Skip to main content

Advertisement

Log in

Spatio-temporal change analysis and prediction of land use and land cover changes using CA-ANN model

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The spatial and temporal representation of land use and land cover (LULC) changes helps to understand the interactions between natural habitats and other areas and to plan for sustainability. Research on the models used to determine the spatio-temporal change of LULC and simulation of possible future scenarios provides a perspective for future planning and development strategies. Landsat 5 TM for 1990, Landsat 7 ETM + for 2006, and Landsat 8 OLI for 2022 satellite imageries were used to estimate spatial and temporal variations of transition potentials and future LULC simulation. Independent variables (DEM, slope, and distances to roads and buildings) and the cellular automata–artificial neural network (CA-ANN) model integrated in the MOLUSCE plugin of QGIS were used. The CA-ANN model was used to predict the LULC maps for 2038 and 2054, and the results suggest that artificial surfaces will continue to increase. The Düzce City center’s artificial surfaces grew by 100% between 1990 and 2022, from 16.04 to 33.10 km2, and are projected to be 41.13 km2 and 50.32 km2 in 2038 and 2054, respectively. Artificial surfaces, which covered 20% of the study area in 1990, are estimated to cover 64.07% in 2054. If this trend continues, most of the 1st-class agricultural lands may be lost. The study’s results can assist local governments in their land management strategies and aid them in planning for the future. The results suggest that policies are necessary to control the expansion of artificial surfaces, ensuring a balanced distribution of land use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and materials

The data supporting this study’s findings are available from the corresponding author upon reasonable request.

References

  • Abbas, Z., Yang, G., Zhong, Y., & Zhao, Y. (2021). Spatiotemporal change analysis and future scenario of LULC using the CA-ANN approach: A case study of the Greater Bay Area, China. Land, 10, 584. https://doi.org/10.3390/land10060584

  • Abutaleb, K., Mudede, M. F., Nkongolo, N., & Newete, S. W. (2021). Estimating urban greenness index using remote sensing data: A case study of an affluent vs poor suburbs in the city of Johannesburg, The Egyptian Journal of Remote Sensing and Space Science, 24(3), Part 1, 343–351. https://doi.org/10.1016/j.ejrs.2020.07.002

    Article  Google Scholar 

  • Adeola, F. O., Gbenga, A. E., Oludapo, O. A., & Oluseyi, O. R. (2020). Land use/land cover change and land surface temperature of Ibadan and environs, Nigeria. Environmental Monitoring and Assessment, 192, 1–18. https://doi.org/10.1007/s10661-019-8054-3

    Article  Google Scholar 

  • Agrawal, C., Green, G., Grove, J., Evans, T., & Schweik, C. (2002). A review and assessment of land-use change models: Dynamics of space, time, and human choice. Gen. Tech. Rep. NE-297. Newton Square, PA: U.S. Department of Agriculture, Forest Service, Northeastern Research Station. 61 p. https://doi.org/10.2737/NE-GTR-297

    Google Scholar 

  • Alam, N., Saha, S., Gupta, S., & Chakraborty, S. (2021). Prediction modeling of riverine landscape dynamics in the context of sustainable management of floodplain: A Geospatial approach. Annals of GIS. https://doi.org/10.1080/19475683.2020.1870558

    Article  Google Scholar 

  • Aneesha, S. B., Shashi, M., & Deva, P. (2020). Future land uses land cover scenario simulation using open source GIS for the city of Warangal, Telangana, India. Applied Geomatics, 12, 281–290. https://doi.org/10.1007/s12518-020-00298-4

    Article  Google Scholar 

  • Bahandari, A. K., Kumar, A., & Singh, G. K. (2012). Feature extraction using normalized difference vegetation ındex (NDVI): A case study of Jabalpur City. Procedia Technology, 6, 612–621.

    Article  Google Scholar 

  • Baker, W. L. (1989). A review of models of landscape change. Landscape Ecology, 2, 111–133.

    Article  Google Scholar 

  • Bell, E. J., & Hinojosa, R. C. (1977). Markov analysis of land use change: Continuous time and stationary processes. Socio-Economic Planning Sciences, 11, 13–17.

