Skip to main content

Advertisement

Log in

Assessing how irrigation practices and soil moisture affect crop growth through monitoring Sentinel-1 and Sentinel-2 data

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

This study authorizes processes and approaches using optical and microwave data to determine the availability of water in the study area at any given moment. This will aid in identifying the optimal time and location for irrigation to enhance crop growth. For this purpose, a set of spectral vegetation parameters (from Sentinel-2), soil moisture (from Sentinel-1), evapotranspiration, and surface temperature (from Landsat-8) were used, along with field data on water content and irrigation timing. The results showed that both NDVI and NDMI are highly sensitive to moisture, making them the best indices for determining the timing and location of irrigation. This research contributes to sustainable agricultural development. It has implications for farmers, policymakers, and researchers in optimizing irrigation schedules, developing policies for sustainable agriculture, and enhancing crop productivity while conserving water resources. This approach can be particularly useful in regions facing water scarcity, where the efficient use of water resources is crucial for sustainable agricultural development

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  • Alderfasi, A. A., & Nielsen, D. C. (2001). Use of crop water stress index for monitoring water status and scheduling irrigation in wheat. Agricultural Water Management, 47(1), 69–75. https://doi.org/10.1016/S0378-3774(00)00096-2

    Article  Google Scholar 

  • Alexakis, D., Mexis, F., Vozinaki, A.-E., Daliakopoulos, I., & Tsanis, I. (2017). Soil moisture content estimation based on Sentinel-1 and auxiliary earth observation products. A hydrological approach. Sensors, 17. https://doi.org/10.3390/s17061455

  • Al-Shehhi, M., Saffarini, R., Farhat, A., Al-Meqbali, N., & Ghedira, H. (2011). Evaluating the effect of soil moisture, surface temperature, and humidity variations on MODIS-derived NDVI values. International Geoscience and Remote Sensing Symposium (IGARSS), 3163. https://doi.org/10.1109/IGARSS.2011.6049889

  • Amazirh, A., Merlin, O., Er-Raki, S., Gao, Q., Rivalland, V., Malbeteau, Y., Khabba, S., & Escorihuela, M. J. (2018). Retrieving surface soil moisture at high spatio-temporal resolution from a synergy between Sentinel-1 radar and Landsat thermal data: A study case over bare soil. Remote Sensing of Environment, 211, 321–337. https://doi.org/10.1016/j.rse.2018.04.013

    Article  Google Scholar 

  • Babaeian, E., Sadeghi, M., Jones, S. B., Montzka, C., Vereecken, H., & Tuller, M. (2019). Ground, proximal, and satellite remote sensing of soil moisture. Reviews of Geophysics, 57(2), 530–616. https://doi.org/10.1029/2018RG000618

    Article  Google Scholar 

  • Balenzano, A., Satalino, G., Lovergine, F. P., D’Addabbo, A., Palmisano, D., Grassi, R., Ozalp, O., Mattia, F., Nafría García, D., & Paredes Gómez, V. (2022). Sentinel-1 and Sentinel-2 data to detect irrigation events: Riaza Irrigation District (Spain) case study. Water, 14(19), 19. https://doi.org/10.3390/w14193046

    Article  Google Scholar 

  • Bauer-Marschallinger, B., Freeman, V., Cao, S., Paulik, C., Schaufler, S., Stachl, T., Modanesi, S., Massari, C., Ciabatta, L., Brocca, L., & Wagner, W. (2019). Toward global soil moisture monitoring with Sentinel-1: Harnessing assets and overcoming obstacles. IEEE Transactions on Geoscience and Remote Sensing, 57(1), 520–539. https://doi.org/10.1109/TGRS.2018.2858004

    Article  Google Scholar 

  • Bazzi, H., Baghdadi, N., Fayad, I., Charron, F., Zribi, M., & Belhouchette, H. (2020). Irrigation events detection over intensively irrigated grassland plots using Sentinel-1 data. Remote Sensing, 12(24), 24. https://doi.org/10.3390/rs12244058

    Article  Google Scholar 

  • Bello, M., Nasidi, N., & Shanono, N. (2014). Remote sensing as a tool for irrigation water management.

