Skip to main content

Advertisement

Log in

Near real-time flood inundation and hazard mapping of Baitarani River Basin using Google Earth Engine and SAR imagery

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Flood inundation mapping and satellite imagery monitoring are critical and effective responses during flood events. Mapping of a flood using optical data is limited due to the unavailability of cloud-free images. Because of its capacity to penetrate clouds and operate in all kinds of weather, synthetic aperture radar is preferred for water inundation mapping. Flood mapping in Eastern India’s Baitarani River Basin for 2018, 2019, 2020, 2021, and 2022 was performed in this study using Sentinel-1 imagery and Google Earth Engine with Otsu’s algorithm. Different machine-learning algorithms were used to map the LULC of the study region. Dual polarizations VH and VV and their combinations VV×VH, VV+VH, VH−VV, VV−VH, VV/VH, and VH/VV were examined to identify non-water and water bodies. The normalized difference water index (NDWI) map derived from Sentinel-2 data validated the surface water inundation with 80% accuracy. The total inundated areas were identified as 440.3 km2 in 2018, 268.58 km2 in 2019, 178.40 km2 in 2020, 203.79 km2 in 2021, and 321.33 km2 in 2022, respectively. The overlap of flood maps on the LULC map indicated that flooding highly affected agriculture and urban areas in these years. The approach using the near-real-time Sentinel-1 SAR imagery and GEE platform can be operationalized for periodic flood mapping, helps develop flood control measures, and helps enhance flood management. The generated annual flood inundation maps are also useful for policy development, agriculture yield estimation, crop insurance framing, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  • Agnihotri, A. K., Ohri, A., Gaur, S., Das, N., & Mishra, S. (2019). Flood inundation mapping and monitoring using SAR data and its impact on Ramganga River in Ganga basin. Environmental Monitoring and Assessment, 191, 1–16.

    Article  Google Scholar 

  • Ahmed, K., Sachindra, D. A., Shahid, S., Demirel, M. C., & Chung, E. S. (2019). Selection of multi-model ensemble of general circulation models for the simulation of precipitation and maximum and minimum temperature based on spatial assessment metrics. Hydrology and Earth System Sciences, 23(11), 4803–4824.

    Article  Google Scholar 

  • Ahmed, N., Hoque, M. A. A., Arabameri, A., Pal, S. C., Chakrabortty, R., & Jui, J. (2022). Flood susceptibility mapping in Brahmaputra floodplain of Bangladesh using deep boost, deep learning neural network, and artificial neural network. Geocarto International, 37(25), 8770–8791.

    Article  Google Scholar 

  • Ajmar, A., Boccardo, P., Broglia, M., Kucera, J., Giulio-Tonolo, F., Wania, A. (2017). Response to flood events: The role of satellite-based emergency mapping and the experience of the copernicus emergency management service. In: Flood damage survey and assessment: New insights from research and practice (vol 228, pp 213–228, JRC98837)

  • Amarnath, G., & Rajah, A. (2016). An evaluation of flood inundation mapping from MODIS and ALOS satellites for Pakistan. Geomatics, Natural Hazards and Risk, 7(5), 1526–1537.

    Article  Google Scholar 

  • Amitrano, D., Martino, G. D., Iodice, A., Riccio, D., & Ruello, G. (2018). Unsupervised rapid flood mapping using Sentinel-1 GRD SAR images. IEEE Transactions on Geoscience and Remote Sensing, 56(6), 3290–3299.

    Article  Google Scholar 

  • Anusha, N. A. (2020). Flood detection and flood mapping using multi-temporal synthetic aperture radar and optical data. The Egyptian Journal of Remote Sensing and Space Science, 23(2), 207–219.

    Article  Google Scholar 

  • Benzougagh, B. F. (2022). Flood mapping using multi-temporal Sentinel-1 SAR images: A case study—Inaouene watershed from northeast of Morocco. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 46(2), 1481–1490.

    Article  Google Scholar 

  • Bhatt, C. M., Rao, G. S., Farooq, M., Manjusree, P., Shukla, A., Sharma, S. V. S. P., Kulkarni, S. S., Begum, A., Bhanumurthy, V., Diwakar, P. G., & Dadhwal, V. K. (2017). Satellite-based assessment of the catastrophic Jhelum floods of September 2014 (pp. 309–327). Jammu & Kashmir.