    Article  Google Scholar 

  • Bernstein, L. S., Adler-Golden, S. M., Sundberg, R. L., Levine, R. Y., Perkins, T. C., Berk, A., Ratkowski, A. J., Felde, G., & Hoke, M. L. (2005). Validation of the QUick atmospheric correction (QUAC) algorithm for VNIR-SWIR multi- and hyperspectral imagery. Proceedings of SPIE, 5806, 668. https://doi.org/10.1117/12.603359

    Article  Google Scholar 

  • Bolat, S., & Doğan, M. (2022). Detection and modeling of long-term (1984–2020) Land-use change (2035) analysis of Gölcük District. Journal of Geography, 44, 169–181. https://doi.org/10.26650/JGEOG2022-997334

  • Chen, X. L., Zhao, H. M., Li, P. X., & Yin, Z. Y. (2006). Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes. Remote Sensing of Environment, 104(2), 133–146.

    Article  Google Scholar 

  • Clarke, K. C., & Gaydos, L. J. (1998). Loose-coupling a cellular automaton model and GIS: Long-term urban growth prediction for San Francisco and Washington/Baltimore. International Journal of Geographical Information Science, 12(7), 699–714.

    Article  CAS  Google Scholar 

  • Crippen, R. E. (1990). Calculating the vegetation index faster. Remote Sensing of Environment, 34, 71–73.

    Article  Google Scholar 

  • Coppedge, B. R., Engle, D. M., & Fuhlendorf, S. D. (2007). Markov models of and cover dynamics in a southern Great Plains grassland region. Landscape Ecology, 22(9), 1383–1393.

    Article  Google Scholar 

  • Dewan, A. M., & Yamaguchi, Y. (2009). Using remote sensing and GIS to detect and monitor land use and land cover change in Dhaka Metropolitan of Bangladesh during 1960–2005. Environmental Monitoring and Assessment, 150, 237–249. https://doi.org/10.1007/s10661-008-0226-5

    Article  Google Scholar 

  • Doygun, H. (2009). Efects of urban sprawl on agricultural land: A case study of Kahramanmaraş, Turkey. Environmental Monitoring and Assessment, 158, 471–478. https://doi.org/10.1007/s10661-008-0597-7

  • El-Gammal, M. I., Ali, R. R., & Abou Samra, R. M. (2014). NDVI threshold classification for detecting vegetation cover in Damietta Governorate. Egypt. Journal of American Science, 10(8), 108–113.

    Google Scholar 

  • Foley, J. A., Defries, R. S., Asner, G. P., Barford, C. C., Bonan, G., Carpenter, S. R., Chapin, F. S., Coe, M. T., Daily, G. C., Gibbs, H., Helkowski, J. H., Holloway, T., Howard, E. A., Kucharik, C. J., Monfreda, C., Patz, J., Prentice, I. C., Ramankutty, N., & Snyder, P. K. (2005). Global consequences of land use. August 2005. Science, 309(5734), 570–4.

  • Gandhi, G. M., Parthiban, S., Thummalu, N., & Christy, A. (2015). Ndvi: Vegetation change detection using remote sensing and gis – A case study of Vellore District. Procedia Computer Science, 57, 1199–1210.

    Article  Google Scholar 

  • Gismondi, M. (2013). MOLUSCE-an open source land use change analyst. . Available online: https://2013.foss4g.org/conf/programme/presentations/107/

  • Guan, D., Li, H., Inohae, T., Su, W., Nagaie, T., & Hokao, K. (2011). Modeling urban land use change by the integration of cellular automaton and Markov model. Ecological Modelling, 222, 3761–3772.

    Article  Google Scholar 

  • Gülersoy, A. E. (2008). Bakırçay Havzası’nda doğal ortam koşulları ile arazi kullanımı arasındaki ilişkiler. Yayımlanmamış Doktora Tezi, D.E.Ü. Eğitim Bilimleri Enstitüsü, İzmir.

  • Halabian, A. H., & Soltanian, M. (2016). Evaluation of desertification changes in Isfahan using remote sensing technology and artificial neural network. Environmental Hazards, 5(9), 39–53.

    Google Scholar 

  • Hashim, H., Latif, Z. A., & Adnan, N. A. (2019). Urban vegetatıon classıfıcatıon with NDVI threshold value method with very high resolution (VHR) Pleiades ımagery. 6th International Conference on Geomatics and Geospatial Technology, Malaysia, 237–240.

  • Jat, M. K., Garg, P. K., & Khare, D. (2008). Modelling of urban growth using spatial analysis techniques: A case study of Ajmer city (India). International Journal of Remote Sensing, 29, 543–567. https://doi.org/10.1080/01431160701280983

    Article  Google Scholar 

  • Kamaraj, M., & Rangarajan, S. (2022). Predicting the future land use and land cover changes for Bhavani basin, Tamil Nadu, India, using QGIS MOLUSCE plugin. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-021-17904-6

    Article  Google Scholar 

  • Khan, A., & Sudheer, M. (2022). Machine learning-based monitoring and modeling for spatio-temporal urban growth of Islamabad. The Egyptian Journal of Remote Sensing and Space Sciences, 25, 541–550.