    Google Scholar 

  • Camporese, M., Gumiere, S. J., Putti, M., & Botter, G. (2021). Efficient irrigation of maize through soil moisture monitoring and modeling. Frontiers. Water, 3. https://doi.org/10.3389/frwa.2021.627551

  • Carter, G. A. (1993). Responses of leaf spectral reflectance to plant stress. American Journal of Botany, 80(3), 239–243. https://doi.org/10.2307/2445346

    Article  Google Scholar 

  • Chawla, I., Karthikeyan, L., & Mishra, A. K. (2020). A review of remote sensing applications for water security: Quantity, quality, and extremes. Journal of Hydrology, 585, 124826. https://doi.org/10.1016/j.jhydrol.2020.124826

    Article  CAS  Google Scholar 

  • El Hajj, M., Baghdadi, N., Zribi, M., & Bazzi, H. (2017). Synergic use of Sentinel-1 and Sentinel-2 images for operational soil moisture mapping at high spatial resolution over agricultural areas. Remote Sensing, 9(12), Article 12. https://doi.org/10.3390/rs9121292

    Article  Google Scholar 

  • Elsayed, S., & Darwish, W. (2017). Hyperspectral remote sensing to assess the water status, biomass, and yield of maize cultivars under salinity and water stress. Bragantia, 76, 62–72. https://doi.org/10.1590/1678-4499.018

    Article  CAS  Google Scholar 

  • Entezari, M., Esmaeily, A., & Niazmardi, S. (2019). Estimation of soil moisture and earth’s surface temperature using Landsat-8 satellite data. ISPRS - International Archives of the Photogrammetry. Remote Sensing and Spatial Information Sciences, XLII-4/W18, 327–330. https://doi.org/10.5194/isprs-archives-XLII-4-W18-327-2019

    Article  Google Scholar 

  • Ferrant, S., Selles, A., Le Page, M., Herrault, P.-A., Pelletier, C., Al-Bitar, A., Mermoz, S., Gascoin, S., Bouvet, A., Saqalli, M., Dewandel, B., Caballero, Y., Ahmed, S., Maréchal, J.-C., & Kerr, Y. (2017). Detection of irrigated crops from Sentinel-1 and Sentinel-2 data to estimate seasonal groundwater use in South India. Remote Sensing, 9(11), 11. https://doi.org/10.3390/rs9111119

    Article  Google Scholar 

  • Gao, Q., Zribi, M., Escorihuela, M. J., Baghdadi, N., & Segui, P. Q. (2018). Irrigation mapping using Sentinel-1 time series at field scale. Remote Sensing, 10(9), 9. https://doi.org/10.3390/rs10091495

    Article  Google Scholar 

  • Gaznayee, H. A. A., Zaki, S. H., Al-Quraishi, A. M. F., Aliehsan, P. H., Hakzi, K. K., Razvanchy, H. A. S., Riksen, M., & Mahdi, K. (2023). Integrating remote sensing techniques and meteorological data to assess the ideal irrigation system performance scenarios for improving crop productivity. Water (Switzerland), 15(8), 1605. https://doi.org/10.3390/w15081605

    Article  Google Scholar 

  • Gontia, N. K., & Tiwari, K. (2009). Estimation of crop coefficient and evapotranspiration of wheat (Triticum aestivum) in an irrigation command using remote sensing and GIS. Water Resources Management, 24, 1399–1414. https://doi.org/10.1007/s11269-009-9505-3

    Article  Google Scholar 

  • Govender, M., Govender, P. J., Weiersbye, I. M., Witkowski, E. T. F., & Ahmed, F. (2009). Review of commonly used remote sensing and ground-based technologies to measure plant water stress. Water SA, 35(5), 5. https://doi.org/10.4314/wsa.v35i5.49201

    Article  Google Scholar 

  • Hussein, S., Kovács, F., & Tobak, Z. (2017). Spatiotemporal assessment of vegetation indices and land cover for erbil city and its surrounding using Modis imageries. Journal of Environmental Geography, 10. https://doi.org/10.1515/jengeo-2017-0004

  • Jin, S., & Sader, S. A. (2005). Comparison of time series tasseled cap wetness and the normalized difference moisture index in detecting forest disturbances. Remote Sensing of Environment, 94(3), 364–372. https://doi.org/10.1016/j.rse.2004.10.012

    Article  Google Scholar 

  • John, J., Jaganathan, R., & Dharshan Shylesh, D. S. (2022). Mapping of Soil moisture index using optical and thermal remote sensing. In Proceedings of SECON’21: Structural Engineering and Construction Management (pp. 759–767). Springer International Publishing.

  • Kamble, B., Irmak, A., Hubbard, K., & Gowda, P. (2013). Irrigation scheduling using remote sensing data assimilation approach. Advances in Remote Sensing, 2(3), 3. https://doi.org/10.4236/ars.2013.23028

    Article  Google Scholar 

  • Khalid, H., Khalil, R. Z., & Qureshi, M. (2021). Evaluating spectral indices for water bodies extraction in western Tibetan Plateau. Egyptian Journal of Remote Sensing and Space Science, 24. https://doi.org/10.1016/j.ejrs.2021.09.003

  • Le Page, M., Jarlan, L., El Hajj, M. M., Zribi, M., Baghdadi, N., & Boone, A. (2020). Potential for the detection of irrigation events on maize plots using Sentinel-1 soil moisture products. Remote Sensing, 12(10), 10. https://doi.org/10.3390/rs12101621