    Google Scholar 

  • Bhatt, C. M., & Rao, G. S. (2016). Ganga floods of 2010 in Uttar Pradesh, north India: A perspective analysis using satellite remote sensing data. Geomatics, Natural Hazards and Risk, 7(2), 747–763.

    Article  Google Scholar 

  • Bijay Halder, J. B. (2022). Monitoring the tropical cyclone ‘Yass’ and ‘Amphan’ affected flood inundation using Sentinel-1/2 data and Google Earth Engine. Modeling Earth Systems and Environment, 1–16.

  • Borah, S. B. (2018). Flood inundation mapping and monitoring in Kaziranga National Park, Assam using Sentinel-1 SAR data. Environmental Monitoring and Assessment, 1–11.

  • Bovenga, F., Belmonte, A., Refice, A., Pasquariello, G., Nutricato, R., Nitti, D. O., & Chiaradia, M. T. (2018). Performance analysis of satellite missions for multi-temporal SAR interferometry. Sensors, 18(5), 1359.

    Article  Google Scholar 

  • Brivio, P. A., Colombo, R., Maggi, M., & Tomasoni, R. (2002). Integration of remote sensing data and GIS for accurate mapping of flooded areas. International Journal of Remote Sensing, 23(3), 429–441.

    Article  Google Scholar 

  • Bucur, A., Wagner, W., Elefante, S., Naeimi, V., & Briese, C. (2018). Development of an Earth observation cloud platform in support to water resources monitoring. Earth Observation Open Science and Innovation, 275–283.

  • Davenport, F. V., & Diffenbaugh, N. S. (2021). Using machine learning to analyze physical causes of climate change: A case study of US Midwest extreme precipitation. Geophysical Research Letters, 48(15), e2021GL093787.

    Article  Google Scholar 

  • Dey, A., Sahoo, D. P., Kumar, R., & Remesan, R. (2022). A multimodel ensemble machine learning approach for CMIP6 climate model projections in an Indian River basin. International Journal of Climatology, 42(16), 9215–9236.

    Article  Google Scholar 

  • Domeneghetti, A., Schumann, G. J. P., & Tarpanelli, A. (2019). Preface: Remote sensing for flood mapping and monitoring of flood dynamics. Remote Sensing, 11(8), 943.

    Article  Google Scholar 

  • Eini, M., Kaboli, H. S., Rashidian, M., & Hedayat, H. (2020). Hazard and vulnerability in urban flood risk mapping: Machine learning techniques and considering the role of urban districts. International Journal of Disaster Risk Reduction, 50, 101687.

    Article  Google Scholar 

  • European Commission. (2013). Guidance for reporting under the floods directive (2007/60/EC). Available at: https://circabc.europa.eu/sd/a/acbcd98a-9540-480e-a876-420b7de64eba/Floods%2520Reporting%2520guidance%2520-%2520final_with%2520revised%2520paragraph%25204.2.3.pdf

  • Gao, W., Shen, Q., Zhou, Y., & Li, X. (2018). Analysis of flood inundation in ungauged basins based on multi-source remote sensing data. Environmental Monitoring and Assessment, 190(3), 129.

    Article  Google Scholar 

  • Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote sensing of Environment, 202, 18–27.

    Article  Google Scholar 

  • Heimhuber, V., Tulbure, M. G., & Broich, M. (2017). Modeling multidecadal surface water inundation dynamics and key drivers on large river basin scale using multiple time series of Earth-observation and river flow data. Water Resources Research, 53(2), 1251–1269.

    Article  Google Scholar 

  • Hong, S., Jang, H., Kim, N., & Sohn, H. G. (2015). Water area extraction using RADARSAT SAR imagery combined with Landsat imagery and terrain information. Sensors, 15(3), 6652–6667.

    Article  Google Scholar 

  • Hosseinzadeh, P., Nassar, A., Boubrahimi, S. F., & Hamdi, S. M. (2023). ML-based streamflow prediction in the upper Colorado River Basin using climate variables time series data. Hydrology, 10(2), 29.

    Article  Google Scholar 

  • Joyce, K. E., Belliss, S., Samsonov, S., McNeill, S., & Glassey, P. J. (2009). A review of the status of satellite remote sensing image processing techniques for mapping natural hazards and disasters. Progress in Physical Geography, 33(2), 1–25.