    Article  Google Scholar 

  • Landis, J. R., & Koch, G. G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33(1), 159–174. https://doi.org/10.2307/2529310

    Article  CAS  Google Scholar 

  • Li, G., Sun, S., & Fang, C. (2018). The varying driving forces of urban expansion in China: Insights from a spatial-temporal analysis. Landscape and Urban Planning, 174, 63–77.

    Article  Google Scholar 

  • Lu, D., Mausel, P., Brondizio, E., & Moran, E. (2003). Change detection techniques. International Journal of Remote Sensing, 25, 2365–2401.

    Article  Google Scholar 

  • Lv, Z. Q., Dai, F. Q., & Sun, C. (2012). Evaluation of urban sprawl and urban landscape pattern in a rapidly developing region. Environmental Monitoring and Assessment, 184, 6437–6448. https://doi.org/10.1007/s10661-011-2431-x

    Article  Google Scholar 

  • Mas, J. F., Kolb, M., Paegelow, M., Olmedo, M. T. C., & Houet, T. (2014). Inductive pattern-based land use/cover change models: A comparison of four software packages. Environmental Modelling & Software, 51, 94–111.

    Article  Google Scholar 

  • Muhammad, R., Zhang, W., Abbas, Z., Guo, F., & Gwiazdzinski, L. (2022). Spatiotemporal change analysis and prediction of future land use and land cover changes using QGIS MOLUSCE plugin and remote sensing big data: Case study of Linyi. China. Land, 11, 419. https://doi.org/10.3390/land11030419

    Article  Google Scholar 

  • Muller, M. R., & Middleton, J. (1994). A Markov model of land-use change dynamics in the Niagara Region, Ontario. Canada. Landscape Ecology, 9(2), 151–157.

    Article  Google Scholar 

  • Mushore, T. D., Mutanga, O., Odindi, J., & Dube, T. (2018). Determining extreme heat vulnerability of Harare Metropolitan City using multispectral remote sensing and socioeconomic data. Journal of Spatial Science. https://doi.org/10.1080/14498596.2017.1290558

  • NASA. (2022). Available online: https://search.earthdata.nasa.gov/search

  • Naikoo, M. W., Rihan, M., Ishtiaque, M., & Shahfahad,. (2020). Analyses of land use land cover (LULC) change and built-up expansion in the suburb of a metropolitan city: Spatio-temporal analysis of Delhi NCR using landsat datasets. Journal of Urban Management, 9(3), 347–359. https://doi.org/10.1016/j.jum.2020.05.004

    Article  Google Scholar 

  • Nasehi, S., Imanpour, N. A., & Salehi, E. (2019). Simulation of land cover changes in urban area using CA-MARKOV model (case study: Zone 2 in Tehran, Iran). Model Earth System Environment, 5, 193–202. https://doi.org/10.1007/s40808-018-0527-9

    Article  Google Scholar 

  • NextGIS. (2017). MOLUSCE-quick and convenient analysis of Land-Cover Changes. Available online: https://nextgis.com/nextgis-qgis/. Accessed 25 Sept 2017.

  • Nugroho, A. B., Hasyim, A. W., & Usman, F. (2018). Urban growth modelling of Malang City using artificial neural network based on multi-temporal remote sensing. Civil and Environmental Science Journal, I(02), 052–061.

    Article  Google Scholar 

  • Nong, D. H., Lepczyk, C. A., Miura, T., Fox, J. M., & Wilson, R. K. (2018). Quantifying urban growth patterns in Hanoi using landscape expansion modes and time series spatial metrics. PloSOne, 13(5), e0196940. https://doi.org/10.1371/journal.pone.0196940

  • OpenStreetMap. (2022). Avaliable online: https://www.openstreetmap.org

  • Perović, V., Jakšić, D., Jaramaz, D., Koković, N., Čakmak, D., Mitrović, M., & Pavlović, P. (2018). Spatio-temporal analysis of land use/land cover change and its effects on soil erosion (case study in the Oplenac wine-producing area, Serbia). Environmental Monitoring and Assessment, 190. https://doi.org/10.1007/s10661-018-7025-4

  • Saadani, S., Laajaj, R., Maanan, M., Rhinane, H., & Aaroud, A. (2020). Simulating spatial–temporal urban growth of a Moroccan metropolitan using CA–Markov model. Spatial Information Research, 28(5), 609–621. https://doi.org/10.1007/s41324-020-00322-0