    Article  Google Scholar 

  • Li, Y., Gong, X., Guo, Z., Xu, K., Hu, D., & Zhou, H. (2016). An index and approach for water extraction using Landsat–OLI data. International Journal of Remote Sensing, 37(16), 3611–3635. https://doi.org/10.1080/01431161.2016.1201228

    Article  Google Scholar 

  • Li, Y., Zhang, C., & Heng, W. (2021). Retrieving surface soil moisture over wheat-covered areas using data from Sentinel-1 and Sentinel-2. Water, 13(14), 14. https://doi.org/10.3390/w13141981

    Article  Google Scholar 

  • Lievens, H., Verhoest, N. E. C., De Keyser, E., Vernieuwe, H., Matgen, P., Álvarez-Mozos, J., & De Baets, B. (2010). Effective roughness modelling as a tool for soil moisture retrieval from C- and L-band SAR. Water Resources Management/Remote Sensing and GIS. https://doi.org/10.5194/hessd-7-4995-2010

  • Liu, L., & Zhang, Y. (2011). Urban heat island analysis using the Landsat TM data and ASTER data: A case study in Hong Kong. Remote Sensing, 3(7), 7. https://doi.org/10.3390/rs3071535

    Article  Google Scholar 

  • Liu, X., & Yang, D. (2021). Irrigation schedule analysis and optimization under the different combination of P and ET0 using a spatially distributed crop model. Agricultural Water Management, 256, 107084. https://doi.org/10.1016/j.agwat.2021.107084

    Article  Google Scholar 

  • Ma, C., Johansen, K., & McCabe, M. F. (2022). Monitoring irrigation events and crop dynamics using Sentinel-1 and Sentinel-2 time series. Remote Sensing, 14(5), 5. https://doi.org/10.3390/rs14051205

    Article  Google Scholar 

  • Maselli, F., Chiesi, M., Angeli, L., Fibbi, L., Rapi, B., Romani, M., Sabatini, F., & Battista, P. (2020). An improved NDVI-based method to predict actual evapotranspiration of irrigated grasses and crops. Agricultural Water Management, 233, 106077. https://doi.org/10.1016/j.agwat.2020.106077

    Article  Google Scholar 

  • Massari, C., Modanesi, S., Dari, J., Gruber, A., De Lannoy, G. J. M., Girotto, M., Quintana-Seguí, P., Le Page, M., Jarlan, L., Zribi, M., Ouaadi, N., Vreugdenhil, M., Zappa, L., Dorigo, W., Wagner, W., Brombacher, J., Pelgrum, H., Jaquot, P., Freeman, V., et al. (2021). A review of irrigation information retrievals from space and their utility for users. Remote Sensing, 13(20), 20. https://doi.org/10.3390/rs13204112

    Article  Google Scholar 

  • Nimish, G., Bharath, H. A., & Lalitha, A. (2020). Exploring temperature indices by deriving relationship between land surface temperature and urban landscape. Remote Sensing Applications: Society and Environment, 18, 100299. https://doi.org/10.1016/j.rsase.2020.100299

    Article  Google Scholar 

  • Panda, R., Behera, S., & Kashyap, P. S. (2003). Effective management of irrigation water for wheat under stressed conditions. Agricultural Water Management, 63, 37–56. https://doi.org/10.1016/S0378-3774(03)00099-4

    Article  Google Scholar 

  • Qin, Q., Wu, Z., Zhang, T., Sagan, V., Zhang, Z., Zhang, Y., Zhang, C., Ren, H., Sun, Y., Xu, W., & Zhao, C. (2021). Optical and thermal remote sensing for monitoring agricultural drought. Remote Sensing, 13(24), 24. https://doi.org/10.3390/rs13245092

    Article  Google Scholar 

  • Qin, Z., Karnieli, A., & Berliner, P. (2001). A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region. International Journal of Remote Sensing, 22(18), 3719–3746. https://doi.org/10.1080/01431160010006971

    Article  Google Scholar 

  • Rahimzadeh-Bajgiran, P., Berg, A. A., Champagne, C., & Omasa, K. (2013). Estimation of soil moisture using optical/thermal infrared remote sensing in the Canadian Prairies. ISPRS Journal of Photogrammetry and Remote Sensing, 83, 94–103. https://doi.org/10.1016/j.isprsjprs.2013.06.004

    Article  Google Scholar 

  • Santi, E., Paloscia, S., Pettinato, S., & Fontanelli, G. (2016). Application of artificial neural networks for the soil moisture retrieval from active and passive microwave spaceborne sensors. International Journal of Applied Earth Observation and Geoinformation, 48, 61–73. https://doi.org/10.1016/j.jag.2015.08.002