    Google Scholar 

  • Kumar, A., Ramsankaran, R. A. A. J., Brocca, L., & Muñoz-Arriola, F. (2021). A simple machine learning approach to model real-time streamflow using satellite inputs: Demonstration in a data scarce catchment. Journal of Hydrology, 595, 126046.

    Article  Google Scholar 

  • Kumar, L., & Mutanga, O. (2018). Google Earth Engine applications since inception: Usage, trends, and potential. Remote Sensing, 10(10), 1509.

    Article  Google Scholar 

  • Kumar, R. (2019). Flood inundation and hazard mapping of 2017 floods in the Rapti River basin using Sentinel-1a synthetic aperture radar images. Applications and Challenges of Geospatial Technology, 77–98. https://doi.org/10.1007/978-3-319-99882-4_6

  • Manjusree, P., Prasanna Kumar, L., Bhatt, C. M., Rao, G. S., & Bhanumurthy, V. (2012). Optimization of threshold ranges for rapid flood inundation mapping by evaluating backscatter profiles of high incidence angle SAR images. International Journal of Disaster Risk Science, 3(2), 113–122.

    Article  Google Scholar 

  • Meshram, S. G., Kahya, E., Meshram, C., Ghorbani, M. A., Ambade, B., & Mirabbasi, R. (2020). Long-term temperature trend analysis associated with agriculture crops. Theoretical and Applied Climatology, 140, 1139–1159.

    Article  Google Scholar 

  • Midekisa, A., Holl, F., Savory, D. J., Andrade-Pacheco, R., Gething, P. W., Bennett, A., & Sturrock, H. J. (2017). Mapping land cover change over continental Africa using Landsat and Google Earth Engine cloud computing. PloS one, 12(9), e0184926.

    Article  Google Scholar 

  • Mishra, V. N., Rai, P. K., Kumar, P., & Prasad, R. (2016). Evaluation of land use/land cover classification accuracy using multi-resolution remote sensing images. Forum geografic, 15(1), 45–53.

    Article  Google Scholar 

  • Mudi, S. (2022). Flood hazard mapping in Assam using Sentinel-1 SAR data. In Geospatial Technology for Environmental Hazards (pp. 459–473). Springer.

    Chapter  Google Scholar 

  • Norallahi, M., & Seyed Kaboli, H. (2021). Urban flood hazard mapping using machine learning models: GARP, RF, MaxEnt and NB. Natural Hazards, 106, 119–137.

    Article  Google Scholar 

  • Ohki, M., Watanabe, M., Natsuaki, R., Motohka, T., Nagai, H., Tadono, T., Suzuki, S., Ishii, K., Itoh, T., & Yamanokuchi, T. (2016). Flood area detection using ALOS-2 PALSAR-2 data for the 2015 heavy rainfall disaster in the Kanto and Tohoku area, Japan. Journal of The Remote Sensing Society of Japan, 36(4), 348–359.

    Google Scholar 

  • Parida, B. R., Tripathi, G., Pandey, A. C., & Kumar, A. (2022). Estimating floodwater depth using SAR-derived flood inundation maps and geomorphic model in Kosi River basin (India). Geocarto International, 37(15), 4336–4360.

    Article  Google Scholar 

  • Pekel, J. F., Cottam, A., Gorelick, N., & Belward, A. S. (2016). High-resolution mapping of global surface water and its long-term changes. Nature, 540(7633), 418–422.

    Article  CAS  Google Scholar 

  • Qiu, J., Cao, B., Park, E., Yang, X., Zhang, W., & Tarolli, P. (2021). Flood monitoring in rural areas of the Pearl River Basin (China) using Sentinel-1 SAR. Remote Sensing, 13(7), 1384.

    Article  Google Scholar 

  • Rahman, M. R., & Thakur, P. K. (2018). Detecting, mapping and analysing of flood water propagation using synthetic aperture radar (SAR) satellite data and GIS: A case study from the Kendrapara District of Orissa State of India. The Egyptian Journal of Remote Sensing and Space Science, 21, S37–S41.

    Article  Google Scholar 

  • Riazi, M., Khosravi, K., Shahedi, K., Ahmad, S., Jun, C., Bateni, S. M., & Kazakis, N. (2023). Enhancing flood susceptibility modeling using multi-temporal SAR images, CHIRPS data, and hybrid machine learning algorithms. Science of The Total Environment, 871, 162066.