    Article  Google Scholar 

  • Samad, A., Raihan, F., & Masum, K. M. (2022). Urban growth assessment in the Northeastern region of Bangladesh for sustainable landscape management and conservation. Geology, Ecology, and Landscapes, 1–10. https://doi.org/10.1080/24749508.2021.2022831

  • Sanderson, E. W., Jaiteh, M., Levy, M. A., Redford, K. H., Wannebo, A. V., & Woolmer, G. (2002). The human footprint and the last of the wild: The human footprint is a global map of human influence on the land surface, which suggests that human beings are stewards of nature, whether we like it or not BioScience. 52(10), 891–904.

  • Saputra, M. H., & Lee, H. S. (2019). Prediction of land use and land cover changes for North Sumatra, Indonesia, using an artificial-neuralnetwork- based cellular automaton. Sustainability (Switzerland) 11. https://doi.org/10.3390/su11113024

  • Seto, K. C., Guneralp, B., & Hutyra, L. R. (2012). Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proceedings of the National Academy of Sciences of the United States of America, 109, 16083–16088.

    Article  CAS  Google Scholar 

  • Shahfahad, N. M. W., Das, T., Talukdar, S., Asgher, M. D. S., & Rahman, A. A. (2022). Prediction of land use changes at a metropolitan city using integrated cellular automata: Past and future. Geology, Ecology, and Landscapes,. https://doi.org/10.1080/24749508.2022.2132010

    Article  Google Scholar 

  • Singh, B., Venkatramanan, V., Deshmukh, B., Douzals, J. P., Guibal, R., Grimbuhler, S., Grünberger, O., Lissalde, S., Mazella, N., Samouëlian, A., & Simon, S. (2022). Monitoring of land use land cover dynamics and prediction of urban growth using land change modeler in Delhi and its environs. India. Environmental Science and Pollution Research, 29(1), 1–21. https://doi.org/10.1007/s11356-022-20900-z

    Article  Google Scholar 

  • Sloan, S., Zamora Pereira, J. C., Labbate, G., Asner, G. P., & Imbach, P. (2018). The cost and distribution of forest conservation for national emissions reductions. Global Environmental Change, 53, 39–51.

    Article  Google Scholar 

  • Tang, J., & Di, L. (2019). Past and future trajectories of farmland loss due to rapid urbanization using Landsat imagery and the Markov-CA model: A case study of Delhi, India. Remote Sensing, 11(2), 180. https://doi.org/10.3390/rs11020180

  • Talukdar, S., Singha, P., Mahato, S., Liou, Y. A., Liou, Y. A., Rahman, A., & Rahman, A. (2020). Land-use land-cover classification by machine learning classifiers for satellite observations—A review. Remote Sensing, 12(7), 1135. https://doi.org/10.3390/rs12071135

    Article  Google Scholar 

  • Tariq, A., & Mumtaz, F. (2023a). A series of spatio-temporal analyses and predicting modeling of land use and land cover changes using an integrated Markov chain and cellular automata models. Environmental Science and Pollution Research, 30, 47470–47484. https://doi.org/10.1007/s11356-023-25722-1

    Article  Google Scholar 

  • Tariq, A., & Mumtaz, F. (2023b). Modeling spatio-temporal assessment of land use land cover of Lahore and its impact on land surface temperature using multi-spectral remote sensing data. Environmental Science and Pollution Research, 30, 23908–23924. https://doi.org/10.1007/s11356-022-23928-3

    Article  Google Scholar 

  • Tariq, A., Riaz, I., Ahmad, Z., Amin, M., Kausar, R., Andleeb, S., Farooqi, M. A., & Rafiq, M. (2020). Land surface temperature relation with normalized satellite indices for the estimation of spatio-temporal trends in temperature among various land use land cover classes of an arid Potohar region using Landsat data. Environment and Earth Science, 79, 1–15. https://doi.org/10.1007/s12665-019-8766-2

    Article  Google Scholar 

  • Tariq, A., & Shu, H. (2020). CA-Markov chain analysis of seasonal land surface temperature and land use land cover change using optical multi-temporal satellite data of Faisalabad, Pakistan. Remote Sensing, 12(20), 3402. https://doi.org/10.3390/rs12203402

  • Tariq, A., Yan, J., Mumtaz, F. (2022a). Land change modeler and CA-Markov chain analysis for land use land cover change using satellite data of Peshawar, Pakistan, Physics and Chemistry of the Earth, Parts A/B/C, 128https://doi.org/10.1016/j.pce.2022.103286

  • Tariq, A., Mumtaz, F., Majeed, M., & Zeng, X. (2022b). Spatio-temporal assessment of land use land cover based on trajectories and cellular automata Markov modelling and its impact on land surface temperature of Lahore district Pakistan. Environmental Monitoring and Assessment, 195, 114. https://doi.org/10.1007/s10661-022-10738-w

    Article  Google Scholar 

  • Tran, D. X., Pla, F., Latorre-Carmona, P., Myint, S. W., Caetano, M., & Kieu, H. V. (2017). Characterizing the relationship between land use land cover change and land surface temperature. ISPRS Journal of Photogrammetry and Remote Sensing, 124, 119–132.

