016/j.jenvman.2011.08.007

    Article  CAS  Google Scholar 

  • Huertas, M. E., Huertas, J. I., & Valencia, A. (2017). Vehicular road influence areas. Atmospheric Environment, 151, 108–116. https://doi.org/10.1016/j.atmosenv.2016.12.006

    Article  CAS  Google Scholar 

  • Hyers, A. D., & Marcus, M. G. (1981). Land use and desert dust hazards in central Arizona. Geological Society of America Special Paper, 186, 267–280.

    Article  Google Scholar 

  • Khazini, L., Dehkharghanian, M. E., & Vaezihir, A. (2022). Dispersion and modeling discussion of aerosol air pollution caused during mining and processing of open-cast mines. International Journal of Environmental Science and Technology, 19(2), 913–924. https://doi.org/10.1007/s13762-021-03225-1

    Article  CAS  Google Scholar 

  • Kundu, S., & Pal, A. K. (2018). Application of AERMOD model in air quality (PM10) impact assessment of selected opencast mines in The Jharia Coalfield, Jharkhand. India. Environment Protection Engineering, 44(4), 5–21.

    Google Scholar 

  • Lal, B., & Tripathy, S. S. (2012). Prediction of dust concentration in open cast coal mine using artificial neural network. Atmospheric Pollution Research, 3(2), 211–218. https://doi.org/10.5094/APR.2012.023

    Article  CAS  Google Scholar 

  • Legates, D. R., & McCabe, G. J. (2013). A refined index of model performance: A rejoinder: A refined index of model performance: A rejoinder. International Journal of Climatology, 33(4), 1053–1056. https://doi.org/10.1002/joc.3487

    Article  Google Scholar 

  • Li, J., Okin, G. S., Herrick, J. E., Belnap, J., Munson, S. M., & Miller, M. E. (2010). A simple method to estimate threshold friction velocity of wind erosion in the field. Geophysical Research Letters, 37(10), L10402. https://doi.org/10.1029/2010GL043245

  • Ma, J., Yi, H., Tang, X., Zhang, Y., Xiang, Y., & Pu, L. (2013). Application of AERMOD on near future air quality simulation under the latest national emission control policy of China: A case study on an industrial city. Journal of Environmental Sciences, 25(8), 1608–1617. https://doi.org/10.1016/S1001-0742(12)60245-9

    Article  CAS  Google Scholar 

  • Mabahwi, N. A. B., Leh, O. L. H., & Omar, D. (2014). Human health and wellbeing: Human health effect of air pollution. Procedia-Social and Behavioral Sciences, 153, 221–229.

    Article  Google Scholar 

  • Macdonald, R. (2003). Theory and objectives of air dispersion modelling. Modelling Air Emissions for Compliance, 1–27. Available at: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=19baef4cfab57df8e7e80ee017ab4b18bce052da

  • Marticorena, B., Bergametti, G., Gillette, D., & Belnap, J. (1997). Factors controlling threshold friction velocity in semiarid and arid areas of the United States. Journal of Geophysical Research: Atmospheres, 102(D19), 23277–23287.

    Article  Google Scholar 

  • Miles, E. S., Steiner, J. F., & Brun, F. (2017). Highly variable aerodynamic roughness length (z0) for a hummocky debris-covered glacier. Journal of Geophysical Research: Atmospheres, 122(16), 8447–8466. https://doi.org/10.1002/2017JD026510

    Article  Google Scholar 

  • Mohan, M., Bhati, S., Sreenivas, A., & Marrapu, P. (2011). Performance evaluation of AERMOD and ADMS-urban for total suspended particulate matter concentrations in Megacity Delhi. Aerosol and Air Quality Research, 11(7), 883–894. https://doi.org/10.4209/aaqr.2011.05.0065

    Article  Google Scholar 

  • Nickling, W. G., & Gillies, J. A. (1993). Dust emission and transport in Mali West Africa. Sedimentology, 40(5), 859–868.

    Article  Google Scholar 

  • Nickling, W. G., McTainsh, G. H., & Leys, J. F. (1999). Dust emissions from the Channel Country of western Queensland Australia. Zeitschrift Für Geomorphologie Supplementband, 116, 1–17.

    Google Scholar 

  • Omidvarborna, H., Baawain, M., Al-Mamun, A., & Al-Muhtaseb, A. H. (2018). Dispersion and deposition estimation of fugitive iron particles from an iron industry on nearby communities via AERMOD. Environmental Monitoring and Assessment, 190(11), 655. https://doi.org/10.1007/s10661-018-7009-4

    Article  CAS  Google Scholar 

  • Pandey, B., Agrawal, M., & Singh, S. (2014). Assessment of air pollution around coal mining area: Emphasizing on spatial distributions, seasonal variations and heavy metals, using cluster and principal component analysis. Atmospheric Pollution Research, 5(1), 79–86. https://doi.org/10.5094/APR.2014.010

    Article  CAS  Google Scholar 

  • Popescu, F. (2016). A performant state-of-art tool to assess cross-border impact of industrial activities. A transboundary air pollution case study. Procedia Technology, 22, 440–444.