    Article  CAS  Google Scholar 

  • Sahoo, D. P., Sahoo, B., Tiwari, M. K., & Behera, G. K. (2022). Integrated remote sensing and machine learning tools for estimating ecological flow regimes in tropical river reaches. Journal of Environmental Management, 322, 116121.

    Article  Google Scholar 

  • Sanyal, J., & Lu, X. X. (2004). Application of remote sensing in flood management with special reference to monsoon Asia: A review. Natural Hazards, 33, 283–301.

    Article  Google Scholar 

  • Schumann, G. J., Brakenridge, G. R., Kettner, A. J., Kashif, R., & Niebuhr, E. (2018). Assisting flood disaster response with earth observation data and products: A critical assessment. Remote Sensing, 10(8), 1230.

    Article  Google Scholar 

  • Shen, X., Wang, D., Mao, K., Anagnostou, E., & Hong, Y. (2019). Inundation extent mapping by synthetic aperture radar: A review. Remote Sensing, 11(7), 879.

  • Tarpanelli, A., Santi, E., Tourian, M. J., Filippucci, P., Amarnath, G., & Brocca, L. (2018). Daily river discharge estimates by merging satellite optical sensors and radar altimetry through artificial neural network. IEEE Transactions on Geoscience and Remote Sensing, 57(1), 329–341.

    Article  Google Scholar 

  • Tavares, P. A., Beltrão, N. E. S., Guimarães, U. S., & Teodoro, A. C. (2019). Integration of Sentinel-1 and Sentinel-2 for classification and LULC mapping in the urban area of Belém, eastern Brazilian Amazon. Sensors, 19(5), 1140.

    Article  Google Scholar 

  • Tehrany, M. S., Jones, S., & Shabani, F. (2019). Identifying the essential flood conditioning factors for flood prone area mapping using machine learning techniques. Catena, 175, 174–192.

    Article  Google Scholar 

  • Tripathi, G. P. (2020). Flood inundation mapping and impact assessment using multi-temporal optical and SAR satellite data: A case study of 2017 Flood in Darbhanga district, Bihar, India. Water Resources Management, 34(6), 1871–1892.

    Article  Google Scholar 

  • Uddin, K. M. (2019). Operational flood mapping using multi-temporal Sentinel-1 SAR images: A case study from Bangladesh. Remote Sensing, 11(13), 1581.

    Article  Google Scholar 

  • Uddin, K., Matin, M. A., Thapa, R. B. (2021). Rapid flood mapping using multi-temporal sar images: An example from Bangladesh. In: Bajracharya, B., Thapa, R. B., Matin, M. A. (eds) Earth observation science and applications for risk reduction and enhanced resilience in Hindu Kush Himalaya Region. Cham: Springer. https://doi.org/10.1007/978-3-030-73569-2_10

  • Vanama, V. S. K., Mandal, D., & Rao, Y. S. (2020). GEE4FLOOD: Rapid mapping of flood areas using temporal Sentinel-1 SAR images with Google Earth Engine cloud platform. Journal of Applied Remote Sensing, 14(3), 034505–034505.

    Article  Google Scholar 

  • Wang, B., Zheng, L., Liu, D. L., Ji, F., Clark, A., & Yu, Q. (2018). Using multi-model ensembles of CMIP5 global climate models to reproduce observed monthly rainfall and temperature with machine learning methods in Australia. International Journal of Climatology, 38(13), 4891–4902.

    Article  Google Scholar 

  • Yang, S., Yang, D., Chen, J., Santisirisomboon, J., Lu, W., & Zhao, B. (2020). A physical process and machine learning combined hydrological model for daily streamflow simulations of large watersheds with limited observation data. Journal of Hydrology, 590, 125206.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express great appreciation to the anonymous reviewers and the editor for their valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Contributions

Data collection, execution, data interpretation, and manuscript draft preparation: Bobbili Aravind Sai Atchyuth

Supervision and preparation of final manuscript: Ratnakar Swain

Editing and suggestions on the overall research work: Pulakesh Das

Corresponding author

Correspondence to Ratnakar Swain.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atchyuth, B.A.S., Swain, R. & Das, P. Near real-time flood inundation and hazard mapping of Baitarani River Basin using Google Earth Engine and SAR imagery. Environ Monit Assess 195, 1331 (2023). https://doi.org/10.1007/s10661-023-11876-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11876-5

Keywords

Navigation