    Article  Google Scholar 

  • Tripathy, P., Kumar, A. (2019). Monitoring and modelling spatio-temporal urban growth of Delhi using cellular automata and geoinformatics. Cities, 90, 52–63. https://doi.org/10.1016/j.cities.2019.01.021

  • Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8, 127–150. https://doi.org/10.1016/0034-4257(79)90013-0

    Article  Google Scholar 

  • TUIK. (2022). Turkish Statistical Institute. Available online: https://www.tuik.gov.tr/. Accessed 31 Dec 2022.

  • Tulbure, M. G., & Broich, M. (2019). Spatiotemporal patterns and efects of climate and land use on surface water extent dynamics in a dryland region with three decades of Landsat satellite data. Science of the Total Environment, 658, 1574–1585. https://doi.org/10.1016/j.scitotenv.2018.11.390

    Article  CAS  Google Scholar 

  • UN. (2022). UN-Habitat World Cities Report 2022. Nairobi, Kenya. Avaliable online: https://www.unhabitat.org

  • USGS. (2022). United States Geological Survey. Avaliable online: https://earthexplorer.usgs.gov/

  • Vinayak, B., Lee, H. S., & Gedem, S. (2021). Prediction of land use and land cover changes in Mumbai City, India, using remote sensing data and a multilayer perceptron neural network-based Markov chain model. Sustainability, 13, 471. https://doi.org/10.3390/su13020471

    Article  Google Scholar 

  • Verburg, P. H., & Overmars, K. P. (2007). Dynamic simulation of land-use change trajectories with the Clue–s model. Modelling Land-use Change, 90, 321–335.

    Google Scholar 

  • Wahla, S. S., Kazmi, J. H., & Tariq A. (2023). Mapping and monitoring of spatio-temporal land use and land cover changes and relationship with normalized satellite indices and driving factors. Geology, Ecology, and Landscapeshttps://doi.org/10.1080/24749508.2023.2187567

  • Wang, S. W., Munkhnasan, L., & Lee, W. K. (2021). Land use and land cover change detection and prediction in Bhutan’s high altitude city of Thimphu, using cellular automata and Markov chain. Environmental Challenges, 2, 100017. https://doi.org/10.1016/j.envc.2020.100017

  • Yang, X., Chen, R., & Zheng, X. Q. (2015). Simulating land use change by integrating ANN-CA model and landscape pattern indices. Geomatics Natural Hazards Risk, 7, 918–932.

    Article  Google Scholar 

  • Zhang, M., Zhang, C., Kafy, A. A., & Tan, S. (2022). Simulating the relationship between land use/cover change and urban thermal environment using machine learning algorithms in Wuhan City. China, Land, 11(1), 14.

    Article  Google Scholar 

  • Zhang, Q., Ban, Y., Liu, J., & Hu, Y. (2011). Simulation and analysis of urban growth scenarios for the Greater Shanghai Area. China, Computers, Environment and Urban Systems, 35(2), 126–139. https://doi.org/10.1016/j.compenvurbsys.2010.12.002

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The author contributed to the study’s conception and design. Material preparation, data collection, and analysis were performed by Ahmet Salih Değermenci. The first draft of the manuscript was written by Ahmet Salih Değermenci and the author commented on previous versions of the manuscript. The author read and approved the final manuscript.

Corresponding author

Correspondence to Ahmet Salih Değermenci.

Ethics declarations

Ethical approval

All authors have read, understood, and have complied as applicable with the statement on “Ethical responsibilities of Authors” as found in the Instructions for Authors and are aware that with minor exceptions, no changes can be made to authorship once the paper is submitted.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The author declares no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 747 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Değermenci, A.S. Spatio-temporal change analysis and prediction of land use and land cover changes using CA-ANN model. Environ Monit Assess 195, 1229 (2023). https://doi.org/10.1007/s10661-023-11848-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11848-9

Keywords

Navigation