    Article  Google Scholar 

  • Powell, M. D. (2008) High wind drag coefficient and sea surface roughness in shallow water. In NOAA/AOML Hurricane Research Division Final Rep. to the Joint Hurricane Testbed (p. 24). Available online at http://www.nhc.noaa.gov/jht/07-09reports/final_Powell_JHT08.pdf

  • Raischi, N., Robert, S., Bălăceanu, C. M., Raischi, M., Dumitru, F. D., Moncea, M. A., et al. (2017). Air pollution analysis in Moldova Nouă waste dump. ECOTERRA Journal of Environmental Protection, 14, 70–77.

    Google Scholar 

  • Raischi, S., Pană, E., Holban, E., Zamfir, Ș, Raischi, M., & Deák, G. (2019). Analysis of air and soil quality regarding the cross-border impact risk of the mining tailings ponds in Moldova Nouă Area. International Journal of Environmental Science and Development, 10(6), 162.

    Article  CAS  Google Scholar 

  • Ravi, S., & D’Odorico, P. (2005). A field-scale analysis of the dependence of wind erosion threshold velocity on air humidity. Geophysical Research Letters, 32(21), L21404. https://doi.org/10.1029/2005GL023675

  • Ravi, S., D’Odorico, P., Over, T. M., & Zobeck, T. M. (2004). On the effect of air humidity on soil susceptibility to wind erosion: The case of air-dry soils. Geophysical Research Letters, 31(9), L09501. https://doi.org/10.1029/2004GL019485

  • Resetar-Deac, A.-M., & Diacu, E. (2015). Assessment of aquatic environment contamination with heavy metals from abandoned mines of Northwestern Romania. Aquatic, 14, 16.

    Google Scholar 

  • Richards‐Thomas, T., & McKenna‐Neuman, C. (2020). Wind tunnel‐based comparison of PM10 emission rates for volcanic ash and glaciogenic aerosol sources within iceland. Journal of Geophysical Research: Atmospheres, 125(24). https://doi.org/10.1029/2020JD033392

  • RNMCA. (2015). Romanian national air quality monitoring network. Calitate Aer and Stații. Calitate Aer Rețeaua Națională de Monitorizare a Calității Aerului. https://calitateaer.ro/public/description-page/stations-page/?__locale=ro. Accessed 25 Jan 2023.

  • Roney, J. A., & White, B. R. (2006). Estimating fugitive dust emission rates using an environmental boundary layer wind tunnel. Atmospheric Environment, 40(40), 7668–7685.

    Article  CAS  Google Scholar 

  • Shao, Y., & Lu, H. (2000). A simple expression for wind erosion threshold friction velocity. Journal of Geophysical Research: Atmospheres, 105(D17), 22437–22443.

    Article  Google Scholar 

  • Sherwood, B. (1981). Climatic change: The role of atmospheric dust. Desert Dust: Origin, Characteristics, and Effect on Man, 186, 207.

    Google Scholar 

  • Shukla, J. B., Misra, O. P., Agarwal, M., & Shukla, A. (1988). Effect of pollution and industrial development on degration of biomass-resource: A mathematical model with reference to doon valley. Mathematical and Computer Modelling, 11, 910–913.

    Article  Google Scholar 

  • Silvester, S. A., Lowndes, I. S., & Hargreaves, D. M. (2009). A computational study of particulate emissions from an open pit quarry under neutral atmospheric conditions. Atmospheric Environment, 43(40), 6415–6424. https://doi.org/10.1016/j.atmosenv.2009.07.006

    Article  CAS  Google Scholar 

  • Srivastava, A., Kumar, A., & Elumalai, S. P. (2021). Evaluating dispersion modeling of inhalable particulates (PM10) emissions in complex terrain of coal mines. Environmental Modeling & Assessment, 26(3), 385–403. https://doi.org/10.1007/s10666-021-09762-w

    Article  Google Scholar 

  • Stout, J. E. (2003). Seasonal variations of saltation activity on a high plains saline playa: Yellow Lake. Texas. Physical Geography, 24(1), 61–76.

    Article  Google Scholar 

  • Stout, J. E. (2004). A method for establishing the critical threshold for aeolian transport in the field. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group, 29(10), 1195–1207.

    Article  Google Scholar 

  • Taylor, P. K., & Yelland, M. J. (2001). The dependence of sea surface roughness on the height and steepness of the waves. Journal of Physical Oceanography, 31(2), 572–590.