    Article  Google Scholar 

  • Schönbrodt-Stitt, S., Ahmadian, N., Kurtenbach, M., Conrad, C., Romano, N., Bogena, H. R., Vereecken, H., & Nasta, P. (2021). Statistical exploration of SENTINEL-1 data, terrain parameters, and in-situ data for estimating the near-surface soil moisture in a Mediterranean agroecosystem. Frontiers in Water, 3. https://doi.org/10.3389/frwa.2021.655837

  • Serrano, J., Shahidian, S., & Marques da Silva, J. (2019). Evaluation of normalized difference water index as a tool for monitoring pasture seasonal and inter-annual variability in a mediterranean agro-silvo-pastoral system. Water, 11(1), 1. https://doi.org/10.3390/w11010062

    Article  Google Scholar 

  • Singh, K. V., Setia, R., Sahoo, S., Prasad, A., & Pateriya, B. (2015). Evaluation of NDWI and MNDWI for assessment of waterlogging by integrating digital elevation model and groundwater level. Geocarto International, 30(6), 650–661. https://doi.org/10.1080/10106049.2014.965757

    Article  Google Scholar 

  • Sovoe, S. (2011). Mapping irrigated area fragments for crop water use assessment using handheld spectroradiometer. International Journal of Agronomy, 2011, 1–8. https://doi.org/10.1155/2011/974040

    Article  Google Scholar 

  • Sun, D., & Pinker, R. (2004). Case study of soil moisture effect on land surface temperature retrieval. Geoscience and Remote Sensing Letters, IEEE, 1, 127–130. https://doi.org/10.1109/LGRS.2004.824749

    Article  Google Scholar 

  • Taloor, A. K., Manhas, D. S., & Chandra Kothyari, G. (2021). Retrieval of land surface temperature, normalized difference moisture index, normalized difference water index of the Ravi basin using Landsat data. Applied Computing and Geosciences, 9, 100051. https://doi.org/10.1016/j.acags.2020.100051

    Article  Google Scholar 

  • Toureiro, C., Serralheiro, R., Shahidian, S., & Sousa, A. (2017). Irrigation management with remote sensing: Evaluating irrigation requirement for maize under Mediterranean climate condition. Agricultural Water Management, 184, 211–220. https://doi.org/10.1016/j.agwat.2016.02.010

    Article  Google Scholar 

  • Vico, G., & Porporato, A. (2011). From rainfed agriculture to stress-avoidance irrigation: II. Sustainability, crop yield, and profitability. Advances in Water Resources, 34(2), 272–281. https://doi.org/10.1016/j.advwatres.2010.11.011

    Article  Google Scholar 

  • Wang, L., Qu, J., Hao, X., & Zhu, Q. (2008). Sensitivity studies of the moisture effects on MODIS SWIR reflectance and vegetation water indices. International Journal of Remote Sensing, 29. https://doi.org/10.1080/01431160802226034

  • Wang, C., Chen, J., Wu, J., Tang, Y., Shi, P., Black, T. A., & Zhu, K. (2017). A snow-free vegetation index for improved monitoring of vegetation spring green-up date in deciduous ecosystems. Remote Sensing of Environment, 196, 1–12. https://doi.org/10.1016/j.rse.2017.04.031

    Article  Google Scholar 

  • Xu, H. (2006). Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing, 27(14), 3025–3033. https://doi.org/10.1080/01431160600589179

    Article  Google Scholar 

  • Yang, J., & Du, X. (2017). An enhanced water index in extracting water bodies from Landsat TM imagery. Annals of GIS, 23(3), 141–148. https://doi.org/10.1080/19475683.2017.1340339

    Article  Google Scholar 

  • Zhang, H., Chang, J., Zhang, L., Wang, Y., Li, Y., & Wang, X. (2018). NDVI dynamic changes and their relationship with meteorological factors and soil moisture. Environmental Earth Sciences, 77(16), 582. https://doi.org/10.1007/s12665-018-7759-x

    Article  Google Scholar 

Download references

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

Gaylan R. Faqe: conceptualization, methodology, software, validation, formal analysis, investigation, writing—original draft preparation; Azad Rasul: visualization and supervision; Haidi Abdullah: conceptualization, review, and editing.

Corresponding authors

Correspondence to Gaylan Rasul Faqe Ibrahim or Azad Rasul.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibrahim, G.R.F., Rasul, A. & Abdullah, H. Assessing how irrigation practices and soil moisture affect crop growth through monitoring Sentinel-1 and Sentinel-2 data. Environ Monit Assess 195, 1262 (2023). https://doi.org/10.1007/s10661-023-11871-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11871-w

Keywords

Navigation