    Article  Google Scholar 

  • Thorsteinsson, T., Gísladóttir, G., Bullard, J., & McTainsh, G. (2011). Dust storm contributions to airborne particulate matter in Reykjavík. Iceland. Atmospheric Environment, 45(32), 5924–5933.

    Article  CAS  Google Scholar 

  • Thurston, G. D., & Ito, K. (2001). Epidemiological studies of acute ozone exposures and mortality. Journal of Exposure Analysis and Environmental Epidemiology, 11, 286–294. Find this article online.

    CAS  Google Scholar 

  • US EPA. (2006). Volume I Chapter 13: Miscellaneous sources. In Section 13.2.2. AP 42 (5th ed.). https://www3.epa.gov/ttn/chief/ap42/ch13/final/c13s0202.pdf. Accessed 19 Jan 2023.

  • US EPA. (2009). Air quality dispersion modeling preferred and recommended models. In AERMOD Implementation Guide. Research Triangle Park, North Carolina: U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards. https://www.epa.gov/scram/air-quality/. Accessed 4 Feb 2022.

  • US EPA, O. (2016). AP-42: Compilation of air emissions factors. Other Policies and Guidance. https://www.epa.gov/air-emissions-factors-and-quantification/ap-42-compilation-air-emissions-factors. Accessed 10 Aug 2022.

  • Verma, T., Shrivastva, B. K., & Sharma, S. K. (2017). Performance evaluation of AERMOD for Indian Geo-mining conditions. Research Journal of Mining, 1(2), 88–99.

    Google Scholar 

  • Wagner, L. E. (2013). A history of wind erosion prediction models in the United States Department of Agriculture: The wind erosion prediction system (WEPS). Aeolian Research, 10, 9–24. https://doi.org/10.1016/j.aeolia.2012.10.001

    Article  Google Scholar 

  • WHO. (2018). Global Health Observatory (GHO) data repository: Deaths by country. Geneva, Switzerland: WHO 2018. GHO | By category | Deaths - by country. https://www.who.int. Accessed 15 Dec. 2022.

  • WHO. (2019). Global Health Observatory (GHO) data: Exposure to ambient air pollution. Geneva, Switzerland: WHO. https://www.who.int/data/gho/data/themes/theme-details/GHO/air-pollution. Accessed 7 February 2022

  • Wieringa, J. (2001). New revision of Davenport roughness classification. In 3rd European & African Conf. Netherlands. Proc., 3EACWE (pp. 285–292). Eindhoven, The Netherlands: EACWE. https://doi.org/10.1016/0167-6105(92)90434-C

  • Willmott, C. J., Robeson, S. M., & Matsuura, K. (2012). A refined index of model performance. International Journal of Climatology, 32(13), 2088–2094. https://doi.org/10.1002/joc.2419

    Article  Google Scholar 

  • Zou, B., Benjamin Zhan, F., Gaines Wilson, J., & Zeng, Y. (2010). Performance of AERMOD at different time scales. Simulation Modelling Practice and Theory, 18(5), 612–623. https://doi.org/10.1016/j.simpat.2010.01.005

    Article  Google Scholar 

Download references

Acknowledgements

HORAȚIU I. Ștefănie and CALIN Baciu are acknowledged for their advice and guidance during this work.

Funding

(1) The Foundation National Centre APELL for Disaster Management (CN APELL-RO) for providing the financial support referenced ROC/Busa/RFB/58/05–31-2022.

(2) The Romania Ministry of Education for providing the financial support referenced DGRIAE-0713/III/139/CMJ/26.08.2021.

Author information

Authors and Affiliations

Authors

Contributions

E.I.: Conceptualization, Methodology, Data curation, Writing-original draft preparation, Writing-reviewing, and editing. Z.T.: Methodology, Data curation, Visualization, A.O.: Methodology, Data curation, Visualization, and Investigation and supervision of the entire works. All authors reviewed the manuscript

Ethical responsibilities of Authors: All authors have read, understood, and have complied as applicable with the statement on &quot;Ethical responsibilities of Authors&quot; as found in the Instructions for Authors.

Corresponding author

Correspondence to IRANKUNDA Elisephane.

Ethics declarations

Ethical approval

All authors have read, understood, and have complied as applicable with the statement on “Ethical responsibilities of Authors” as found in the Instructions for Authors.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Török, Z., Elisephane, I. & Ozunu, A. Modelling the dispersion of particulate matter (PM10) via wind erosion from opencast mining—Moldova Nouă tailings ponds, Romania. Environ Monit Assess 196, 59 (2024). https://doi.org/10.1007/s10661-023-12199-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-12199-1

Keywords

Navigation